JPS5919314A - Device for heating in vacuum - Google Patents

Device for heating in vacuum

Info

Publication number
JPS5919314A
JPS5919314A JP12983882A JP12983882A JPS5919314A JP S5919314 A JPS5919314 A JP S5919314A JP 12983882 A JP12983882 A JP 12983882A JP 12983882 A JP12983882 A JP 12983882A JP S5919314 A JPS5919314 A JP S5919314A
Authority
JP
Japan
Prior art keywords
vacuum
sintered body
heating
heating device
thorium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12983882A
Other languages
Japanese (ja)
Inventor
Yuichi Mikata
見方 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP12983882A priority Critical patent/JPS5919314A/en
Publication of JPS5919314A publication Critical patent/JPS5919314A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/51Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on compounds of actinides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

PURPOSE:To enable to perform a high temperature heating in a stabilized manner by a method wherein the heat conducting material, which constitutes the heating device, is formed with a sodium oxide sintered body. CONSTITUTION:A heating device 10 is constructed in such a manner that a heater 12, a heat generating body, is interposed between an upper flat plate 11 and a lower flat plate 13. Tungsten is used for the heater 12, and it has a continued U-shape. The flat plates 11 and 13 are formed with the sintered body of thorium oxide. The sintered body of relative density 99.9% or above is to be used. The thorium oxide sintered body has a high insulating property, and it has also excellent mechanical strength and heat conductivity.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は加熱装置にかかり、特に真空状態において対
象物を加熱する真空用加熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a heating device, and particularly to a vacuum heating device for heating an object in a vacuum state.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来半導体デバイスの製造プロセス等においては、結晶
成長を良好に行ったりあるいはその表面のクリーニング
等のため基板、試料物など(以下「対象物」と総称する
)を加熱する作業が行われているのは同知の通りである
Conventionally, in the manufacturing process of semiconductor devices, etc., work is performed to heat substrates, sample objects, etc. (hereinafter collectively referred to as "objects") in order to improve crystal growth or to clean their surfaces. As you know.

かかる加熱手段としては、抵抗加熱、レーザ加熱、電子
ビーム加熱、高周波加熱あるいは直接通電加熱などがあ
るが、いずれも大型の対象物な均一に加熱することは困
難であり、結晶技術あるいはプロセス技術の発展によっ
て大口径の7リコンウエハ等が使用可能となりつつある
最近の技術的要請に十分応え得るものではない。
Such heating means include resistance heating, laser heating, electron beam heating, high frequency heating, and direct current heating, but it is difficult to uniformly heat a large object with any of them, and crystal technology or process technology is required. It is not possible to sufficiently meet the recent technical demands, which have become possible to use large-diameter 7-recon wafers due to development.

更に近年のデバイスに対する種々の散趙はデバイスの複
雑化ひいては製造プロセスの複雑化を招ぎ、真空用加熱
装置に対しても、高真空中で使用でき、また広範囲に温
度設定が可能で安定した動作をする等の要望が高まって
いる。
Furthermore, the various changes in devices in recent years have led to the complexity of devices and, in turn, the complexity of manufacturing processes. There is an increasing demand for things like motion.

特に真空用加熱装置を構成する材料に対しては、高温に
おいても安定であって、対象物と反応したりあるいは対
象物内にその組成物が拡散したりしない材料であること
はもちろん、高真空中において不要なガス放出がなく且
つ蒸気圧の低い安定した材料であること、昇温加熱、高
温保持、降温の熱サイクルによって破損や劣化のない機
械的構造的に十分な強度のあること、その細針熱衝撃性
、低熱膨張性、高熱伝導性、高電気絶縁性、良好な熱応
答特性などが要求される。
In particular, the materials constituting the vacuum heating device must be stable even at high temperatures and do not react with the target object or diffuse its composition into the target object, as well as high vacuum It must be made of a stable material with no unnecessary gas emissions and low vapor pressure, and must have sufficient mechanical strength to avoid damage or deterioration due to thermal cycles of heating, holding, and cooling. Fine needle thermal shock resistance, low thermal expansion, high thermal conductivity, high electrical insulation, and good thermal response characteristics are required.

このような技術的要趙に対し、焼結セラミックが加熱装
置用材料として提案されているが上記条件を十分に満足
し得るものではない。
In response to these technical requirements, sintered ceramics have been proposed as a material for heating devices, but they do not fully satisfy the above conditions.

〔発明の目的〕[Purpose of the invention]

この発明は上記実情に鑑6てなされたものであり、高真
空中においても高温で安定に加熱し得る真空用加熱装置
1に:提供することをその目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vacuum heating device 1 that can stably heat at a high temperature even in a high vacuum.

〔発明の概要〕[Summary of the invention]

すなわち、この発明は、真空用加熱装置を構成する熱伝
導材を酸化トリウム焼結体で形成し、更にこの焼結体の
相対密度’499.9%の高密度とすることによって高
真空中で安定に高温加熱できるようにしたものである。
That is, in this invention, the thermally conductive material constituting the vacuum heating device is formed of a thorium oxide sintered body, and the sintered body has a relative density of 499.9%, so that it can be heated in a high vacuum. This allows for stable high temperature heating.

〔発明の実施例〕[Embodiments of the invention]

以下この発明にかかる真空用加熱装置を添附図面に示す
実施例に従って詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The vacuum heating device according to the present invention will be described in detail below according to embodiments shown in the accompanying drawings.

第1図はこの発明にかかる真空用加熱装置であって、特
にシリコンウェハ等の基板を加熱する加熱装置を分解し
て示す斜視図である。この第1図において、加熱装[1
0は下部平板11と下部平板13との間に発熱体である
ヒータ12を介在させた構造となっている。このうちヒ
ータ12は例えばタングステンを使用し、図示の如く略
U字状に連続した形状となっている。また、上記下部平
板11及び下部平板13は酸化トリウム(Th+O1)
焼結体によって形成されている。この酸化トリウム焼結
体は、ホットプレスあるいは常圧焼結によって形成され
、相対密度は99.9%以上のものを使用する。なお、
この酸化トリウム焼結体と、アルミナ(ムl* Os)
及び石英(EliO,)との特性を比較するため、諸量
な表この表によっても明らかなよ5に1酸化トリウム焼
結体はアルミナや石英と同等に絶縁性が高く機械的強度
や熱伝導性も優れている。またこの酸化トリウム焼結体
の場合%に1上記アルミナや石英と比較してもなお比熱
が低く、かつ酸化雰囲気中での最高使用温度が高い。し
たがって、加熱装置の熱伝導材すなわち前記上部及び下
部平板11.13として、この酸化トリウム焼結体は申
し分のない特性を具えた材料であるといえる。
FIG. 1 is an exploded perspective view of a vacuum heating apparatus according to the present invention, particularly for heating a substrate such as a silicon wafer. In this FIG. 1, the heating device [1
0 has a structure in which a heater 12 as a heating element is interposed between a lower flat plate 11 and a lower flat plate 13. Among these, the heater 12 is made of tungsten, for example, and has a continuous substantially U-shape as shown in the figure. Further, the lower flat plate 11 and the lower flat plate 13 are made of thorium oxide (Th+O1).
It is formed from a sintered body. This thorium oxide sintered body is formed by hot pressing or pressureless sintering, and has a relative density of 99.9% or more. In addition,
This thorium oxide sintered body and alumina (Mul*Os)
In order to compare the characteristics with sintered thorium monoxide and quartz (EliO,), we have prepared a table of various quantities.5 As is clear from this table, sintered thorium monoxide has high insulating properties, similar to alumina and quartz, and has excellent mechanical strength and thermal conductivity. The quality is also excellent. In addition, in the case of this thorium oxide sintered body, the specific heat is still lower than that of the above-mentioned alumina and quartz, and the maximum operating temperature in an oxidizing atmosphere is high. Therefore, it can be said that this thorium oxide sintered body is a material with perfect properties as the heat conductive material of the heating device, that is, the upper and lower flat plates 11.13.

また、上記加熱装置は超高真空中で使用されるものであ
るから熱伝導材としては高温で蒸気圧の低い材料でなげ
ればならない。酸化トリウム焼結体はこの特性において
も優れている。この酸化トリウム焼結体と上記アルミナ
及び石英との温度−蒸気圧特性を第2図に示す。
Furthermore, since the above-mentioned heating device is used in an ultra-high vacuum, the heat conductive material must be a material with high temperature and low vapor pressure. The thorium oxide sintered body is also excellent in this property. FIG. 2 shows the temperature-vapor pressure characteristics of this thorium oxide sintered body and the alumina and quartz.

同第2図により明らかなように、酸化トリウム焼結体は
蒸気圧が非常に低く、たとえ10−’Torr以下の真
空中であっても対象物’& 1200c以上に加熱し得
ることが確認されている。
As is clear from Figure 2, the thorium oxide sintered body has a very low vapor pressure, and it has been confirmed that even in a vacuum of 10 Torr or less, the object can be heated to over 1200 cm. ing.

第3図は、上記特性を有する酸化トリウム焼結体を使用
した加熱装置を使用して所定の対象物上に金属の薄膜乞
形成する真空蒸着装置の一例ケ示したものである。この
図において、真空蒸着装置20は、そのペルジャー21
内の底面中央に、テーブル22を有しており、このチー
↓ プル22の下面から図の矢印Fの方向に図示しない真空
ボ/プ系によってガスが引かれ、ペルジャー21内が適
宜の真空となるように構成されている。
FIG. 3 shows an example of a vacuum evaporation apparatus for forming a thin metal film on a predetermined object using a heating device using a thorium oxide sintered body having the above characteristics. In this figure, the vacuum evaporation apparatus 20 has its Pelger 21
A table 22 is provided at the center of the bottom of the pelger 21, and gas is drawn from the bottom of the pull 22 in the direction of arrow F in the figure by a vacuum pump system (not shown), and the inside of the pelger 21 is maintained at an appropriate vacuum. It is configured to be.

前記テーブル22上には、第1図に示した加熱装[10
が載置同定されており、丈にその上には対象物であるシ
リコンウェハEIA、BBが載置されている。また、加
熱装置t10のヒータ12は適宜のハーメチック電極を
介してペルジャー21の外部に導出され、図示しない電
源に接続されている。
On the table 22 is a heating device [10] shown in FIG.
is placed and identified, and the silicon wafers EIA and BB, which are the objects, are placed directly above it. Furthermore, the heater 12 of the heating device t10 is led out of the Pelger 21 via a suitable hermetic electrode, and is connected to a power source (not shown).

他方、前記テーブル22’&はさんでボール23゜24
が設けられており、これらボール23.24間には電極
25,2fl介してフィラメント27が架設され、更に
このフィラメント27にはワイヤー状の金属28が略U
字状に成形されて吊着されている。前記ボール23.2
4も外部に導出され、図示しない電源に接続されている
On the other hand, the table 22'& the ball 23°24
A filament 27 is installed between these balls 23 and 24 via electrodes 25 and 2fl, and a wire-shaped metal 28 is connected to the filament 27 with a wire shape extending approximately U.
It is shaped like a letter and is hung. Said ball 23.2
4 is also led out to the outside and connected to a power source (not shown).

次に、第3図においてシリコンウェハSA、SBに対し
金属28の膜を形成する場合を説明すると、まず図示し
ない真空ポンプ糸によってペルジャー21内を適宜の真
空とする。次に金属28の蒸着を行う前に、シリコンウ
ェハ8A、SBの表面清浄化のためヒータ12に通電し
、シリコンウェハ13A、8B’g加熱する。一般的に
はシリコンウェハSA、EIBが1000 C以上に加
熱されることが必要とされている。このとぎ、上部及び
下部平板11.13内に含まれていたガスが放出される
が、前述したように上部及び下部平板11゜13)k形
成する酸化トリウム焼結体の相対密度が99.9%とな
っているため、内部に存在する空胞はほとんどなく、こ
のため加熱によるガス放出量はきわめて少ないものとな
る。従って、気圧かIQ  Torr以下の超高真空状
態においても、(7) 真空状態に対してほとんど影替を及ぼすことはない。
Next, in FIG. 3, the case of forming a film of metal 28 on silicon wafers SA and SB will be described. First, the inside of Pel jar 21 is brought to an appropriate vacuum using a vacuum pump thread (not shown). Next, before the metal 28 is vapor-deposited, the heater 12 is energized to clean the surfaces of the silicon wafers 8A and SB, and the silicon wafers 13A and 8B'g are heated. Generally, it is required that silicon wafers SA and EIB be heated to 1000 C or higher. At this point, the gas contained in the upper and lower flat plates 11.13 is released, but as mentioned above, the relative density of the thorium oxide sintered body formed in the upper and lower flat plates 11.13) is 99.9. %, there are almost no vacuoles inside, and therefore the amount of gas released by heating is extremely small. Therefore, even in an ultra-high vacuum state below the atmospheric pressure or IQ Torr, (7) there is almost no effect on the vacuum state.

次に、シリコンウェハSA、SBの表面清浄の後、ヒー
タ12への通電量を加減してシリコンウェハ8ム、8B
の温度が必要とされる一定の温度となるように調整し、
更にフィラメント27に通電すると、金属28が溶融蒸
発し、シリコンウェハ8ム、8Bの表面に金属28の膜
が形成される。
Next, after cleaning the surfaces of the silicon wafers SA and SB, the amount of electricity applied to the heater 12 is adjusted to remove the silicon wafers 8m and 8B.
Adjust the temperature so that it is at the required constant temperature,
When the filament 27 is further energized, the metal 28 is melted and evaporated, and a film of the metal 28 is formed on the surfaces of the silicon wafers 8M and 8B.

最後に、この発明に関して試作した装置における加熱実
験のデータを示すと以下の通りである。#i化トリウム
焼結体で形成した上部及び下部平板11.13を一辺の
長さが70mの正方形状とし、厚さを1−とする。ヒー
タ12は折り返しのピッチ7k 4 mとした直径lφ
のタングステン線な使用する。この装置に50.8m(
2インチ)のシリコンウニノ)を載置し、10TOrr
ノ真空状態下でヒータ12に20ムの電流を流したとこ
ろ、このシリコンウニノーの表面温度は約10分間で1
200t:’まで上がり、真空度も1QTOrr(8) 以下に良好に保持された。また、上記シリコンウェハに
おける表面温度のバラツキは±10C以内に抑えられ、
加熱の均一性も良好であった。
Finally, data from heating experiments using a prototype device of the present invention are shown below. The upper and lower flat plates 11 and 13 made of sintered #i thorium oxide have a square shape with a side length of 70 m, and a thickness of 1-. The heater 12 has a diameter lφ with a folding pitch of 7k 4 m.
Use tungsten wire. This device is 50.8m (
Place a 2-inch silicone
When a current of 20 µm was passed through the heater 12 under a vacuum condition, the surface temperature of this silicone surface decreased by 1 in about 10 minutes.
The pressure was increased to 200t:', and the degree of vacuum was well maintained at 1QTOrr(8) or less. Further, the variation in surface temperature of the silicon wafer is suppressed to within ±10C,
The uniformity of heating was also good.

この後さらに昇温、降温′4t50回繰り返したが、上
部及び下部平板11.13に変化は見られず、シリコン
ウェハとの間にも化学反応は起こらなかった。また、ヒ
ータ12を形成するタングステンとの化学反応もな(、
逆にこのタングステンの蒸発によるシリコンウェハの汚
染を該酸化トリウム焼結体で形成した上部及び下部平板
11゜13によって防ぐことができた。
After this, the temperature was further increased and decreased 50 times, but no change was observed in the upper and lower flat plates 11 and 13, and no chemical reaction occurred with the silicon wafer. Also, there is no chemical reaction with tungsten that forms the heater 12 (
On the contrary, contamination of the silicon wafer due to the evaporation of tungsten could be prevented by the upper and lower flat plates 11 and 13 formed of the thorium oxide sintered body.

なお、上記実施例においては、加熱される対象物をシリ
コンウェハとしたが他の金属、絶縁物等でもよい、また
、この発明にかかる加熱装置は、上記真空蒸着に限らず
分子線エピタキシーい。更に加熱装置の形状も上述した
平板状に限定されるものではなく、種々の形状としてよ
く、また焼結時に一定の形状とすることによってヒータ
を埋設することも可能である。その他、他のべIJ I
Jア磁器等と組合せて使用することも可能である。
In the above embodiments, the object to be heated is a silicon wafer, but other metals, insulators, etc. may also be used. The heating device according to the present invention is not limited to the above-mentioned vacuum evaporation, but can also be used for molecular beam epitaxy. Further, the shape of the heating device is not limited to the above-mentioned flat plate shape, but may be of various shapes, and it is also possible to embed the heater by shaping it into a certain shape during sintering. Other, other IJ I
It is also possible to use it in combination with JA porcelain, etc.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明にかかる真空用加熱装置
によれば、発熱体を包囲し対象物と接する部分を酸化ト
リウム焼結体によって形成することとしたので1200
t:’以上の高温においても何ら破損を生じることなく
低熱損失で対象物を均一に良好に加熱することができ、
またかなり面積の大きい加熱装置を作製できることによ
り対象物に適した大きさを選択することかでき、更には
該焼結体の相対密度を99.9%としたので不要なガス
放出が低減され真空状態に対する悪影響ヲ防止すること
ができ、高真空中において高温で安定に対象物を加熱し
得るというすぐれた効果を奏する。
As explained above, according to the vacuum heating device according to the present invention, the part surrounding the heating element and in contact with the object is formed of a thorium oxide sintered body.
The object can be heated uniformly and well with low heat loss without any damage even at high temperatures above t:'.
In addition, by being able to manufacture a heating device with a fairly large area, it is possible to select a size that is suitable for the object.Furthermore, since the relative density of the sintered body is 99.9%, unnecessary gas release is reduced and the vacuum It has the excellent effect of preventing adverse effects on the state and stably heating the object at a high temperature in a high vacuum.

なお、この発明の応用例として低融点金属などのエバポ
レータすなわちるつぼを酸化トリウム焼結体で形成して
もよい。また、真空装置をt  1 1  ) 使用する作業の内容によっては、非常に高温にさらされ
且つ良好な絶縁が要求される部分が存在するが、このよ
うな部分に酸化トリウム焼結体を使用すれば上記と同様
の効果を得ることができる。例えば第3図の例において
はボール23゜240絶縁部材30.31に使用すれは
、フィラメント27の発熱にともなってポール23.2
4の温度が上昇しても良好に絶縁を維持することができ
る。
As an application example of the present invention, an evaporator or crucible for low-melting metal or the like may be formed of a sintered body of thorium oxide. In addition, depending on the work in which the vacuum equipment is used, there may be parts that are exposed to extremely high temperatures and require good insulation, and it is recommended to use sintered thorium oxide in such parts. In this case, the same effect as above can be obtained. For example, in the example shown in FIG.
Even if the temperature of No. 4 rises, insulation can be maintained well.

更に、酸化トリウム焼結体に対して交番電界馨印加する
ことによって誘電加熱を行うようにしてもよい。特に、
酸化トリウム焼結体に複数の通人を設けたり、あるいは
円筒状に形成して誘電加熱を行うことによって、気体、
液体の加熱を行うようにすることも可能である。
Furthermore, dielectric heating may be performed by applying an alternating electric field to the thorium oxide sintered body. especially,
Gas,
It is also possible to heat the liquid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明にかかる真空用加熱装置の一実施例
を分解して示す斜視図、第2図は酸化トリウム焼結体と
アルミナと石英との温度−蒸気圧特性を比較して示す線
図、第3図は第1(11) 図の加熱装fiiY使用した真空蒸着装置の一例を示す
斜視図である。 10・・・真空用加熱装置、11・・・熱伝導材である
上部平板、12・・・発熱体であるヒータ、13・・・
熱伝導材である下部平板。 (12)
FIG. 1 is an exploded perspective view of an embodiment of a vacuum heating device according to the present invention, and FIG. 2 is a comparison of the temperature-vapor pressure characteristics of a thorium oxide sintered body, alumina, and quartz. 3 is a perspective view showing an example of a vacuum evaporation apparatus using the heating device shown in FIG. 1 (11). DESCRIPTION OF SYMBOLS 10... Vacuum heating device, 11... Upper flat plate which is a thermally conductive material, 12... Heater which is a heating element, 13...
The lower flat plate is a thermally conductive material. (12)

Claims (2)

【特許請求の範囲】[Claims] (1)発熱体と、この発熱体から発生される熱を対象物
に伝導する熱伝導材とを有し、真空中で使用される真空
用加熱装置において、前記熱伝導材を酸化トリウム焼結
体で形成したことを特徴とする真空用加熱装置。
(1) In a vacuum heating device used in a vacuum, which has a heating element and a thermally conductive material that conducts heat generated from the heating element to an object, the thermally conductive material is sintered with thorium oxide. A vacuum heating device characterized by being formed from a body.
(2)前記酸化トリウム焼結体の相対密度を99.9%
以上とした特許請求の範囲第(1)項記載の真空用加熱
装置。
(2) The relative density of the thorium oxide sintered body is 99.9%
A vacuum heating device according to claim (1) above.
JP12983882A 1982-07-26 1982-07-26 Device for heating in vacuum Pending JPS5919314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12983882A JPS5919314A (en) 1982-07-26 1982-07-26 Device for heating in vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12983882A JPS5919314A (en) 1982-07-26 1982-07-26 Device for heating in vacuum

Publications (1)

Publication Number Publication Date
JPS5919314A true JPS5919314A (en) 1984-01-31

Family

ID=15019479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12983882A Pending JPS5919314A (en) 1982-07-26 1982-07-26 Device for heating in vacuum

Country Status (1)

Country Link
JP (1) JPS5919314A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124792A (en) * 1987-11-10 1989-05-17 Toshiba Corp Portable electronic apparatus
JPH04181725A (en) * 1990-11-16 1992-06-29 Ngk Insulators Ltd Ceramic heater for heating semiconductor wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124792A (en) * 1987-11-10 1989-05-17 Toshiba Corp Portable electronic apparatus
JPH04181725A (en) * 1990-11-16 1992-06-29 Ngk Insulators Ltd Ceramic heater for heating semiconductor wafer

Similar Documents

Publication Publication Date Title
JP3888531B2 (en) Ceramic heater, method for manufacturing ceramic heater, and buried article of metal member
EP0493089A1 (en) Wafer heating apparatus and method for producing the same
KR19990066884A (en) Heating device and its manufacturing method
JPH01185176A (en) Processing method using electrostatic adsorption
WO2000072376A1 (en) Electrostatic chuck and treating device
JPH10236871A (en) Plasma resistant member
EP1376660B1 (en) Wafer heating apparatus with electrostatic attraction function
US6122159A (en) Electrostatic holding apparatus
JP2001189378A (en) Wafer-chucking heating apparatus
JPH0434953A (en) Electrostatic chucking plate
JP4082985B2 (en) Heating device having electrostatic adsorption function and method of manufacturing the same
JPS60112671A (en) Electroconductive element stable for direct exposure to reactive circumstances
TW541638B (en) Heater member for mounting heating object and substrate processing apparatus using the same
EP1513191A2 (en) Heating apparatus having electrostatic adsorption function
JPS5919314A (en) Device for heating in vacuum
JPH0945756A (en) Semiconductor manufacturing device and manufacturing method
JP2798570B2 (en) Electrostatic chuck
JP2756944B2 (en) Ceramic electrostatic chuck
JPS5919315A (en) Device for heating in vacuum
JPH04238882A (en) High-temperature insulated article
JPH0327259B2 (en)
JPS6159180B2 (en)
KR20190016275A (en) Plane-type heater for manufacturing semiconductor, and preparation method thereof
JP3835491B2 (en) Wafer heating apparatus having electrostatic adsorption function
JPS6276145A (en) Thermal conductor for ionic processing device