JPS63193447A - Sample holding device - Google Patents

Sample holding device

Info

Publication number
JPS63193447A
JPS63193447A JP62023134A JP2313487A JPS63193447A JP S63193447 A JPS63193447 A JP S63193447A JP 62023134 A JP62023134 A JP 62023134A JP 2313487 A JP2313487 A JP 2313487A JP S63193447 A JPS63193447 A JP S63193447A
Authority
JP
Japan
Prior art keywords
heat
wafer
thin film
metallic thin
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62023134A
Other languages
Japanese (ja)
Inventor
Koji Matsuda
松田 耕自
Sadayoshi Mukai
向井 貞喜
Kazuo Mori
和夫 森
Takehiko Iinuma
飯沼 武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP62023134A priority Critical patent/JPS63193447A/en
Publication of JPS63193447A publication Critical patent/JPS63193447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To improve effective heat conductivity and to enable effective cooling of a sample by forming metallic thin film layers on both surfaces of an elastic heat conductor in order to obtain a heat conductive medium and interposing the heat conductive medium between the sample and a holder. CONSTITUTION:A heat conductive medium 8 obtained by forming metallic thin film layers 7 on both surfaces of an elastic heat conductor 2 is interposed between a platen 1 and a wafer 3. This heat conductor medium 8 is obtained, for example, when metallic thin layers 7 of aluminium, gold, silver, or the like are formed by performing chemical plating or vacuum evaporation or the like on both surfaces of the heat conductor 2 which is formed by mixing heat conductive corpuscles of alumina, carbon, gold, or the like with elastic and heat-resisting silicone rubber. Therefore, even if heat generation of the wafer 3 occurs by radiation processing of ion beams, the heat is transferred from the wafer 3 to the heat conductor 2 via one metallic thin film layer 7 of small heat resistance in the heat conductive medium 8, and the heat is transferred quickly to the platen 1 via the other metallic thin film layer 7 so as to perform cooling of this device. Hence, a temperature rise in the wafer 3 can be suppressed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、イオン注入H!、スパッタリングによる薄
膜形成装置、イオン注入と真空蒸着とを併用するイオン
蒸着薄膜形成装置、イオンビームによるエツチング装置
などに用いられ、真空室内で処理する試料、例えばウェ
ハを保持台に保持する試料保持[1に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention is based on ion implantation H! It is used in thin film forming equipment by sputtering, ion evaporation thin film forming equipment that uses both ion implantation and vacuum evaporation, and etching equipment using ion beams. Regarding 1.

(従来の技術) 例えば、真空室内でウェハにイオン注入などの処理を施
こすと、該ウェハが発熱して損傷することがあるので、
従来ではウェハを、冷却水、冷却ガスなどの冷却媒体を
循環させた保持台で保持し、これを冷却するを一般とし
ている。
(Prior Art) For example, when a wafer is subjected to a process such as ion implantation in a vacuum chamber, the wafer may generate heat and be damaged.
Conventionally, the wafer is generally held on a holding table in which a cooling medium such as cooling water or cooling gas is circulated to cool the wafer.

しかし、保持台の金属面にウェハを置いているだけでは
、微視的にみてウェハと金属面の接触部がほとんどない
、他方、真空中におけるウェハの熱放散の大部分は、保
持台を介しての熱伝導のみとなり、したがって、その熱
伝導が悪いなどといった不都合がある。
However, if the wafer is simply placed on the metal surface of the holder, there is almost no microscopic contact between the wafer and the metal surface.On the other hand, most of the heat dissipation from the wafer in vacuum occurs through the holder. Therefore, there are disadvantages such as poor heat conduction.

この対策として、例えば第2図に示すようなイオノ注入
装置の試料保持装置が提案されている。
As a countermeasure against this problem, a sample holding device for an ion injection device as shown in FIG. 2, for example, has been proposed.

同図に示すように、保持台である例えば上面中央部分が
やや凸伏となる球面状(図には表われていない、)のプ
ラナ71に、弾性を有するシリコンゴムに金属粉などを
混合した熱伝導体2′を介して試料である例えばウェハ
〇を載せ、これをウェハ押え4をもってバネ5により圧
着している。これにより、プラテン1とウェハ〇との書
替性の改善を図り、このような伏歯で、真空室内におい
て、前記ウェハ3に図示しないイオン源からイオンビ−
ム夏Bを照射してイオン注入処理を行っている。なお、
図中6は、冷却水、冷却ガスなどの冷却媒体を循環する
冷媒路である。
As shown in the figure, a holding table, for example, a spherical planar 71 (not shown in the figure) with a slightly convex central portion of the upper surface, is made by mixing elastic silicone rubber with metal powder, etc. A sample, such as a wafer 〇, is placed via the thermal conductor 2' and is pressed by a spring 5 with a wafer holder 4. This improves the rewritability between the platen 1 and the wafer 〇, and with such an inclined tooth, ion beams are applied to the wafer 3 from an ion source (not shown) in a vacuum chamber.
The ion implantation process is performed by irradiating with Musuma B. In addition,
Reference numeral 6 in the figure indicates a refrigerant path through which a cooling medium such as cooling water or cooling gas is circulated.

(発明が解決しようとする問題点) ところが、前記ウェハ3、熱伝導体2′およびプラテン
10表面は、微視的にみるとやはり凹凸があり、これら
の接触は点接触となり、熱伝導が充分ではない、特に、
近年のようにイオンビーム電流の大電流化が図られるに
つれ、ウェハ〇の温度上昇が過大となり、ウニへ〇上に
描かれたパターンのレジスト膜を劣化するなどといった
不都合があり、その改善が強く望まれている。
(Problems to be Solved by the Invention) However, the surfaces of the wafer 3, thermal conductor 2', and platen 10 are uneven when viewed microscopically, and the contact between them is a point contact, so that sufficient heat conduction is not achieved. Not, especially
In recent years, as the ion beam current has become larger, the temperature of the wafer 〇 has become excessive, causing problems such as deterioration of the resist film of the pattern drawn on the 〇. desired.

この発明は上述の事柄に鑑み、試料と保持台との間の熱
伝導率の向上を図り、ウェハを効果的に冷却することを
目的とする。
In view of the above-mentioned problems, it is an object of the present invention to improve the thermal conductivity between the sample and the holder and effectively cool the wafer.

(rRWi点を解決するための手段) この発明は・、試料と保持台との間に、熱伝導体の両面
に金属薄膜層を形成してなる熱伝導媒体を介在すること
を特徴とする。
(Means for solving the rRWi point) The present invention is characterized in that a heat conduction medium formed by forming metal thin film layers on both surfaces of a heat conductor is interposed between the sample and the holding table.

(作 用) 金属+3膜層により、試料と熱伝導媒体およびこの熱伝
導媒体と保持台との間の熱抵抗が低減され、熱伝導度が
向上する。
(Function) The metal+3 film layer reduces the thermal resistance between the sample and the thermally conductive medium and between this thermally conductive medium and the holding table, improving thermal conductivity.

(実施例) 以下この発明の一実施例を示す第1図に基づいて説明す
る。なお、第2図と同じ符号を附した部分は、同−又は
対応する部分を示す。この発明にしたがい、プラナ/1
とウェハ3との間には、弾性を有する熱伝導体20両面
に金[RR膜層7を形成した熱伝導媒体8を介在する。
(Embodiment) An embodiment of the present invention will be described below based on FIG. 1. In addition, parts given the same reference numerals as in FIG. 2 indicate the same or corresponding parts. According to this invention, prana/1
A heat conductive medium 8 having gold [RR film layers 7 formed on both surfaces of an elastic heat conductor 20] is interposed between the wafer 3 and the wafer 3.

この熱伝導媒体8は、例えば、弾性および耐熱性を有す
るシリコーンゴムに、アルミナ、ボロンナイトライド、
アルミニウム、ダイヤモンド、カーボン、あるいは金な
どからなる熟伝4微粒子を混合してなる熱伝導体20両
面に例えば、化学メッキ、真空蒸着、スパッタリングあ
るいはイオン注入と真空蒸着とを併用するなどして、ア
ルミニウム、金あるいは銀などの金111jllEl1
57を形成したものである。
The heat conductive medium 8 is made of silicone rubber having elasticity and heat resistance, alumina, boron nitride, etc., for example.
Aluminum is coated on both sides of the thermal conductor 20, which is made by mixing fine particles of aluminum, diamond, carbon, gold, etc., using chemical plating, vacuum evaporation, sputtering, or a combination of ion implantation and vacuum evaporation. , gold or silver 111jllEl1
57 was formed.

前記熱伝導体2としては、その弾性すなわち、ブラタ/
1とウェハ3との間のクッシ9ン作用や熱抵抗、更には
これらの材質や大きさなどを考慮して決められるが、一
般的にけその厚さが20〜500μ程度、その硬度(I
f定方法: J I 5K8301、以下同じ、)が6
0〜95程度、その熱伝導率がα005〜αQ 5 (
J / 3 ・5ec−K)であればよい、また、必要
に応じて基材の強度補強などの目的で、例えば、ガラス
繊維などを充填材として充填したものでもよい、また、
前記金属薄膜II!17の厚さは、その材質により異な
るが、一定の膜圧強度を有し、しかも前記熱伝導体20
弾性を損なわないような範囲に決められるが、一般的に
は500〜5000A1度あれば充分である。なお、前
記熱伝導媒体8は、単にプラテン1の上に載せて置(の
みでよいが、これがウェハ3とともに移動したりするの
を防ぐために、その周辺部分を接着剤により接着したり
、あるいはこれら熱伝導媒体8の金属R膜層7とプラテ
ン1との間を半田などのような低融点金属材料をもって
同行してもよい。
As for the thermal conductor 2, its elasticity, that is, its elasticity,
The thickness of the cushion is generally about 20 to 500μ, and the hardness (I
f determination method: J I 5K8301, the same applies hereafter) is 6
0 to 95, and its thermal conductivity is α005 to αQ 5 (
J/3・5ec-K), and if necessary, it may be filled with glass fiber or the like as a filler for the purpose of reinforcing the strength of the base material.
Said metal thin film II! The thickness of the thermal conductor 20 differs depending on its material, but it has a certain film pressure strength, and the thickness of the thermal conductor 20
It is determined within a range that does not impair elasticity, but generally 500 to 5000 A1 degree is sufficient. Note that the thermal conductive medium 8 may be simply placed on the platen 1, but in order to prevent it from moving together with the wafer 3, its peripheral portion may be bonded with an adhesive or A low melting point metal material such as solder may be used between the metal R film layer 7 of the heat conduction medium 8 and the platen 1.

以上の構成によれば、イオンビームの照射処理によりつ
二へ〇が発熱しても、その熱はウェハ3から熱伝導媒体
8の熱抵抗の小さい金属薄膜層7を介して熱伝導体2中
を熱が伝わり、また金WAR膜Il!17を介してプラ
テン1に速やかに伝達され、冷却される。この結果、ウ
ェハ3の温度上昇が抑制される。
According to the above configuration, even if the heat is generated by the ion beam irradiation process, the heat is transferred from the wafer 3 to the heat conductor 2 through the metal thin film layer 7 with low thermal resistance of the heat conduction medium 8. The heat is transmitted, and the gold WAR film Il! 17 to the platen 1, where it is cooled. As a result, the temperature rise of the wafer 3 is suppressed.

(実験例) 厚さ100μ、硬度が92で、その熱伝4率がα01 
(J / cs−sec−k>のシリコーンゴム製の熱
伝導体に、真空itにより厚さ100OAのアルミニウ
ムの金属薄膜層を両面に形成した熱伝導媒体を作り、こ
の熱伝導媒体を第1図に示すように、プラテン1の上に
設け、その上にシリコンウェハ3を載せ、ウェハ押え4
をもってバネ5により圧着した。この吠態で、冷却路に
冷却水を循環しながら、真空室内で前記シリコ/ウェハ
3にイオン注入処理を行なった。イオン注入装置は、定
格200にV、1.5mAで、そのイオン注入による熱
エネルギーは% 300Wに相当する。この時のつエバ
3の表面温度を測定したところ、77℃であった。
(Experiment example) The thickness is 100μ, the hardness is 92, and the heat transfer coefficient is α01.
(J/CS-SEC-K) A heat conduction medium is made by forming a 100OA thick aluminum metal thin film layer on both sides using a vacuum IT on a silicone rubber heat conductor. As shown in FIG.
It was crimped with a spring 5. In this state, ion implantation was performed on the silico/wafer 3 in a vacuum chamber while circulating cooling water in the cooling path. The ion implanter was rated at 200 V and 1.5 mA, and the thermal energy due to the ion implantation was equivalent to %300 W. At this time, the surface temperature of the tube 3 was measured and found to be 77°C.

これに対して、第2図に示す構成で、熱伝導体2として
厚さ100μ、硬度が92、その熱伝導率がα01 (
J / am ・5ec−k)のシリコーンゴム製のも
のを用いたものを作り、前記実験例と同一の条件で、シ
リコンウェハ3にイオン注入処理を行なった。この時の
ウェハ3の表面温度は、125℃であった。
On the other hand, in the configuration shown in FIG. 2, the thermal conductor 2 has a thickness of 100μ, a hardness of 92, and a thermal conductivity of α01 (
An ion implantation process was performed on the silicon wafer 3 under the same conditions as in the experimental example. The surface temperature of the wafer 3 at this time was 125°C.

(発明の効果) 以上詳述の通りこの発明によれば、弾性を有する熱伝導
体の両面に金FA薄膜層を形成した熱伝導媒体を、試料
と保持台との間に介在したことにより、その弾性を実質
的に維持しつつ、試料あるいは保持台との接触部におけ
る実効的な熱伝導度を向上し、効果的に試料を冷却する
ことができる。
(Effects of the Invention) As detailed above, according to the present invention, by interposing a heat conductive medium having gold FA thin film layers formed on both sides of an elastic heat conductor between the sample and the holding table, While substantially maintaining its elasticity, it is possible to improve the effective thermal conductivity at the contact portion with the sample or the holder, thereby effectively cooling the sample.

なお、上述した実施例では、試料を保持台にバネ力をも
って保持した場合について詳述したが、この発明はこの
ようなものに限定されるものではな(、他の保持手段例
えば、ディスク状の保持台に試料を社せ、これを回転し
て遠心力を利用するようにしたものなどにも連用できる
のは勿論である。
In addition, in the above-mentioned embodiments, the case where the sample is held on the holding stand with spring force is described in detail, but the present invention is not limited to this (other holding means such as a disk-shaped Of course, this method can also be used in systems where a sample is placed on a holding table and the sample is rotated to utilize centrifugal force.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す要部拡大断面図で
ある。第2図は、従来例を示す部分断面図である。 1ニブラテン(保持台)、2:熱伝4体、3:ウェハ(
試料)、7:金liI薄膜層、8:熱伝導媒体。
FIG. 1 is an enlarged sectional view of essential parts showing an embodiment of the present invention. FIG. 2 is a partial sectional view showing a conventional example. 1 Nibraten (holding stand), 2: 4 heat transfer bodies, 3: Wafer (
Sample), 7: Gold liI thin film layer, 8: Thermal conduction medium.

Claims (1)

【特許請求の範囲】[Claims] 真空室内で処理する試料を保持台に保持するものにおい
て、前記試料と保持台との間に、弾性を有する熱伝導体
の両面に金属薄膜層を形成してなる熱伝導媒体を介在し
たことを特徴とする試料保持装置。
In a device that holds a sample to be processed in a vacuum chamber on a holder, a heat conductive medium consisting of an elastic thermal conductor with metal thin film layers formed on both sides is interposed between the sample and the holder. Characteristic sample holding device.
JP62023134A 1987-02-03 1987-02-03 Sample holding device Pending JPS63193447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62023134A JPS63193447A (en) 1987-02-03 1987-02-03 Sample holding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62023134A JPS63193447A (en) 1987-02-03 1987-02-03 Sample holding device

Publications (1)

Publication Number Publication Date
JPS63193447A true JPS63193447A (en) 1988-08-10

Family

ID=12102064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62023134A Pending JPS63193447A (en) 1987-02-03 1987-02-03 Sample holding device

Country Status (1)

Country Link
JP (1) JPS63193447A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367171A (en) * 1991-10-24 1994-11-22 Hitachi, Ltd. Electron microscope specimen holder
US5413167A (en) * 1990-07-30 1995-05-09 Canon Kabushiki Kaisha Wafer cooling device
EP1014421A1 (en) * 1998-12-21 2000-06-28 Applied Materials, Inc. Wafer holder of ion implantation apparatus
EP1501135A2 (en) * 2003-07-22 2005-01-26 Polymatech Co., Ltd. Thermally conductive holder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413167A (en) * 1990-07-30 1995-05-09 Canon Kabushiki Kaisha Wafer cooling device
US5367171A (en) * 1991-10-24 1994-11-22 Hitachi, Ltd. Electron microscope specimen holder
EP1014421A1 (en) * 1998-12-21 2000-06-28 Applied Materials, Inc. Wafer holder of ion implantation apparatus
US6545267B1 (en) 1998-12-21 2003-04-08 Applied Materials, Inc. Wafer holder of ion implantation apparatus
EP1501135A2 (en) * 2003-07-22 2005-01-26 Polymatech Co., Ltd. Thermally conductive holder
EP1501135A3 (en) * 2003-07-22 2008-07-02 Polymatech Co., Ltd. Thermally conductive holder

Similar Documents

Publication Publication Date Title
US4771730A (en) Vacuum processing apparatus wherein temperature can be controlled
KR100372281B1 (en) Variable high temperature chuck for high density plasma chemical vapor deposition
US4508161A (en) Method for gas-assisted, solid-to-solid thermal transfer with a semiconductor wafer
US2763822A (en) Silicon semiconductor devices
JP3129452B2 (en) Electrostatic chuck
JP5857158B2 (en) Ion milling equipment
US8505928B2 (en) Substrate temperature control fixing apparatus
US20130026720A1 (en) Electrostatic chuck
JP2007194616A (en) Susceptor, and method of processing wafer using same
JPS58213441A (en) Surface profile adapted for transferring heat form thin and soft product
JP2000040734A (en) Semiconductor holding device, manufacture and use thereof
JP2002093777A (en) Dry etching system
US3977955A (en) Method for cathodic sputtering including suppressing temperature rise
WO2002021579A1 (en) Wafer clamping apparatus and method
JPS63193447A (en) Sample holding device
JPS61500177A (en) Method and apparatus for controlling the temperature of articles during processing in vacuum
JPH06244143A (en) Treating device
US20020000547A1 (en) Silicon/graphite composite ring for supporting silicon wafer, and dry etching apparatus equipped with the same
JPS63193450A (en) Sample holding device
JPS63193448A (en) Sample holding device
JPS63193449A (en) Sample holding device
US2979024A (en) Apparatus for fusing contacts onto semiconductive bodies
US3764511A (en) Moated substrate holding pedestal
JPH11157952A (en) Production of bonded body
JPH01241839A (en) Device for holding semiconductor wafer