JP5278737B2 - Manufacturing method of heat dissipation material - Google Patents

Manufacturing method of heat dissipation material Download PDF

Info

Publication number
JP5278737B2
JP5278737B2 JP2008274567A JP2008274567A JP5278737B2 JP 5278737 B2 JP5278737 B2 JP 5278737B2 JP 2008274567 A JP2008274567 A JP 2008274567A JP 2008274567 A JP2008274567 A JP 2008274567A JP 5278737 B2 JP5278737 B2 JP 5278737B2
Authority
JP
Japan
Prior art keywords
boron nitride
heat dissipation
nitride layer
high thermal
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008274567A
Other languages
Japanese (ja)
Other versions
JP2010103361A (en
Inventor
千尋 河合
威 日方
淳一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008274567A priority Critical patent/JP5278737B2/en
Publication of JP2010103361A publication Critical patent/JP2010103361A/en
Application granted granted Critical
Publication of JP5278737B2 publication Critical patent/JP5278737B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat dissipating material that is excellent in electrical conductivity and heat dissipating characteristics by forming an insulating layer on a high thermal conductivity substrate. <P>SOLUTION: The heat dissipating material includes the high thermal conductivity substrate and boron nitride layer formed on a surface of at least part thereof. In the material, the boron nitride layer includes an oriented boron nitride film where a bond surface of six-membered ring between the boron and nitrogen of a boron nitride compound is in parallel with the surface of the high thermal conductivity substrate. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、高熱伝導基板とその表面に形成した配向性窒化硼素膜から構成される絶縁性放熱材料とその製法、およびこれを用いた放熱構造に関する。   The present invention relates to an insulating heat dissipation material composed of a highly heat conductive substrate and an oriented boron nitride film formed on the surface thereof, a method for producing the same, and a heat dissipation structure using the same.

パーソナルコンピュータやモバイル電子機器の高機能化に伴い、CPU等の発熱源の発熱量が飛躍的に増大しており、放熱デバイスの高性能化が求められている。代表的な放熱手法は、熱の輸送能力の高いCu製のヒートパイプと発熱源の間に放熱シートや接着剤を介在させて放熱する方法である。近年、重いヒートパイプの代わりにグラファイトシートのような面内方向に極めて高い熱伝導率を持つ、薄型・軽量の熱輸送シートを用いることが多くなっている。グラファイトシートを発熱源に接触させることにより、発熱源の熱を面内にいち早く拡散させてスポット発熱を防止することができる。   As the functions of personal computers and mobile electronic devices become higher, the amount of heat generated by a heat source such as a CPU has increased dramatically, and there is a need for higher performance heat dissipation devices. A typical heat dissipation method is a method of dissipating heat by interposing a heat dissipation sheet or an adhesive between a heat pipe made of Cu having a high heat transport capability and a heat generation source. In recent years, instead of a heavy heat pipe, a thin and lightweight heat transport sheet having an extremely high thermal conductivity in the in-plane direction such as a graphite sheet is often used. By bringing the graphite sheet into contact with the heat source, the heat of the heat source can be quickly diffused in the surface to prevent spot heat generation.

グラファイトシートは、その面と垂直方向(c軸方向)にグラファイトが積層されたシートで、面内方向の熱伝導率は1500W/mK程度にも及ぶのでヒートパイプの代わりに使うことができる。   The graphite sheet is a sheet in which graphite is laminated in a direction perpendicular to the surface (c-axis direction), and the thermal conductivity in the in-plane direction reaches about 1500 W / mK, and can be used instead of a heat pipe.

グラファイトシートは、特許文献1〜3等に示すように、ポリイミドなどからなる有機高分子シートを焼成処理する方法により、非常に面内配向性の高いグラファイト構造体からなる放熱材料が得られる。   As shown in Patent Documents 1 to 3, etc., a graphite sheet can be obtained by a method of firing an organic polymer sheet made of polyimide or the like to obtain a heat dissipation material made of a graphite structure having a very high in-plane orientation.

熱処理の条件は、上記塗膜のマトリックスがグラファイトになる条件に適宜設定すれば良く、例えば、不活性ガス雰囲気中で1000℃以上3000℃以下の範囲で好ましく実施することができる。不活性ガスとしては、例えばアルゴン、ヘリウム、窒素等の少なくとも1種の不活性ガスを用いることができる。熱処理時間は、熱処理温度等に応じて適宜決定すれば良い。   The conditions for the heat treatment may be set as appropriate so that the matrix of the coating film becomes graphite. For example, it can be preferably carried out in an inert gas atmosphere in the range of 1000 ° C. to 3000 ° C. As the inert gas, for example, at least one inert gas such as argon, helium, and nitrogen can be used. The heat treatment time may be appropriately determined according to the heat treatment temperature and the like.

一般には、1000℃以上1500℃以下の温度範囲で焼成する予備焼成工程、及び2000℃以上3000℃以下の温度範囲で焼成する本焼成工程からなる熱処理を実施することが好ましい。   In general, it is preferable to perform a heat treatment including a pre-baking step of baking in a temperature range of 1000 ° C. to 1500 ° C. and a main baking step of baking in a temperature range of 2000 ° C. to 3000 ° C.

以上のような条件で予備焼成工程を実施することにより、後に続く本焼成処理後に得られるグラファイト構造体の面方向の熱伝導率と配向度を高めることができる。本焼成工程では、配向性のより高いグラファイトとするために、2000〜3000℃の温度範囲から選ばれる所定温度で実施される。   By performing the preliminary firing step under the above conditions, the thermal conductivity and the degree of orientation in the plane direction of the graphite structure obtained after the subsequent main firing treatment can be increased. In this baking process, in order to set it as a highly oriented graphite, it implements at the predetermined temperature chosen from the temperature range of 2000-3000 degreeC.

しかし、グラファイトシートは導電性材料であるために、発熱源の周囲に多くの回路配線が露出している場合、配線と接触することにより絶縁不良を起こして電子部品としての機能を失うことになる。   However, since graphite sheet is a conductive material, if many circuit wires are exposed around the heat source, contact with the wires will cause insulation failure and lose the function as an electronic component. .

そのため、グラファイトシートの表面に樹脂層を形成して絶縁性を確保したりする方法がとられているが、樹脂は熱伝導率が小さいために発熱源からの熱が効率よく伝達しないという課題がある。
特開昭58−147087号公報 特開昭60−012747号公報 特開平07−109171号公報
Therefore, a method has been adopted in which a resin layer is formed on the surface of the graphite sheet to ensure insulation. However, since the resin has a low thermal conductivity, there is a problem that the heat from the heat source cannot be transmitted efficiently. is there.
Japanese Patent Laid-Open No. 58-147087 Japanese Patent Laid-Open No. 60-012747 Japanese Patent Application Laid-Open No. 07-109171

本発明は、高熱伝導基板の表面に絶縁層を形成することで導電性および放熱性に優れた放熱材料とその製造方法を提供する。   The present invention provides a heat dissipation material excellent in conductivity and heat dissipation by forming an insulating layer on the surface of a high thermal conductive substrate, and a method for manufacturing the same.

本発明は、高熱伝導基板と、少なくともその一面の表面に形成された窒化硼素層から構成され、前記窒化硼素層は、それを構成する窒化硼素化合物の硼素と窒素の六員環結合面が前記高熱伝導基板面と平行である配向性窒化硼素膜を含むことを特徴とする放熱材料である。   The present invention is composed of a high thermal conductivity substrate and a boron nitride layer formed on at least one surface thereof, and the boron nitride layer has a boron-nitrogen six-membered ring bonding surface of the boron nitride compound constituting the boron nitride layer. A heat-dissipating material comprising an oriented boron nitride film that is parallel to the surface of a high thermal conductive substrate.

本発明に係る放熱材料は、前記高熱伝導基板が導電性基板であることを特徴とする。
本発明に係る放熱材料は、前記高熱伝導基板がCu、Al、グラファイトシート、SiCからなる群から選択されたいずれか一種からなる高熱伝導基板であることを特徴とする。
The heat dissipation material according to the present invention is characterized in that the high thermal conductive substrate is a conductive substrate.
The heat dissipation material according to the present invention is characterized in that the high thermal conductive substrate is a high thermal conductive substrate made of any one selected from the group consisting of Cu, Al, graphite sheet, and SiC.

本発明は、高熱伝導基板上の少なくとも一面に硼素と窒素を含む窒化硼素層を形成する第一の工程と、前記窒化硼素層の表面をGa蒸気に接触させる第二の工程からなる前記放熱材料の製造方法である。   The present invention provides the heat-dissipating material comprising a first step of forming a boron nitride layer containing boron and nitrogen on at least one surface on a high thermal conductive substrate, and a second step of bringing the surface of the boron nitride layer into contact with Ga vapor. It is a manufacturing method.

本発明に係る放熱材料の製造方法は、前記第一の工程で形成される窒化硼素層が非晶質であることを特徴とする。   The method for manufacturing a heat dissipation material according to the present invention is characterized in that the boron nitride layer formed in the first step is amorphous.

本発明に係る放熱材料の製造方法は、前記Ga蒸気の温度が600℃以上であることを特徴とする。   The method for manufacturing a heat dissipation material according to the present invention is characterized in that the temperature of the Ga vapor is 600 ° C. or higher.

本発明に係る放熱材料の製造方法は、前記高熱伝導基板が導電性基板であることを特徴とする。   The method for manufacturing a heat dissipation material according to the present invention is characterized in that the high thermal conductive substrate is a conductive substrate.

本発明に係る放熱材料の製造方法は、前記高熱伝導基板がCu、Al、グラファイトシート、SiCからなる群から選択されたいずれか一種からなることを特徴とする。   The method for manufacturing a heat dissipation material according to the present invention is characterized in that the high thermal conductive substrate is made of any one selected from the group consisting of Cu, Al, graphite sheet, and SiC.

本発明は、前記放熱材料を用いた放熱構造であって、窒化硼素層を発熱体と接触させることを特徴とする放熱構造である。   The present invention is a heat dissipation structure using the heat dissipation material, wherein the boron nitride layer is brought into contact with a heating element.

本発明に係る放熱材料は、熱伝導率の高い基板上に面内方向にa軸とb軸が配向した窒化硼素層が形成されるため、絶縁性でかつ放熱性が高い。本発明に係る放熱材料は、半導体部品等種々の電子部品の放熱に有望である。   The heat dissipating material according to the present invention is insulative and heat dissipating because a boron nitride layer having an a-axis and a b-axis oriented in the in-plane direction is formed on a substrate having high thermal conductivity. The heat dissipation material according to the present invention is promising for heat dissipation of various electronic components such as semiconductor components.

<放熱材料>
本発明に係る放熱材料を図1を用いて説明する。図1(a)は未処理状態の放熱材料の模式的斜視断面図であり、高熱伝導基板3と、前記高熱伝導基板3上に形成された窒化硼素層2aからなる。図1(b)は本発明に係る放熱材料の模式的斜視断面図であり、高熱伝導基板3と、少なくともその一面の表面に形成された窒化硼素層2bからなり(図1(b)では、高熱伝導基板3の両面に窒化硼素層が形成されている)、前記窒化硼素層2bは、配向性窒化硼素膜を含むことを特徴とする。
<Heat dissipation material>
The heat dissipation material according to the present invention will be described with reference to FIG. FIG. 1A is a schematic perspective cross-sectional view of a heat dissipation material in an unprocessed state, which includes a high thermal conductive substrate 3 and a boron nitride layer 2 a formed on the high thermal conductive substrate 3. FIG. 1B is a schematic perspective sectional view of a heat dissipation material according to the present invention, which includes a high thermal conductive substrate 3 and a boron nitride layer 2b formed on at least one surface thereof (in FIG. 1B, A boron nitride layer is formed on both surfaces of the high thermal conductive substrate 3), and the boron nitride layer 2b includes an oriented boron nitride film.

図1(a)の2a、図1(b)の2bはいずれも窒化硼素層を示すが、2aはアモルファス構造の窒化硼素層であり、2bは少なくとも窒化硼素層を構成する窒化硼素化合物の硼素と窒素の六員環結合面が前記高熱伝導基板3の基板面と平行である配向性窒化硼素膜を含む窒化硼素層である。   2a in FIG. 1 (a) and 2b in FIG. 1 (b) both indicate a boron nitride layer, 2a is a boron nitride layer having an amorphous structure, and 2b is boron of a boron nitride compound constituting at least the boron nitride layer. And a boron nitride layer including an oriented boron nitride film in which a six-membered ring bonding surface of nitrogen is parallel to the substrate surface of the high thermal conductive substrate 3.

前記配向性窒化硼素膜は被処理基板上に形成されたアモルファス構造の窒化硼素層をGa蒸気で処理することによって得られる。   The oriented boron nitride film can be obtained by treating an amorphous boron nitride layer formed on a substrate to be treated with Ga vapor.

<高熱導電基板>
高熱伝導基板3としては、熱伝導率の高い金属やセラミックスが好ましい。例えば、Cu、Al、グラファイトシート、SiC等である。特に、窒化硼素層が絶縁性であるため、基板が導電性である場合に効果が大きい。このうち、グラファイトシートは面内の熱輸送能力が最も高いので好ましい。
<High thermal conductive substrate>
As the high thermal conductive substrate 3, a metal or ceramic having high thermal conductivity is preferable. For example, Cu, Al, graphite sheet, SiC and the like. In particular, since the boron nitride layer is insulative, the effect is great when the substrate is conductive. Among these, the graphite sheet is preferable because it has the highest in-plane heat transport capability.

<窒化硼素層>
窒化硼素(以下「BN」ともいう)は絶縁性セラミックスとして知られている。中でも六方晶BN(以下「h−BN」ともいう)はグラファイトと同じ結晶構造を持つ。すなわち、硼素原子と窒素原子の六員環が規則正しく配列した層状構造を持ち、各層はファンデルワールス力で結合しているため、層内方向(a軸、b軸方向)に極めて高い熱伝導率を持つという特徴がある。すなわち基板面にh−BNがc軸方向に積層され配向性窒化硼素膜を形成すると、層内の熱の拡散が極めて速くなるためにスポット発熱を防止することができる。
<Boron nitride layer>
Boron nitride (hereinafter also referred to as “BN”) is known as an insulating ceramic. Among them, hexagonal BN (hereinafter also referred to as “h-BN”) has the same crystal structure as graphite. That is, it has a layered structure in which boron and nitrogen six-membered rings are regularly arranged, and each layer is bonded by van der Waals force, so that it has extremely high thermal conductivity in the in-layer direction (a-axis, b-axis direction). It has the feature of having. That is, when h-BN is laminated on the substrate surface in the c-axis direction to form an oriented boron nitride film, the heat diffusion in the layer becomes extremely fast, so that spot heat generation can be prevented.

配向性窒化硼素膜の配向方向は、透過電子顕微鏡で格子像を撮影して確認する。本発明の放熱材料の配向性窒化硼素膜は、h−BN結晶のc軸が高熱伝導基板3の基板面(a軸、b軸)と垂直となっている。   The orientation direction of the oriented boron nitride film is confirmed by photographing a lattice image with a transmission electron microscope. In the oriented boron nitride film of the heat dissipation material of the present invention, the c-axis of the h-BN crystal is perpendicular to the substrate surface (a-axis, b-axis) of the high thermal conductive substrate 3.

<放熱材料の製造方法>
(放熱材料の製造工程)
本発明に係る放熱材料の製造工程は、(1)高熱伝導基板上の少なくとも一面に硼素と窒素を含む窒化硼素層を形成する第一の工程と、(2)前記窒化硼素層の表面をGa蒸気に接触させる第二の工程からなる。
<Manufacturing method of heat dissipation material>
(Manufacturing process of heat dissipation material)
The heat dissipation material manufacturing process according to the present invention includes (1) a first process of forming a boron nitride layer containing boron and nitrogen on at least one surface of a high thermal conductive substrate, and (2) a surface of the boron nitride layer formed of Ga. It consists of the 2nd process made to contact with vapor | steam.

前記第一の工程で、高熱伝導基板表面にa軸、b軸方向に配向したh−BNを形成することは極めて難しい。気相法等でBNをコーティングすると、一般には非晶質であるアモルファス構造または、結晶面がランダムになった層がコーティングされる。この場合、発熱体からの熱は窒化硼素層内を素早く拡散することができないため、熱が籠もってしまう、いわゆるスポット発熱状態となる。   In the first step, it is extremely difficult to form h-BN oriented in the a-axis and b-axis directions on the surface of the high thermal conductive substrate. When BN is coated by a vapor phase method or the like, an amorphous structure that is generally amorphous or a layer having a random crystal plane is coated. In this case, since the heat from the heating element cannot be quickly diffused in the boron nitride layer, a so-called spot heat generation state occurs in which the heat is trapped.

これに対して基板面にh−BNがc軸方向に積層されると、層内の熱の拡散が極めて速くなるためにスポット発熱を防止することができる。   On the other hand, when h-BN is laminated on the substrate surface in the c-axis direction, the heat diffusion in the layer becomes extremely fast, so that spot heat generation can be prevented.

発明者らは、h−BNをa軸、b軸方向に配向させて基板表面に形成する手法を鋭意検討した結果、予め、アモルファス構造の窒化硼素層を形成した後、Ga蒸気と反応させることで、前記アモルファス構造の窒化硼素層がグラファイトと同様の配向構造に転化することを見出した。   The inventors have intensively studied a method of forming h-BN in the a-axis and b-axis directions and forming it on the substrate surface. As a result, an amorphous boron nitride layer is formed in advance and then reacted with Ga vapor. The inventors have found that the boron nitride layer having an amorphous structure is converted into an orientation structure similar to that of graphite.

アモルファス構造の窒化硼素層を配向性窒化硼素膜に転化させるためのGa蒸気の温度は600℃〜800℃が好適である。さらに、プラズマを印加し、Ga蒸気をプラズマ化することで高熱伝導基板3の温度が400℃程度であってもアモルファス構造の窒化硼素層を配向性窒化硼素膜に転化させることができる。配向性窒化硼素膜をGa蒸気で処理する際の真空度は10-4Pa程度である。 The temperature of Ga vapor for converting the amorphous boron nitride layer into the oriented boron nitride film is preferably 600 ° C. to 800 ° C. Furthermore, by applying plasma and turning Ga vapor into plasma, the boron nitride layer having an amorphous structure can be converted into an oriented boron nitride film even when the temperature of the high thermal conductive substrate 3 is about 400 ° C. The degree of vacuum when the oriented boron nitride film is treated with Ga vapor is about 10 −4 Pa.

(配向性窒化硼素膜製造装置)
配向性窒化硼素膜は、例えば図2に示す配向性窒化硼素膜製造装置によって製造することができる。
(Oriented boron nitride film production equipment)
The oriented boron nitride film can be produced by, for example, an oriented boron nitride film production apparatus shown in FIG.

本発明で使用する配向性窒化硼素膜生成装置は、石英反応管6の内部に液体Ga9を充填したアルミナ容器4が配置されている。高熱伝導基板3上にアモルファス構造の窒化硼素層2aが形成された被処理基板は、前記アルミナ容器4の近傍に設置されている。石英反応管6の外側には反応管用ヒータ7が設置され、石英反応管6内部の温度調整が可能となっている。   In the oriented boron nitride film production apparatus used in the present invention, an alumina container 4 filled with liquid Ga9 is disposed inside a quartz reaction tube 6. The substrate to be processed in which the amorphous boron nitride layer 2 a is formed on the high thermal conductive substrate 3 is disposed in the vicinity of the alumina container 4. A reaction tube heater 7 is installed outside the quartz reaction tube 6 so that the temperature inside the quartz reaction tube 6 can be adjusted.

前記高熱伝導基板3としては、熱伝導率の高い金属やセラミックスが好ましい。例えば、Cu、Al、グラファイトシート、SiC等である。   The high thermal conductive substrate 3 is preferably a metal or ceramic having high thermal conductivity. For example, Cu, Al, graphite sheet, SiC and the like.

前記アモルファス構造の窒化硼素層2aの形成方法としては、従来周知の任意の方法を用いることができる。例えば、蒸着やスパッタ法、CVD法などがある。該アモルファス構造の窒化硼素層2aの厚みは、目的とする配向性窒化硼素膜の厚みにあわせるように設定することが好ましい。   As the method for forming the amorphous boron nitride layer 2a, any conventionally known method can be used. For example, there are vapor deposition, sputtering, and CVD. The thickness of the amorphous boron nitride layer 2a is preferably set to match the thickness of the target oriented boron nitride film.

(配向性窒化硼素膜製造方法)
図2に示す配向性窒化硼素膜製造装置を使用して、配向性窒化硼素膜を製造する方法について説明する。
(Oriented boron nitride film manufacturing method)
A method of manufacturing an oriented boron nitride film using the oriented boron nitride film manufacturing apparatus shown in FIG. 2 will be described.

はじめに、石英反応管6の内部に前記被処理基板を水平に固定し、ターボポンプによる真空排気を行い、バックグラウンドを10-4Pa以下に排気する。真空に保持するのは、液体Ga9からのGa蒸気5の発生を活発にするためである。しかし、本合成法はあくまで一例であり、Ga蒸気を別途導入する場合は、炉内を真空に保持することは特に必要ないと言える。 First, the substrate to be processed is fixed horizontally in the quartz reaction tube 6 and evacuated by a turbo pump to evacuate the background to 10 −4 Pa or less. The reason why the vacuum is maintained is to activate the generation of Ga vapor 5 from the liquid Ga9. However, this synthesis method is merely an example, and it can be said that it is not particularly necessary to keep the inside of the furnace in a vacuum when Ga vapor is separately introduced.

次に反応管用ヒータ7で加熱することで石英反応管6内部の液体Ga9を気化し、Ga蒸気5の温度を600℃以上に上昇させ、アモルファス構造の窒化硼素層2aの表面に接触させる。   Next, by heating with the reaction tube heater 7, the liquid Ga9 inside the quartz reaction tube 6 is vaporized, the temperature of the Ga vapor 5 is raised to 600 ° C. or more, and is brought into contact with the surface of the amorphous boron nitride layer 2a.

前記熱処理を10分〜1時間行ない、その後再び室温に徐冷する。
前記のGa蒸気5中の熱処理で、前記アモルファス構造の窒化硼素層2aの表面に、配向性窒化硼素膜が形成される。
The heat treatment is performed for 10 minutes to 1 hour, and then gradually cooled to room temperature.
By the heat treatment in the Ga vapor 5, an oriented boron nitride film is formed on the surface of the amorphous boron nitride layer 2a.

なお、特に大面積コーティングをする場合は、Ga蒸気と硼素と窒素を含む原料ガスを混合して供給し、基板上に比較的厚い配向性窒化硼素膜を形成する事もできる。   In particular, when a large area coating is performed, a source gas containing Ga vapor, boron, and nitrogen can be mixed and supplied to form a relatively thick oriented boron nitride film on the substrate.

<放熱構造>
本発明に係る放熱構造は、図1(b)の通り、前記放熱材料を用いた放熱構造であって、配向性窒化硼素膜を有する窒化硼素層2bを発熱体1と接触させることを特徴とする。
<Heat dissipation structure>
As shown in FIG. 1B, the heat dissipation structure according to the present invention is a heat dissipation structure using the heat dissipation material, characterized in that a boron nitride layer 2b having an oriented boron nitride film is brought into contact with the heating element 1. To do.

<高熱伝導基板>
実施例1〜5および比較例1〜3は、表1に示す材質および厚さの高熱伝導基板を用いる。各高熱伝導基板の熱伝導率は周期加熱法を用いて測定した。グラファイトシートの熱伝導率はシート面内方向の値である。
<High thermal conductive substrate>
In Examples 1 to 5 and Comparative Examples 1 to 3, high heat conductive substrates having the materials and thicknesses shown in Table 1 are used. The thermal conductivity of each high thermal conductive substrate was measured using a periodic heating method. The thermal conductivity of the graphite sheet is a value in the sheet in-plane direction.

<配向性窒化硼素膜の形成>
実施例1〜5については、図2に示す配向性窒化硼素膜生成装置を使用して配向性窒化硼素膜を形成した。
<Formation of oriented boron nitride film>
In Examples 1 to 5, an oriented boron nitride film was formed using the oriented boron nitride film production apparatus shown in FIG.

長さ1m、直径25mmの石英管を用意し、石英反応管6とする。この石英反応管6内に、液体Ga9を充填した直径約1cmのアルミナ容器4を置き、近傍に高熱伝導基板3上にアモルファス構造の窒化硼素層2aがコーティングされた被処理基板を設置する。膜はレーザーアブレーションで製膜し、コーティングの厚さは表1の通りである。   A quartz tube having a length of 1 m and a diameter of 25 mm is prepared and used as a quartz reaction tube 6. In this quartz reaction tube 6, an alumina container 4 having a diameter of about 1 cm filled with liquid Ga 9 is placed, and a substrate to be processed coated with an amorphous structure boron nitride layer 2 a is placed on a high heat conductive substrate 3. The film was formed by laser ablation, and the thickness of the coating is shown in Table 1.

はじめに、石英反応管6の内部に前記被処理基板を水平に固定し、ターボポンプによる真空排気を行い、バックグラウンドを10-4Pa以下に排気する。 First, the substrate to be processed is fixed horizontally in the quartz reaction tube 6 and evacuated by a turbo pump to evacuate the background to 10 −4 Pa or less.

反応管用ヒータ7により、Ga蒸気5の温度を表1に記載する処理温度に上昇させ、45時間の処理を行い再び室温に徐冷する。   The temperature of the Ga vapor 5 is raised to the treatment temperature shown in Table 1 by the reaction tube heater 7, the treatment is performed for 45 hours, and the mixture is gradually cooled to room temperature again.

電子顕微鏡で観察したところ、前記Ga蒸気中の熱処理で、配向性窒化硼素膜がアモルファス構造の窒化硼素層の表面に形成されていた。得られた試料基板の表面に特に色むら、表面荒れ等はなく、極めて滑らかな鏡面状態であった。   When observed with an electron microscope, an oriented boron nitride film was formed on the surface of the boron nitride layer having an amorphous structure by the heat treatment in Ga vapor. The surface of the obtained sample substrate was not particularly uneven in color and rough, and was in a very smooth mirror state.

比較例1はGa蒸気による処理を行わなかった。
比較例2および3は、高熱導電性基板3上にアモルファスカーボン層を形成した被処理基板を、前記配向性窒化硼素膜生成装置と同一の装置を使用してGa蒸気で処理したものである。Ga蒸気での熱処理は表1に記載の処理温度で1時間行った。
In Comparative Example 1, no treatment with Ga vapor was performed.
In Comparative Examples 2 and 3, a substrate to be processed having an amorphous carbon layer formed on a high thermal conductive substrate 3 was treated with Ga vapor using the same apparatus as the oriented boron nitride film generating apparatus. The heat treatment with Ga vapor was carried out at the treatment temperature shown in Table 1 for 1 hour.

電子顕微鏡で観察したところ、前記Ga蒸気中の熱処理で、グラファイト膜がアモルファスカーボン層の表面に形成されていた。得られた試料基板の表面に特に色むら、表面荒れ等はなく、極めて滑らかな鏡面状態であった。   When observed with an electron microscope, a graphite film was formed on the surface of the amorphous carbon layer by the heat treatment in the Ga vapor. The surface of the obtained sample substrate was not particularly uneven in color and rough, and was in a very smooth mirror state.

<絶縁性測定>
得られた試料基板のシート抵抗値から絶縁性と導電性を判断した。
<Insulation measurement>
The insulation and conductivity were judged from the sheet resistance value of the obtained sample substrate.

<熱抵抗の測定>
図3示す装置を使用して熱抵抗を測定した。
<Measurement of thermal resistance>
The thermal resistance was measured using the apparatus shown in FIG.

はじめにCuホルダで試料基板15を挟み、圧力3kg/cm2の圧力で押さえつける。上部Cuホルダ10aは長さ20mm(L3)、3mmφ(L2)のCu円柱形状で、10mm□(L1)のテフロン(登録商標)製角柱11の中に埋め込んだ構造となっている。 First, the sample substrate 15 is sandwiched between Cu holders and pressed with a pressure of 3 kg / cm 2 . The upper Cu holder 10a is a Cu cylindrical shape having a length of 20 mm (L3) and 3 mmφ (L2), and is embedded in a 10 mm □ (L1) square pillar 11 made of Teflon (registered trademark).

上部Cuホルダ10aをセラミックヒータで加熱する。上部Cuホルダ10aには熱電対穴13が5点開いており、中心部の温度を測定しその温度勾配から試料基板15上面の温度を外挿して決定する。   The upper Cu holder 10a is heated with a ceramic heater. The upper Cu holder 10a has five thermocouple holes 13 which are measured by measuring the temperature of the central portion and extrapolating the temperature of the upper surface of the sample substrate 15 from the temperature gradient.

一方、試料基板15下面は下部Cuホルダ10bの上面と接している。試料基板下面には、試料の中心部T1(図4)と、T1から対角線方向に向かって6.3mmの位置T2(図4)に熱電対を貼り付けて、試料基板下面の温度を直接測定する。   On the other hand, the lower surface of the sample substrate 15 is in contact with the upper surface of the lower Cu holder 10b. A thermocouple is attached to the bottom surface of the sample substrate at the center T1 (FIG. 4) of the sample and a position T2 (FIG. 4) of 6.3 mm diagonally from T1 to directly measure the temperature of the bottom surface of the sample substrate. To do.

このようにヒーターの熱は試料基板上面の中心近傍のみに伝達されることになる。
試験条件は、測定時間10分間、12Wの発熱量である。
Thus, the heat of the heater is transmitted only to the vicinity of the center of the upper surface of the sample substrate.
The test condition is a calorific value of 12 W for a measurement time of 10 minutes.

熱抵抗は下記の式で算出する(図4参照)。
熱抵抗の測定(K/W)=(試料上面温度T0−試料下面の中心部の温度T1)/印加電力
なお、試料基板裏面の面内方向の放熱性の指標として、T1とT2の温度差(ΔT=T1−T2)を算出した。
The thermal resistance is calculated by the following formula (see FIG. 4).
Measurement of thermal resistance (K / W) = (sample top surface temperature T0−sample bottom surface temperature T1) / applied power Note that the temperature difference between T1 and T2 is used as an index of heat radiation in the in-plane direction of the sample substrate back surface. (ΔT = T1-T2) was calculated.

結果を表1に示す。   The results are shown in Table 1.

Figure 0005278737
Figure 0005278737

<評価結果>
アモルファス構造の窒化硼素層をGa蒸気と接触させた実施例1〜5の試料基板は、ΔTが小さいので、試料裏面の面内方向の放熱性に優れる。
<Evaluation results>
Since the sample substrates of Examples 1 to 5 in which the boron nitride layer having an amorphous structure is brought into contact with Ga vapor have a small ΔT, the heat dissipation in the in-plane direction on the back surface of the sample is excellent.

アモルファス構造の窒化硼素層のままの比較例1の試料試料基板は絶縁性であるが、ΔTが大きいので試料裏面の面内方向の放熱性に劣る。   The sample sample substrate of Comparative Example 1 with the boron nitride layer having an amorphous structure is insulative, but has a large ΔT, so it is inferior in heat dissipation in the in-plane direction on the back surface of the sample.

アモルファスカーボン層をGa蒸気と接触させた比較例2および3の試料は導電性である。   The samples of Comparative Examples 2 and 3 in which the amorphous carbon layer is brought into contact with Ga vapor are conductive.

Ga蒸気で処理した試料基板の熱抵抗は、実施例1〜5のアモルファス構造の窒化硼素層および比較例2〜3のアモルファスカーボン層でも大きな相違はなかった。   The thermal resistance of the sample substrate treated with Ga vapor was not significantly different between the amorphous boron nitride layers of Examples 1 to 5 and the amorphous carbon layers of Comparative Examples 2 to 3.

上記の通り、本発明に係る放熱材料は絶縁性を有し、かつ熱抵抗も低かった。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
As described above, the heat dissipating material according to the present invention had insulating properties and low thermal resistance.
It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

(a)は本発明に係る放熱材料を得るための被処理基板、(b)は本発明に係る放熱構造を説明する模式的斜視断面図である。(A) is a to-be-processed substrate for obtaining the thermal radiation material which concerns on this invention, (b) is typical perspective sectional drawing explaining the thermal radiation structure which concerns on this invention. 本発明に係る放熱材料を製造するために使用する配向性窒化硼素膜製造装置を示す模式的断面図である。It is typical sectional drawing which shows the oriented boron nitride film manufacturing apparatus used in order to manufacture the thermal radiation material which concerns on this invention. 実施例で使用した熱抵抗測定装置の模式的断面図である。It is typical sectional drawing of the thermal resistance measuring apparatus used in the Example. 実施例で使用した熱抵抗測定装置の上部Cuホルダと試料基板の模式的断面図(a)と、試料基板下面の平面図である。It is a typical sectional view (a) of the upper Cu holder and sample substrate of the thermal resistance measuring device used in the example, and a plan view of the lower surface of the sample substrate.

符号の説明Explanation of symbols

1 発熱体、2a,2b 窒化硼素膜、3 高熱伝導基板、4 アルミナ容器、5 Ga蒸気、6 石英反応管、7 反応管用ヒータ、8 真空排気系、9 液体Ga、10a 上部Cuホルダ、10b 下部Cuホルダ、11 テフロン(登録商標)製角柱、12 セラミックヒータ、13 熱電対穴、14 荷重、15 試料基板、16 熱電対、17 断熱材。   DESCRIPTION OF SYMBOLS 1 Heat generating body, 2a, 2b Boron nitride film, 3 High heat conductive substrate, 4 Alumina container, 5 Ga vapor, 6 Quartz reaction tube, 7 Reaction tube heater, 8 Vacuum exhaust system, 9 Liquid Ga, 10a Upper Cu holder, 10b Lower Cu holder, 11 Teflon (registered trademark) prism, 12 ceramic heater, 13 thermocouple hole, 14 load, 15 sample substrate, 16 thermocouple, 17 heat insulating material.

Claims (4)

放熱材料の製造方法であって、
高熱伝導基板上の少なくとも一面に硼素と窒素を含む窒化硼素層を形成する第一の工程と、
前記窒化硼素層の表面をGa蒸気に接触させる第二の工程からなり、
前記第一の工程で形成される窒化硼素層が非晶質であり、
前記放熱材料は、前記高熱伝導基板と、少なくともその一面の表面に形成された前記窒化硼素層から構成され、前記窒化硼素層は、それを構成する窒化硼素化合物の硼素と窒素の六員環結合面が前記高熱伝導基板面と平行である配向性窒化硼素膜を含む、放熱材料の製造方法。
A method of manufacturing a heat dissipation material,
Forming a boron nitride layer containing boron and nitrogen on at least one surface of the high thermal conductive substrate;
Ri Do from the second step of contacting the surface of the boron nitride layer to Ga vapor,
The boron nitride layer formed in the first step is amorphous;
The heat dissipation material is composed of the high thermal conductivity substrate and the boron nitride layer formed on at least one surface thereof, and the boron nitride layer is a six-membered ring bond of boron and nitrogen of the boron nitride compound constituting the boron nitride layer. A method for manufacturing a heat dissipation material, comprising an oriented boron nitride film whose surface is parallel to the surface of the high thermal conductivity substrate .
前記Ga蒸気の温度が600℃以上であることを特徴とする請求項に記載の放熱材料の製造方法。 The method for producing a heat dissipation material according to claim 1 , wherein the temperature of the Ga vapor is 600 ° C or higher. 前記高熱伝導基板が導電性基板であることを特徴とする請求項1または請求項2に記載の放熱材料の製造方法。 The method for manufacturing a heat dissipation material according to claim 1 or 2 , wherein the high thermal conductive substrate is a conductive substrate. 前記高熱伝導基板がCu、Al、グラファイトシート、SiCからなる群から選択されたいずれか一種からなることを特徴とする請求項1〜請求項3のいずれか1に記載の放熱材料の製造方法。 Method for producing a heat radiation material according to any one of claims 1 to 3, wherein the high thermal conductivity substrate is Cu, Al, graphite sheet, characterized in that it consists of any one selected from the group consisting of SiC .
JP2008274567A 2008-10-24 2008-10-24 Manufacturing method of heat dissipation material Expired - Fee Related JP5278737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008274567A JP5278737B2 (en) 2008-10-24 2008-10-24 Manufacturing method of heat dissipation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008274567A JP5278737B2 (en) 2008-10-24 2008-10-24 Manufacturing method of heat dissipation material

Publications (2)

Publication Number Publication Date
JP2010103361A JP2010103361A (en) 2010-05-06
JP5278737B2 true JP5278737B2 (en) 2013-09-04

Family

ID=42293741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008274567A Expired - Fee Related JP5278737B2 (en) 2008-10-24 2008-10-24 Manufacturing method of heat dissipation material

Country Status (1)

Country Link
JP (1) JP5278737B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172319B2 (en) * 2018-09-12 2022-11-16 富士通株式会社 Heat dissipation structure, electronic device, and method for manufacturing heat dissipation structure
CN112918030B (en) * 2019-12-05 2023-08-08 中国科学院深圳先进技术研究院 Boron nitride film with plane orientation, preparation method thereof, boron nitride composite film containing boron nitride film, thermal interface material and application
KR102353964B1 (en) * 2020-05-11 2022-01-24 울산과학기술원 Method for producing large area amorphous boron-nitride film and large area amorphous boron-nitride film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354116A (en) * 1991-05-30 1992-12-08 Sumitomo Electric Ind Ltd Cubic boron nitride substrate and manufacture thereof
JPH0624221B2 (en) * 1991-10-03 1994-03-30 鐘淵化学工業株式会社 High thermal conductive insulating substrate and manufacturing method thereof
JP2002114575A (en) * 2000-10-04 2002-04-16 Denki Kagaku Kogyo Kk Hexagonal boron nitride plate, method for manufacturing the same and application of the same
JP2005116839A (en) * 2003-10-08 2005-04-28 Sony Corp Heat conductor, cooling device, electronic apparatus, and method for manufacturing heat conductor

Also Published As

Publication number Publication date
JP2010103361A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
US7183003B2 (en) Thermal interface material and method for manufacturing same
JP6196246B2 (en) Silicon carbide-tantalum carbide composite and susceptor
JP5441486B2 (en) Manufacturing method of thermal interface material
Kim et al. Efficient heat spreader using supersonically sprayed graphene and silver nanowire
TW201722845A (en) Carbon nanotube bonding sheet and manufacturing method of carbon nanotube bonding sheet wherein the carbon nanotube bonding sheet can follow the minute irregularities of the surface of the object and suppress the detachment of the carbon nanotube
KR102333477B1 (en) Method of manufacturing and modularizing assembled thermal management material based on diamond-graphene hybrid structure
Bogdanowicz et al. Growth and isolation of large area boron‐doped nanocrystalline diamond sheets: a route toward Diamond‐on‐Graphene heterojunction
JP7172319B2 (en) Heat dissipation structure, electronic device, and method for manufacturing heat dissipation structure
TW201212225A (en) Silicon carbide substrate, semiconductor device, and SOI wafer
JP5278737B2 (en) Manufacturing method of heat dissipation material
JP2010040883A (en) Heat dissipation sheet, heat dissipation device, and method of manufacturing heat dissipation sheet
JP2010037128A (en) Method for producing graphite film
KR20080059501A (en) Ceramic heater with electrostatic chuck
JP2017028247A (en) Conjugate of graphite and silicon and manufacturing method for the same
JP2008205415A (en) Electrostatic chuck
JPH03295267A (en) Thin film device
JP2001287299A (en) Thermally conductive sheet and its manufacturing method
JP6313547B2 (en) Interlayer thermal connection member, method for manufacturing interlayer thermal connection member, and interlayer thermal connection method
US8808857B1 (en) Carbon nanotube array interface material and methods
JP4570372B2 (en) Materials for plasma-resistant semiconductor manufacturing equipment
Fang et al. Enhanced Heat Dissipation for Macroscopic Metals Achieved by a Single‐Layer Graphene
JP4919357B2 (en) Manufacturing method of electronic device
US20190276722A1 (en) Composite material and method of forming same, and electrical component including composite material
TWI751791B (en) Solid state heater and method of manufacture
KR20210123466A (en) Metal Carbon Fiber Composite Materials and Their Manufacturing Methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees