JPS5919315A - Device for heating in vacuum - Google Patents

Device for heating in vacuum

Info

Publication number
JPS5919315A
JPS5919315A JP12983982A JP12983982A JPS5919315A JP S5919315 A JPS5919315 A JP S5919315A JP 12983982 A JP12983982 A JP 12983982A JP 12983982 A JP12983982 A JP 12983982A JP S5919315 A JPS5919315 A JP S5919315A
Authority
JP
Japan
Prior art keywords
sintered body
vacuum
heating
beryllium oxide
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12983982A
Other languages
Japanese (ja)
Inventor
Yuichi Mikata
見方 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP12983982A priority Critical patent/JPS5919315A/en
Publication of JPS5919315A publication Critical patent/JPS5919315A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/08Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

PURPOSE:To perform a high temperature heating in a stabilized state by a method wherein a beryllium oxide sintered body is used for formation of the heat conductive material which constitutes the heating device. CONSTITUTION:A heating device 10 is constructed in such a manner that a heater 12, which is a heat generating body, is interposed between an upper flat plate 11 and a lower flat plate 13. Tungsten is used in the heater 12, and it is formed almost into a continued U-shape. Also, said flat plates 11 and 13 are formed with a beryllium oxide sintered body. A sintered body having relative density of 99.0% or above is to be used. Beryllium oxide sintered body has a high insulating property, and also it has excellet mechanical strength and heat conductivity.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は加熱装置にかかり、特に真空状態において対
象物を加熱する真空用加熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a heating device, and particularly to a vacuum heating device for heating an object in a vacuum state.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来半導体デバイスの製造プロセス等においては、結晶
成長を良好に行ったりあるいはその表面のクリーニング
等のため基板、試料物などC以下「対象物」と総称する
)を加熱する作業が行われているのは周知の通りである
Conventionally, in the manufacturing process of semiconductor devices, work is performed to heat substrates, specimens, etc. (hereinafter collectively referred to as "objects" below) in order to improve crystal growth or to clean their surfaces. As is well known.

かかる加熱手段としては、抵抗加熱、レーザ加熱、電子
ビーム加熱、高周波加熱あるいは直接通電加熱などがあ
るが、いずれも大型の対象物を均一に加熱することは困
難であり、結晶技術あるいはプロセス技術の発展によっ
て大口径のシリコンウェハ等が使用可能となりつつある
最近の技術的要請に十分応え得るものではない。
Such heating means include resistance heating, laser heating, electron beam heating, high frequency heating, and direct current heating, but it is difficult to uniformly heat a large object with any of them, and crystal technology or process technology is It is not possible to fully meet the recent technical demands, which have become possible to use large-diameter silicon wafers due to development.

更に近年のデバイスに対する種々の要請はデバイスの複
雑化ひいては製造プロセスの複雑化を招き、真空用加熱
装置に対しても、高真空中で使用でき、また広範囲に温
度設定が可能で安定した動作なする等の要望が高まって
いる。
Furthermore, various demands on devices in recent years have led to the complexity of devices and, in turn, the complexity of manufacturing processes, and vacuum heating equipment has become more and more complex, with the need for stable operation that can be used in high vacuum, and that can be set over a wide range of temperatures. There is an increasing demand for such things.

特に真空用加熱装置を構成する材料に対しては、高温に
おいても安定であって、対象物と反応したりあるいは対
象物内にその組成物が拡散したりしない材料であること
はもちろん、高真空中において不要なガス放出がなく且
つ蒸気圧の低い安定した材料であること、昇温加熱、高
温保持、降温の熱サイクルによって破損や劣化のない機
械的構造的に十分な強度のあること、その細針熱衝撃性
、低熱膨張性、高熱伝導性、高電気絶縁性、良好な熱応
答特性などが要求される。
In particular, the materials constituting the vacuum heating device must be stable even at high temperatures and do not react with the target object or diffuse its composition into the target object, as well as high vacuum It must be made of a stable material with no unnecessary gas emissions and low vapor pressure, and must have sufficient mechanical strength to avoid damage or deterioration due to thermal cycles of heating, holding, and cooling. Fine needle thermal shock resistance, low thermal expansion, high thermal conductivity, high electrical insulation, and good thermal response characteristics are required.

このような技術的要趙に対し、焼結セラミックが加熱装
置用材料として提案されているが上記条件を十分に満足
し得るものではない。
In response to these technical requirements, sintered ceramics have been proposed as a material for heating devices, but they do not fully satisfy the above conditions.

〔発明の目的〕[Purpose of the invention]

この発明は上記実情に鑑みてなされたものであり、高真
空中においても高温で安定に加熱し得る真空用加熱装置
を提供することをその目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vacuum heating device capable of stably heating at a high temperature even in a high vacuum.

〔発明の概要〕[Summary of the invention]

すなわち、この発明は、真空用加熱装置を構成する熱伝
導材を酸化ベリリウム焼結体で形成し、更にこの焼結体
の相対密度を99.9%の高密度とすることによって高
真空中で安定に高温加熱できるようにしたものである。
That is, in this invention, the thermally conductive material constituting the vacuum heating device is formed of a beryllium oxide sintered body, and the relative density of this sintered body is made to be as high as 99.9%. This allows for stable high temperature heating.

〔発明の実施例〕[Embodiments of the invention]

以下この発明にかかる真空用加熱装置を添附図面に示す
実施例に従って詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The vacuum heating device according to the present invention will be described in detail below according to embodiments shown in the accompanying drawings.

第1図はこの発明にかかる真空用加熱装置であって、特
にシリコンウェハ等の基板を加熱する加熱装置を分解し
て示す斜視図である。この第1図において、加熱装置1
0は下部平板11と下部平板13との間に発熱体である
ヒータ12を介在させた構造となっている。このうちヒ
ータ12は例えばタングステンを使用し、図示の如く略
U字状に連続した形状となっている。また、上記上部平
板11及び下部平板13は酸化ベリリウム(BeO)焼
結体によって形成されている。この酸化ベリリウム焼結
体は、ホットプレスあるいは常圧焼結によって形成され
、相対密度は99.9%以上のものを使用する。なお、
この酸化ベリリウム焼結体と、アルミナCAltOs)
及び石英(Sin、)との特性を比較するため、賭量な
表に示す。
FIG. 1 is an exploded perspective view of a vacuum heating apparatus according to the present invention, particularly for heating a substrate such as a silicon wafer. In this FIG. 1, heating device 1
0 has a structure in which a heater 12 as a heating element is interposed between a lower flat plate 11 and a lower flat plate 13. Among these, the heater 12 is made of tungsten, for example, and has a continuous substantially U-shape as shown in the figure. Further, the upper flat plate 11 and the lower flat plate 13 are formed of a sintered body of beryllium oxide (BeO). This beryllium oxide sintered body is formed by hot pressing or pressureless sintering, and has a relative density of 99.9% or more. In addition,
This beryllium oxide sintered body and alumina CAltOs)
In order to compare the characteristics with quartz (Sin) and quartz (Sin), they are shown in the table below.

この表によっても明らかなように、酸化ベリリウム焼結
体はアルミナや石英に比して絶縁性が高く機械的頻度や
熱伝導性も優れている。さらにこの酸化ベリリウム焼結
体の場合特に、上記アルミナや石英と比較してもなお酸
化雰囲気中での最高使用温度が高(、加熱装置の熱伝導
材すなわち前記上部及び下部平板11.13として申し
分のない特性を具えた倒斜であるといえる。
As is clear from this table, the beryllium oxide sintered body has higher insulating properties and superior mechanical frequency and thermal conductivity compared to alumina and quartz. Furthermore, especially in the case of this beryllium oxide sintered body, the maximum operating temperature in an oxidizing atmosphere is still high compared to the above-mentioned alumina and quartz (and it is suitable as a heat conductive material of a heating device, that is, the upper and lower flat plates 11 and 13). It can be said that it is an inverted slope with characteristics that do not exist.

また上記加熱装置は超高真空中で使用されるものである
から熱伝導材としては高温で蒸気圧の低い材料でなけれ
ばならない、#化ベリリウム焼結体はこの特性に8いて
も優れている。こ)酸化ヘリリウム焼結体と上記アルミ
ナ及び石英との温度−蒸気圧特性を第2図に示す。
In addition, since the above heating device is used in an ultra-high vacuum, the heat conductive material must be a material with high temperature and low vapor pressure, and the #8 beryllium sintered body is excellent in this property. . FIG. 2 shows the temperature-vapor pressure characteristics of the helium oxide sintered body and the alumina and quartz.

同第2図により明らかなようK、酸化ベリリウム焼結体
は蒸気圧が非常に低(、たとえ10−9’rorr以下
の真空中であっても対象物7a′120に’以上に加熱
し得ることが確認されている。
As is clear from FIG. 2, the K, beryllium oxide sintered body has a very low vapor pressure (even in a vacuum of 10-9'rorr or less, it can heat the object 7a'120' or more). This has been confirmed.

第3図は、上記特性を有する酸化ベリリウム焼結体を使
用した加熱装置を使用して所定の対象物上に金属の薄膜
を形成する真空蒸着装置の一例を示したものである。こ
の図において、真空蒸着装置20は、そのペルジャー2
1内の底ない真空ポンプ系によってガスが引かれ、ペル
ジャー21内が適宜の真空となるように構成されている
FIG. 3 shows an example of a vacuum evaporation apparatus for forming a thin metal film on a predetermined object using a heating apparatus using a beryllium oxide sintered body having the above characteristics. In this figure, the vacuum evaporation apparatus 20 has its Pelger 2
Gas is drawn by a bottomless vacuum pump system in the Pelger 21, so that the inside of the Pelger 21 is appropriately vacuumed.

^ロ記テーブル22上には、第1図に示した加熱装置1
0が載置固定されており、更にその上には対象物である
シリコンウエノ\8A、8Bが載置されている。また、
加熱装置10のヒータ12は適宜のハーメチック電極を
介してペルジャー21の外部に導出され、図示しない電
源に接続されている。
^ On the table 22 is the heating device 1 shown in FIG.
0 is placed and fixed, and silicon ueno sheets \8A and 8B, which are objects, are further placed on top of it. Also,
The heater 12 of the heating device 10 is led out of the Pelger 21 via a suitable hermetic electrode, and is connected to a power source (not shown).

他方、前記テーブル22をはさんでボール23゜24が
設けられており、これらボール23.24間には電極2
5.26を介してフィラメント27が架設され、更にこ
のフィラメント27にはワイヤー状の金属28が略U字
状に成形されて吊着されている。前記ボール23.24
も外部に導出され、図示しない電源に接続されている。
On the other hand, balls 23 and 24 are provided across the table 22, and an electrode 2 is placed between these balls 23 and 24.
A filament 27 is installed through the filament 27, and a wire-like metal 28 formed into a substantially U-shape is suspended from the filament 27. Said ball 23.24
It is also led out to the outside and connected to a power source (not shown).

次に、第3図においてクリコンウエノ%SA、SBに対
し金属28の膜を形成する場合を説明すると、まず図示
しない真空ポンプ系によってペルジャー21内を適宜の
真空とする。次に金属28の蒸着を行う前に、シリコン
ウエノ%SA、SBの表面清浄化のためヒータ21に通
電し、シリコンウェハ8A、8Bを加熱する。一般的に
はシリコンウェハBA、BBが1000t:’以上に加
熱されることが必要とされている。このとき、上部及び
下部平板11.13内に含まれていたガスが放出される
が、前述したように上部及び下部平板11.13を形成
する酸化ベリリウム焼結体の相対密度が99.9%とな
っているため、内部に存在する空胞はほとんどなく、こ
のRめ加熱によるガス放出量はきわめて少ないものとな
る。従って、気圧か10  Torr以下の超高真空状
態においても、真空状態に対してほとんど影響を及ぼす
ことば(7) ない。
Next, to explain the case of forming a film of the metal 28 on the Crycon Ueno% SA and SB with reference to FIG. 3, first, the inside of the Pel jar 21 is brought to an appropriate vacuum using a vacuum pump system (not shown). Next, before the metal 28 is vapor-deposited, the heater 21 is energized to heat the silicon wafers 8A and 8B in order to clean the surfaces of the silicon wafers 8A and 8B. Generally, it is required that the silicon wafers BA and BB be heated to 1000 t:' or more. At this time, the gas contained in the upper and lower flat plates 11.13 is released, but as mentioned above, the relative density of the beryllium oxide sintered bodies forming the upper and lower flat plates 11.13 is 99.9%. Therefore, there are almost no vacuoles inside, and the amount of gas released by this R heating is extremely small. Therefore, even in an ultra-high vacuum state of 10 Torr or less, there is almost no effect on the vacuum state (7).

次に、シリコンウエノ\βム、8Bの表面清浄の後、ヒ
ータ12への通電量を加減してシリコンウェハSA、S
Bの温度が必要とされる一定の温度となるように調整し
、東にフィラメント27に通電すると、金属28が溶融
蒸発し、シリコンウェハSA、8Bの表面に金属28の
膜が形成される。
Next, after cleaning the surface of the silicon wafers SA and S, the amount of electricity applied to the heater 12 is adjusted.
When the temperature of B is adjusted to a required constant temperature and electricity is applied to the filament 27 in the east, the metal 28 is melted and evaporated, and a film of the metal 28 is formed on the surfaces of the silicon wafers SA and 8B.

最後に、この発明に関して試作した装置における加熱実
験のデータを示すと以下の通りである。酸化ベリリウム
焼結体で形成した上部及び下部平板11.13’Y−辺
の長さが70mの正方形状とし、厚さをll1lIとす
る。ヒータ12は折り返しピッチを4mmとした直径1
φのタングステン線な使用する。この装置5()、8m
+(2インチ)のシリコンウェハを載置し、IQ”−’
Torrの真空状態下でヒータ12に2OAの電流を流
したところ、このシリコンウェハ・の表面温度は約10
分間で1200Cまで上がり、真空度もIQ  TOr
r以下に良好に保持された。また、上記シリコン(8) ウェハにおける表面温度のバラツキは±10C以内に抑
えられ、加熱の均一性も良好であった。
Finally, data from heating experiments using a prototype device of the present invention are shown below. The upper and lower flat plates 11.13' formed of beryllium oxide sintered bodies are square shaped with a Y-side length of 70 m and a thickness of ll1lI. The heater 12 has a diameter of 1 with a folding pitch of 4 mm.
Use φ tungsten wire. This device 5(), 8m
+ (2 inch) silicon wafer is placed and IQ"-'
When a current of 2 OA was passed through the heater 12 under a vacuum state of Torr, the surface temperature of this silicon wafer was approximately 10
The temperature rises to 1200C in minutes, and the vacuum level is also IQ Tor.
It was well maintained below r. Furthermore, the variation in surface temperature of the silicon (8) wafer was suppressed to within ±10 C, and the uniformity of heating was also good.

この後さらに昇温、降温な50回繰り返したが、上部及
び下部平板11.13に変化は見られず、シリコンウェ
ハとの間にも化学反応は起こらなかった。また、ヒータ
12を形成するタングステンとの化学反応もなく、逆に
このタングステンの蒸発によるシリコンウェハの汚染を
該酸化ベリリウム焼結体で形成した上部及び下部平板1
1.13によって防ぐことができた。
After this, the temperature was further increased and decreased 50 times, but no change was observed in the upper and lower flat plates 11 and 13, and no chemical reaction occurred with the silicon wafer. Further, there is no chemical reaction with tungsten forming the heater 12, and conversely, contamination of the silicon wafer due to evaporation of tungsten is prevented from occurring in the upper and lower flat plates 1 formed of the beryllium oxide sintered body.
1.13 could have prevented this.

なお、上記実施例においては、加熱される対象物ヲシリ
コンウエハとしたが他の金属、絶縁物等でもよい。また
、この発明にかかる加熱装置は、上記真空蒸着に限らず
分子線エピタキシーなどの製造プロセスに使用してもよ
く、またオージェ分光分析などの分析・測定装置におい
て使用してもよい。更に加熱装置の形状も上述した平板
状に限定されるものではな(、種々の形状としてよく、
また焼結時に一定の形状とすることによってヒータを埋
設することも可能である。
In the above embodiment, the object to be heated is a silicon wafer, but other metals, insulators, etc. may be used. Further, the heating device according to the present invention may be used not only for the above-mentioned vacuum evaporation but also for manufacturing processes such as molecular beam epitaxy, and may be used for analysis and measurement equipment such as Auger spectroscopy. Furthermore, the shape of the heating device is not limited to the above-mentioned flat plate shape (it may be of various shapes,
It is also possible to embed a heater by shaping the material into a certain shape during sintering.

その他、他のベリリア磁器等と組合せて使用するととも
可能である。
It is also possible to use it in combination with other beryllia porcelain.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明にかかる真空用加熱装置
によれば、発熱体を包囲し対象物と接する部分を酸化ベ
リリウム焼結体によって形成することとしたので120
0C以上の高温においても何ら破損を生じることなく低
熱損失で対象物を均一に良好に加熱することができ、ま
たかなり面積の大きい加熱装置を作製できることにより
対象物に適した大きさを選択することかでき、更には賦
焼結体の相対密度を99.9%としたので不要なガス放
出が低減され真空状態に対する悪影響を防止することが
でき、高真空中において高温で安定に対象物を加熱し得
るという丁ぐれた幼果を責する。
As explained above, according to the vacuum heating device according to the present invention, the part surrounding the heating element and in contact with the object is formed of a beryllium oxide sintered body.
It is possible to heat the object uniformly and well with low heat loss without causing any damage even at high temperatures of 0C or higher, and it is also possible to create a heating device with a fairly large area, so that the size suitable for the object can be selected. In addition, the relative density of the sintered body is 99.9%, which reduces unnecessary gas emissions and prevents negative effects on the vacuum state, making it possible to stably heat objects at high temperatures in high vacuum. I blame the young fruit of being able to do it.

なお、この発明の応用例として低融点金属などのエバポ
レータすなわちるつぼを酸化ベリリウム焼結体で形成し
てもよい。また、真空装置を使用する作業の内容によっ
ては、非常に高温存在するが、このような部分に酸化ベ
リリウム焼結体を使用すれば上記と同様の効果な得るこ
とができる。例えば第3図の例においてはボール23.
24の絶縁部材30.31に使用すれば、フィラメント
27の発熱にともなってボール23゜24の温度が上昇
しても良好に絶縁を維持することかできる。
As an application example of the present invention, an evaporator or crucible for a low melting point metal or the like may be formed of a beryllium oxide sintered body. Further, depending on the content of the work using the vacuum equipment, extremely high temperatures may be present, but if beryllium oxide sintered bodies are used in such parts, the same effects as above can be obtained. For example, in the example of FIG. 3, the ball 23.
If it is used for the insulating members 30 and 31 of the filament 24, it is possible to maintain good insulation even if the temperature of the balls 23 and 24 rises due to the heat generation of the filament 27.

更に、酸化ベリリウム焼結体に対して交番電界を印加す
ることによって誘電加熱を行うようにしてもよい。特に
、酸化ベリリウム焼結体に複数の通入を設けたり、ある
いは円筒状に形成して誘電加熱を行うことによって、気
体、液体の加熱を行うようにすることも可能である。
Furthermore, dielectric heating may be performed by applying an alternating electric field to the beryllium oxide sintered body. In particular, it is also possible to heat gas or liquid by providing a plurality of passages in the beryllium oxide sintered body or by forming it into a cylindrical shape and performing dielectric heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明にかかる真空用加熱装置の一実施例
を分解して示す斜視図、第2図は酸化ペリリクム焼結体
とアルミナと石英との温度−蒸気圧特性を比較して示す
線図、第3図は第1図の加熱装置を使用した真空蒸着装
置の一例(11) な示す斜視図である。 10・・・真空用加熱装置、11・・・熱伝導材である
上部平板%12・・・発熱体であるヒータ、13・・・
熱伝導材である下部平板。 (l 2 )
FIG. 1 is an exploded perspective view of an embodiment of a vacuum heating device according to the present invention, and FIG. 2 is a comparison of the temperature-vapor pressure characteristics of perilicum oxide sintered bodies, alumina, and quartz. 3 is a perspective view showing an example (11) of a vacuum evaporation apparatus using the heating device of FIG. 1. DESCRIPTION OF SYMBOLS 10... Vacuum heating device, 11... Upper flat plate which is a thermally conductive material 12... Heater which is a heating element, 13...
The lower flat plate is a heat conductive material. (l 2 )

Claims (2)

【特許請求の範囲】[Claims] (1)  発熱体と、この発熱体から発生される熱を対
象物に伝導する熱伝導材とを有し、真空中で使用される
真空用加熱装置において、前記熱伝導材を酸化ベリリウ
ム焼結体で形成したことを特徴とする真空用加熱装置。
(1) In a vacuum heating device that is used in a vacuum and has a heating element and a thermally conductive material that conducts heat generated from the heating element to an object, the thermally conductive material is sintered with beryllium oxide. A vacuum heating device characterized by being formed from a body.
(2)  前記酸化ベリリウム焼結体の相対密度’&9
9.9%以上とじよ特許請求の範囲第(1)項記載の真
空用加熱装置。
(2) Relative density of the beryllium oxide sintered body'&9
9.9% or more The vacuum heating device according to claim (1).
JP12983982A 1982-07-26 1982-07-26 Device for heating in vacuum Pending JPS5919315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12983982A JPS5919315A (en) 1982-07-26 1982-07-26 Device for heating in vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12983982A JPS5919315A (en) 1982-07-26 1982-07-26 Device for heating in vacuum

Publications (1)

Publication Number Publication Date
JPS5919315A true JPS5919315A (en) 1984-01-31

Family

ID=15019504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12983982A Pending JPS5919315A (en) 1982-07-26 1982-07-26 Device for heating in vacuum

Country Status (1)

Country Link
JP (1) JPS5919315A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181725A (en) * 1990-11-16 1992-06-29 Ngk Insulators Ltd Ceramic heater for heating semiconductor wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181725A (en) * 1990-11-16 1992-06-29 Ngk Insulators Ltd Ceramic heater for heating semiconductor wafer

Similar Documents

Publication Publication Date Title
US4771730A (en) Vacuum processing apparatus wherein temperature can be controlled
Hashimoto et al. High temperature gas reaction specimen chamber for an electron microscope
CN100440422C (en) Substrate support having dynamic temperature control
US20100002354A1 (en) Electrostatic chuck device
TW200308044A (en) Electrostatic chucking stage and substrate processing apparatus
JPH0434953A (en) Electrostatic chucking plate
JPS60112671A (en) Electroconductive element stable for direct exposure to reactive circumstances
US3294661A (en) Process of coating, using a liquid metal substrate holder
JP2533679B2 (en) Plate-shaped ceramic heater and method for manufacturing the same
JPS5919315A (en) Device for heating in vacuum
JP2798570B2 (en) Electrostatic chuck
JPS5919314A (en) Device for heating in vacuum
JP2756944B2 (en) Ceramic electrostatic chuck
JP5278737B2 (en) Manufacturing method of heat dissipation material
CN111383885B (en) Substrate mounting table capable of improving temperature control precision and plasma processing equipment
JPS58170532A (en) Vacuum heating apparatus
JPH0413837B2 (en)
JP3419992B2 (en) Ceramic members
JPS63193447A (en) Sample holding device
JPH01268126A (en) Wafer processing device
JPS6159180B2 (en)
JPS6276145A (en) Thermal conductor for ionic processing device
JPH051375A (en) Vacuum treating device
GB2112205A (en) A thermal processing system for semiconductors and other materials using two or more electron beams
JPH09278527A (en) Wafer heating device having electrostatic absorbing function