JP6313547B2 - Interlayer thermal connection member, method for manufacturing interlayer thermal connection member, and interlayer thermal connection method - Google Patents

Interlayer thermal connection member, method for manufacturing interlayer thermal connection member, and interlayer thermal connection method Download PDF

Info

Publication number
JP6313547B2
JP6313547B2 JP2013124664A JP2013124664A JP6313547B2 JP 6313547 B2 JP6313547 B2 JP 6313547B2 JP 2013124664 A JP2013124664 A JP 2013124664A JP 2013124664 A JP2013124664 A JP 2013124664A JP 6313547 B2 JP6313547 B2 JP 6313547B2
Authority
JP
Japan
Prior art keywords
carbonaceous film
thermal resistance
interlayer
tim
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013124664A
Other languages
Japanese (ja)
Other versions
JP2015002199A (en
Inventor
村上 睦明
睦明 村上
正満 立花
正満 立花
篤 多々見
篤 多々見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2013124664A priority Critical patent/JP6313547B2/en
Publication of JP2015002199A publication Critical patent/JP2015002199A/en
Application granted granted Critical
Publication of JP6313547B2 publication Critical patent/JP6313547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、発熱源の熱を速やかに放熱部材に伝達して冷却するための層間熱接続部材、層間熱接続部材の製造方法、および層間熱接続方法に関する。 The present invention relates to an interlayer thermal connection member, a method for manufacturing an interlayer thermal connection member, and an interlayer thermal connection method for quickly transferring heat from a heat generation source to a heat dissipation member for cooling.

近年、マイクロプロセッサの高速化やLEDチップの高性能化に伴う発熱量の上昇などにより、携帯電話、パソコン、PDA、ゲーム機などの電子機器やLED照明などにおける熱の問題は、エレクトロニクス分野で解決するべき大きな技術課題となっている。 In recent years, the heat problem in electronic devices such as mobile phones, personal computers, PDAs, game machines, and LED lighting has been solved in the electronics field due to the increase in heat generation due to higher speed microprocessors and higher performance LED chips. It is a big technical issue to be done.

放熱・冷却には熱伝導、熱放射、熱の対流を利用する方法があり、熱の対流を利用する冷却方式としてはヒートシンクや空冷フィンが、熱放射を利用するものとしてはセラミック板などが、熱伝導を利用するものとしては各種の熱伝導(拡散)シート、熱伝導性樹脂、層間熱接合材などがある。発熱源の熱を効果的に放熱・冷却するには、発熱部の熱を回路基板や冷却フィン、ヒートシンク、熱拡散シート、あるいはセラミックなどの放熱・冷却の役割をもつ部材に効率よく伝達する必要があり、そのためには層間の熱抵抗を低減することが重要である。 There are methods using heat conduction, heat radiation, and heat convection for heat dissipation and cooling, heat sinks and air cooling fins as cooling methods using heat convection, ceramic plates etc. as those using heat radiation, Examples of those utilizing thermal conduction include various thermal conduction (diffusion) sheets, thermal conductive resins, and interlayer thermal bonding materials. In order to effectively dissipate and cool the heat of the heat source, it is necessary to efficiently transfer the heat of the heat generating part to a circuit board, cooling fin, heat sink, heat diffusion sheet, or a member having a heat radiation / cooling role such as ceramic. Therefore, it is important to reduce the thermal resistance between layers.

層間熱接合材料(Thermal Interface Material:以下TIMと略す)は、層間の速やかな熱伝達のために用いられる。図1にTIMを用いない場合の部材(例えば金属)同士の接合状態を示す。金属同士あるいは金属とセラミックなどの無機部材を単に接合しても、その表面の凹凸のために基本的に接合面は点接触となり、さらに層間には熱伝導性の低い空気層(熱伝導率:0.02W/mK)が存在するために層間熱抵抗が大きくなり、熱がスムーズに伝達しない。TIMはこの様な層間の熱抵抗を下げるために用いられ、上記部材間に挟持して使用される。したがって、TIMとしては熱抵抗が小さいこと、および接合界面での熱抵抗を小さくすることが重要である。 An interlayer thermal bonding material (Thermal Interface Material: hereinafter abbreviated as TIM) is used for rapid heat transfer between layers. FIG. 1 shows a joining state of members (for example, metals) when TIM is not used. Even if metals or inorganic members such as ceramics are simply joined together, the joint surface is basically point contact due to the unevenness of the surface, and an air layer with low thermal conductivity (thermal conductivity: between layers) 0.02 W / mK), the interlayer thermal resistance increases, and heat is not transferred smoothly. TIM is used to lower the thermal resistance between such layers, and is used by being sandwiched between the members. Therefore, it is important for the TIM to have a low thermal resistance and to reduce the thermal resistance at the bonding interface.

TIM自体の熱抵抗であるバルク熱抵抗を小さくするにはTIM自体の熱伝導率が高いこととTIMが可能な限り薄いことが必要になる。一方、界面熱抵抗を小さくするためには界面での接続面積を大きくする(すなわち面接合とする)ことが重要である。TIMが薄い場合、界面での接続面積を大きくすることが困難になるので、接触面積を大きくし、面接合を実現するためにTIMには通常柔軟性が求められる。 In order to reduce the bulk thermal resistance, which is the thermal resistance of the TIM itself, it is necessary that the thermal conductivity of the TIM itself is high and that the TIM is as thin as possible. On the other hand, in order to reduce the interfacial thermal resistance, it is important to increase the connection area at the interface (ie, surface bonding). When the TIM is thin, it is difficult to increase the connection area at the interface. Therefore, the TIM usually requires flexibility in order to increase the contact area and realize surface bonding.

現在開発されているTIMとしては、接合界面を面接合とするための柔軟性のあるマトリックス高分子材料と、TIM自体を高熱伝導性にするための高熱伝導性無機フィラーを複合したものが主力となっている(特許文献1)。以下、このタイプのTIMを高分子/無機フィラー複合体TIMと略す。図2に高分子/無機フィラー複合体TIMを用いた場合の層間の接続状態を示す。高分子/無機フィラー複合体TIMは柔軟なマトリックス高分子により接触面積が増加し界面熱抵抗を小さくできる。またTIMを挿入することで空気層が除かれ、挿入されたTIMの熱伝導率が空気層よりも高いためバルク熱抵抗も小さくなる。その結果、層間の熱抵抗が低減できることになる。 The currently developed TIM is a composite of a flexible matrix polymer material for making the bonding interface a surface bond and a highly thermally conductive inorganic filler for making the TIM itself highly conductive. (Patent Document 1). Hereinafter, this type of TIM is abbreviated as polymer / inorganic filler composite TIM. FIG. 2 shows a connection state between layers when a polymer / inorganic filler composite TIM is used. In the polymer / inorganic filler composite TIM, the contact area is increased by the flexible matrix polymer, and the interface thermal resistance can be reduced. Further, the insertion of the TIM removes the air layer, and the thermal conductivity of the inserted TIM is higher than that of the air layer, so that the bulk thermal resistance is also reduced. As a result, the thermal resistance between the layers can be reduced.

しかしながら、バルク熱抵抗を低減するために熱伝導性無機フィラーの添加量を増加させるとTIMの柔軟性が損なわれ、界面熱抵抗が増加するという問題がある。そのために、現在一般品として使用されている高分子/無機フィラー複合体TIMの熱伝導率は1〜2W/mKであり、高熱伝導率品といわれるTIMでも5W/mK程度の商品しか上市されていないのが現状である。 However, when the amount of the thermally conductive inorganic filler added is increased in order to reduce the bulk thermal resistance, there is a problem that the flexibility of the TIM is impaired and the interfacial thermal resistance increases. Therefore, the thermal conductivity of the polymer / inorganic filler composite TIM currently used as a general product is 1 to 2 W / mK, and only about 5 W / mK of TIM, which is said to be a high thermal conductivity product, is marketed. There is no current situation.

また、一般的にこの様な高分子/無機フィラー複合体TIMの厚さは0.5mm〜5mm程度である。これは界面熱抵抗値を低減させるために必要な厚さである。柔軟性に優れたTIMであれば薄くても界面での接触面積を増加できるが、バルク熱伝導率との最適値を選択する必要性から、柔軟性を多少犠牲にした厚さが必要となっている。 In general, the thickness of such a polymer / inorganic filler composite TIM is about 0.5 mm to 5 mm. This is the thickness necessary to reduce the interfacial thermal resistance value. The TIM with excellent flexibility can increase the contact area at the interface even if it is thin, but the thickness that sacrifices some flexibility is required because of the need to select the optimum value with the bulk thermal conductivity. ing.

さらに、高分子/無機フィラー複合体TIMの場合、そのマトリックス樹脂も柔軟性を有するという条件から、実用化されているのはアクリル樹脂あるいはシリコーン樹脂など数種類の高分子に限られている。汎用品であるアクリル樹脂の場合には耐熱性に問題があり、シリコーン樹脂の場合には高温加熱によって発生するシリコーンモノマーが電子機器回路の接点不良を起こすという問題があった。 Furthermore, in the case of the polymer / inorganic filler composite TIM, only a few types of polymers such as acrylic resins or silicone resins are put into practical use on the condition that the matrix resin also has flexibility. In the case of an acrylic resin which is a general-purpose product, there is a problem in heat resistance, and in the case of a silicone resin, there is a problem that a silicone monomer generated by high temperature heating causes a contact failure of an electronic device circuit.

一般的にTIMの実用的な熱抵抗値は、熱伝導率と厚さに依存するTIMのバルク熱抵抗と、界面熱抵抗の和である。高分子/無機フィラー複合体TIMの場合、その値は0.4〜3.0K・cm/W程度であることが多く、熱抵抗値の小さな高性能TIMが強く求められている。なお、熱抵抗値(単位K・cm/W)は、接続面に1W/cmの熱量を加えた場合に、層間にどれだけの温度差が生じるかを意味する。この熱抵抗値は熱抵抗特性測定時に印加する圧力の値によっても変わるので、その熱抵抗値を表示するには測定時の圧力の値を併記する必要がある。 In general, the practical thermal resistance value of TIM is the sum of bulk thermal resistance of TIM, which depends on thermal conductivity and thickness, and interfacial thermal resistance. In the case of the polymer / inorganic filler composite TIM, the value is often about 0.4 to 3.0 K · cm 2 / W, and a high-performance TIM having a small thermal resistance value is strongly demanded. The thermal resistance value (unit: K · cm 2 / W) means how much temperature difference occurs between layers when a heat amount of 1 W / cm 2 is applied to the connection surface. Since this thermal resistance value also changes depending on the value of pressure applied at the time of measuring the thermal resistance characteristic, it is necessary to indicate the pressure value at the time of measurement in order to display the thermal resistance value.

特開2010−53331号公報JP 2010-53331 A

本発明は、従来使用されてきた高分子/無機フィラー複合体TIMの問題点を解決し、極めて薄いためにバルク熱抵抗が小さいにも関わらず界面熱抵抗も小さくすることが可能な高性能炭素質膜TIMを提供することを目的としている。 The present invention solves the problems of conventionally used polymer / inorganic filler composites TIM, and is a high performance carbon that can be reduced in interfacial thermal resistance despite its low bulk thermal resistance because it is extremely thin. The object is to provide a membrane TIM.

本発明者らは鋭意検討の結果、膜厚方向にグラファイト構造及びアモルファス構造を含む炭素質膜が層間熱抵抗の低減に極めて効果があるということを発見して本発明を成すに至った。 As a result of intensive studies, the present inventors have found that a carbonaceous film containing a graphite structure and an amorphous structure in the film thickness direction is extremely effective in reducing the interlayer thermal resistance, and has reached the present invention.

すなわち、本発明は、膜厚方向にグラファイト構造及びアモルファス構造を含む炭素質膜を有する層間熱接続部材に関する。 That is, the present invention relates to an interlayer heat connection member having a carbonaceous film including a graphite structure and an amorphous structure in the film thickness direction.

炭素質膜の厚さが10nm〜5μmであることが好ましい。 The carbonaceous film preferably has a thickness of 10 nm to 5 μm.

層間熱接続部材が、さらに、金属部材または無機部材を有することが好ましい。 It is preferable that the interlayer thermal connection member further has a metal member or an inorganic member.

金属部材が銅、ニッケル、鉄、コバルト及びアルミニウムからなる群から選択される少なくとも1種類であることが好ましい。 The metal member is preferably at least one selected from the group consisting of copper, nickel, iron, cobalt and aluminum.

無機部材がセラミックであることが好ましい。 The inorganic member is preferably ceramic.

炭素質膜と金属部材または無機部材が隙間なく接合されていることが好ましい。 It is preferable that the carbonaceous film and the metal member or the inorganic member are joined without a gap.

炭素質膜が化学気相成長法によって形成されていることが好ましい。 The carbonaceous film is preferably formed by chemical vapor deposition.

層間熱接続部材が、さらに、常温以上で流動性を有する流動性物質を含むことが好ましい。 It is preferable that the interlayer thermal connection member further includes a fluid substance having fluidity at room temperature or higher.

前記流動性物質の沸点が200℃以上であることが好ましい。 The boiling point of the fluid substance is preferably 200 ° C. or higher.

本発明はまた、炭素質膜を化学気相成長法によって形成する工程を含む、本発明の層間熱接続部材の製造方法に関する。 The present invention also relates to a method for producing an interlayer thermal connection member of the present invention, which includes a step of forming a carbonaceous film by chemical vapor deposition.

化学気相成長法において、400〜1300℃に加熱された部材上で炭素質膜を形成することが好ましい。 In the chemical vapor deposition method, it is preferable to form a carbonaceous film on a member heated to 400 to 1300 ° C.

本発明はまた、本発明の層間熱接続部材を、熱接続する部材間に設置する工程を含む層間熱接続方法に関する。 The present invention also relates to an interlayer thermal connection method including a step of installing the interlayer thermal connection member of the present invention between members to be thermally connected.

本発明によれば、膜厚方向にグラファイト構造及びアモルファス構造を含む炭素質膜を含むため、層間熱抵抗が著しく小さく、さらに耐久性・耐熱性にも優れる層間熱接続部材を実現することができる。 According to the present invention, since a carbonaceous film including a graphite structure and an amorphous structure is included in the film thickness direction, an interlayer thermal connection member having extremely low interlayer thermal resistance and excellent durability and heat resistance can be realized. .

TIMを用いない場合の層間の概念図である。It is a conceptual diagram between layers when not using TIM. 高分子/無機フィラー複合体TIMを用いた場合の層間接続状態の概念図である。図中、黒マル(●)は熱伝導性無機フィラーである。It is a conceptual diagram of the interlayer connection state at the time of using a polymer / inorganic filler composite TIM. In the figure, black circles (●) are thermally conductive inorganic fillers. 本発明の層間熱接続部材による層間接続状態の概念図である。It is a conceptual diagram of the interlayer connection state by the interlayer thermal connection member of this invention. 本発明の層間熱接続部材による層間接続状態の概念図である。It is a conceptual diagram of the interlayer connection state by the interlayer thermal connection member of this invention. TIMの熱抵抗値測定方法の模式図である。It is a schematic diagram of the thermal resistance value measuring method of TIM. TIMの熱抵抗値、バルク熱抵抗値及び界面熱抵抗値の関係を示した図である。It is the figure which showed the relationship between the thermal resistance value of TIM, a bulk thermal resistance value, and an interface thermal resistance value. 炭素質膜の熱抵抗測定原理の概念図である。It is a conceptual diagram of the thermal resistance measurement principle of a carbonaceous film. 実施例1で作製した炭素質膜の透過型電子顕微鏡(TEM)写真である。2 is a transmission electron microscope (TEM) photograph of the carbonaceous film produced in Example 1. FIG.

以下、本発明の具体的な実施形態について述べる。
本明細書では、温度差が生じうる部材と部材の間を層間と、また、一方の部材から他の部材への熱伝達を行うための部材を層間熱接続部材(TIM)と定義する。また、本明細書では、TIM自体の熱抵抗をバルク熱抵抗とし、TIMと部材との界面を接合界面とし、接合界面での熱抵抗を界面熱抵抗とする。
Hereinafter, specific embodiments of the present invention will be described.
In this specification, a member that can cause a temperature difference is defined as an interlayer, and a member for transferring heat from one member to another is defined as an interlayer thermal connection member (TIM). In this specification, the thermal resistance of the TIM itself is defined as bulk thermal resistance, the interface between the TIM and the member is defined as a bonding interface, and the thermal resistance at the bonding interface is defined as interface thermal resistance.

(層間熱接続部材)
本発明の層間熱接続部材は、膜厚方向にグラファイト構造及びアモルファス構造を含む炭素質膜を有する。
(Interlayer thermal connection member)
The interlayer thermal connection member of the present invention has a carbonaceous film including a graphite structure and an amorphous structure in the film thickness direction.

炭素質膜とは、膜を形成する元素の95重量%以上が炭素原子からなる膜のことを言い、少量の水素、窒素、酸素などの元素、あるいは炭素質膜作製の過程で混入する可能性のある金属元素などの無機元素を含んでいても良い。また、膜厚方向における不均一構造とは、膜中の炭素原子の存在状態が膜厚方向で異なっている状態を言い、具体的には炭素質膜中で炭素の同素体構造の一つであるグラファイト構造の発達の程度が異なっている状態と定義する。 A carbonaceous film refers to a film in which 95% by weight or more of the elements forming the film are composed of carbon atoms, and a small amount of elements such as hydrogen, nitrogen, oxygen, or the like may be mixed in the process of producing the carbonaceous film. It may contain inorganic elements such as metallic elements. Further, the heterogeneous structure in the film thickness direction means a state in which the presence state of carbon atoms in the film is different in the film thickness direction, and is specifically one of allotrope structures of carbon in the carbonaceous film. It is defined as a state in which the degree of development of the graphite structure is different.

炭素質膜の厚さは、10nm以上であることが好ましい。また、10μm以下が好ましく、5μm以下がより好ましく、2μm以下がさらに好ましい。この厚さであれば、従来の高分子/無機フィラー複合体TIMの厚さに比べて極めて小さく、バルク熱抵抗値は極めて小さくなる。10μmを超えると、アモルファス炭素構造部分の増加に伴いそのバルク熱抵抗値が無視できなくなる傾向がある。また、加熱した部材表面にCVD法で5μm以上の厚さの炭素質膜を形成することは技術的にも経済的にも難しくなる傾向がある。さらに、厚さが5μm以下であれば、そのTIMとしての熱抵抗は、事実上界面熱抵抗のみとみなすことができる。一方、炭素質膜の厚さが10nm未満の場合には、界面熱抵抗値が急激に増大し、高分子/無機フィラー複合体TIMの熱抵抗値(0.4K・cm/W)を下回ることは難しくなる傾向がある。 The thickness of the carbonaceous film is preferably 10 nm or more. Moreover, 10 micrometers or less are preferable, 5 micrometers or less are more preferable, and 2 micrometers or less are further more preferable. If it is this thickness, it will be very small compared with the thickness of the conventional polymer / inorganic filler composite TIM, and a bulk thermal resistance value will become very small. When the thickness exceeds 10 μm, the bulk thermal resistance value tends to be non-negligible as the amorphous carbon structure increases. Moreover, it tends to be technically and economically difficult to form a carbonaceous film having a thickness of 5 μm or more on the heated member surface by CVD. Furthermore, if the thickness is 5 μm or less, the thermal resistance as the TIM can be regarded as only the interface thermal resistance. On the other hand, when the thickness of the carbonaceous film is less than 10 nm, the interfacial thermal resistance value increases rapidly and falls below the thermal resistance value (0.4 K · cm 2 / W) of the polymer / inorganic filler composite TIM. Things tend to be difficult.

グラファイト構造炭素とアモルファス構造炭素の比率は、レーザーラマン測定による1600cm−1付近のグラファイトのラマン吸収(Gバンドと略記)と1380cm−1付近のアモルファス炭素のラマン吸収(Dバンドと略記)の強度比で測定することができる。炭素質膜の中でグラファイト構造の部分は比較的部材界面に近い部分に限られるので、炭素質膜の膜厚が小さいほどグラファイト構造の部分が多くなる。従って、その比率は炭素質膜の厚さによって変わるが、炭素質膜厚さが10nmの場合でも、GバンドとDバンドの強度比が、G/D=1/1以下(半分以上はアモルファス炭素構造)であることが好ましい。 The ratio of graphite structure carbon to amorphous structure carbon is the intensity ratio between the Raman absorption of graphite near 1600 cm −1 (abbreviated as G band) and the Raman absorption of amorphous carbon near 1380 cm −1 (abbreviated as D band) by laser Raman measurement. Can be measured. Since the part of the graphite structure in the carbonaceous film is limited to a part relatively close to the member interface, the part of the graphite structure increases as the film thickness of the carbonaceous film decreases. Accordingly, the ratio varies depending on the thickness of the carbonaceous film, but even when the carbonaceous film thickness is 10 nm, the intensity ratio of the G band and the D band is G / D = 1/1 or less (more than half is amorphous carbon). Structure).

本発明の層間熱接続部材は、炭素質膜のみから構成されていてもよく、さらに部材(基板)を有するものであってもよい。部材を有する場合、炭素質膜を部材上で形成しても、また、炭素質膜を2つの部材に狭持してもよい。炭素質膜を形成する部材(基板)としては、金属部材あるいは無機部材が好ましい。 The interlayer thermal connection member of the present invention may be composed only of a carbonaceous film, and may further have a member (substrate). In the case of having a member, the carbonaceous film may be formed on the member, or the carbonaceous film may be sandwiched between two members. The member (substrate) for forming the carbonaceous film is preferably a metal member or an inorganic member.

また、炭素質膜と金属部材または無機部材は、隙間なく接合されていることが好ましい。「隙間なく接合」とは、部材表面の凹凸を含めた全表面を覆う状態であるが、必ずしも100%覆われている必要はなく、炭素質膜と部材の界面を電子顕微鏡で観察し、好ましくは90%以上、より好ましくは95%以上の領域において、隙間が存在しないことを意味する。 Moreover, it is preferable that the carbonaceous film and the metal member or the inorganic member are joined without a gap. “Join without gap” is a state in which the entire surface including the unevenness on the surface of the member is covered, but it is not necessarily 100% covered, and the interface between the carbonaceous film and the member is preferably observed with an electron microscope. Means that there is no gap in the region of 90% or more, more preferably 95% or more.

炭素質膜TIMの熱抵抗値が最小値となる厚さは、部材表面の凹凸によって異なる。一般に凹凸が大きい場合にはより大きな膜厚で、凹凸が小さい場合にはより小さな膜厚で、熱抵抗値が最小となる。表面粗度が小さい部材の場合には、炭素質膜は薄くても十分に層間熱接続の値を小さくすることが可能であり、面粗度が大きい部材の場合には、炭素質膜を厚くする必要がある。炭素質膜の厚さが10nm〜5μmの場合、部材の表面粗度Rzは10μm以下であることが好ましく、5μm以下であることがより好ましく、2μm以下であることが最も好ましい。なお、Rzは10点平均粗さを示す値である。
例えば、銅部材の場合、Rzが10μm以下の表面を持つ電解銅箔や圧延銅箔は一般的な銅基板として市場に提供されており、特に表面粗度を向上させたものとしてはRzが2μm以下の銅箔も量産されている。
The thickness at which the thermal resistance value of the carbonaceous film TIM is minimized varies depending on the unevenness of the member surface. In general, the thermal resistance value is minimized when the unevenness is large, with a larger film thickness, and when the unevenness is small, the film thickness is smaller. In the case of a member with a small surface roughness, the value of the interlayer heat connection can be sufficiently reduced even if the carbonaceous film is thin. In the case of a member with a large surface roughness, the carbonaceous film is thickened. There is a need to. When the thickness of the carbonaceous film is 10 nm to 5 μm, the surface roughness Rz of the member is preferably 10 μm or less, more preferably 5 μm or less, and most preferably 2 μm or less. Rz is a value indicating 10-point average roughness.
For example, in the case of a copper member, electrolytic copper foil and rolled copper foil having a surface with Rz of 10 μm or less are provided on the market as a general copper substrate, and Rz is 2 μm particularly for improving the surface roughness. The following copper foils are also mass-produced.

図3(a)に本発明の炭素質膜TIMによる層間熱接続状態の概念図を示す。図3(b)はその拡大モデル図であり、部材A上に炭素質膜が形成されている場合の接合状態を示す。部材A表面は強固に面接合されたグラファイト質炭素で覆われており、部材B表面の凹凸は炭素質膜のアモルファス炭素部分に食い込んでいる。炭素質膜が部材Aの表面を完全に覆う様に強固に接合していること、また、第二の部材Bの凹凸は炭素質膜のアモルファス構造部分に食い込んでおり、接触面積の増大に役立っていることから、炭素質膜TIMが薄くても界面熱接続抵抗を小さくすることができる。また、グラファイト構造部分は膜面方向への熱拡散を促進でき、熱抵抗値の低減に効果がある。 FIG. 3A shows a conceptual diagram of an interlayer heat connection state by the carbonaceous film TIM of the present invention. FIG. 3B is an enlarged model diagram showing a joined state when a carbonaceous film is formed on the member A. FIG. The surface of the member A is covered with graphitic carbon that is firmly surface-bonded, and the unevenness on the surface of the member B bites into the amorphous carbon portion of the carbonaceous film. The carbonaceous film is firmly bonded so as to completely cover the surface of the member A, and the unevenness of the second member B bites into the amorphous structure portion of the carbonaceous film, which helps increase the contact area. Therefore, even when the carbonaceous film TIM is thin, the interface thermal connection resistance can be reduced. Further, the graphite structure portion can promote thermal diffusion in the film surface direction, and is effective in reducing the thermal resistance value.

熱接続される相手方の部材Bとしては特に制限はないが、アルミニウム(熱伝導率:237W/mK)、銅(熱伝導率:398W/mK)、銀(熱伝導率:428W/mK)、ニッケル(熱伝導率:90W/mK)などの熱伝導性に優れた金属材料、シリカ(熱伝導率:1.5W/mK)、アルミナ(熱伝導率:20W/mK)、酸化マグネシウム(MgO)(熱伝導率:40W/mK)、窒化ホウ素(BN)(熱伝導率:60W/mK)、窒化アルミニウム(AlN)(熱伝導率:70〜270W/mK)、炭化ケイ素(SiC)(熱伝導率:88〜128W/mK(結晶系により異なる))などのセラミック材料、各種高分子材料、またはこれらを組合せた部材を使用することができる。
無論これらの部材の表面粗度も小さいことが好ましく、具体的には、Rz値は10μm以下であることが好ましく、5μm以下であることがより好ましく、2μm以下であることが最も好ましい。
The partner B to be thermally connected is not particularly limited, but aluminum (thermal conductivity: 237 W / mK), copper (thermal conductivity: 398 W / mK), silver (thermal conductivity: 428 W / mK), nickel (Thermal conductivity: 90 W / mK) and other metallic materials having excellent thermal conductivity, silica (thermal conductivity: 1.5 W / mK), alumina (thermal conductivity: 20 W / mK), magnesium oxide (MgO) ( Thermal conductivity: 40 W / mK), boron nitride (BN) (thermal conductivity: 60 W / mK), aluminum nitride (AlN) (thermal conductivity: 70-270 W / mK), silicon carbide (SiC) (thermal conductivity : 88 to 128 W / mK (varies depending on the crystal system)), various polymer materials, or a member combining these materials.
Of course, the surface roughness of these members is also preferably small. Specifically, the Rz value is preferably 10 μm or less, more preferably 5 μm or less, and most preferably 2 μm or less.

図4に本発明の炭素質膜TIMの他の態様を示す。両部材(A、B)の表面に炭素質膜を形成しておき、炭素質膜同士を接合させれば、接合界面の熱抵抗をさらに効果的に低減できる。この場合炭素質膜同士の接合部分はアモルファス炭素同士の接合となるので、その界面抵抗は事実上なくなったことになる。また、部材との接合界面で強固な界面熱接続が実現しているので、その界面熱抵抗を低減できることは言うまでもない。 FIG. 4 shows another embodiment of the carbonaceous film TIM of the present invention. If carbonaceous films are formed on the surfaces of both members (A, B) and the carbonaceous films are bonded to each other, the thermal resistance at the bonding interface can be further effectively reduced. In this case, since the bonding portion between the carbonaceous films becomes a bonding between the amorphous carbons, the interface resistance is virtually eliminated. Further, since a strong interfacial thermal connection is realized at the joint interface with the member, it goes without saying that the interfacial thermal resistance can be reduced.

本発明の炭素質膜TIMを用いることで層間熱抵抗を極めて小さくできる理由は以下の様に説明できる。第一の理由は、炭素質膜の熱伝導率が従来の高分子/無機フィラー複合体TIMとほぼ同等であることである。先に述べた様に従来の高分子/無機フィラー複合体TIMの熱伝導率は1〜5W/mK、厚さは0.5〜5mm程度である。本発明の炭素質膜TIMの厚さ方向の熱伝導率は、グラファイト構造発達の程度により変わるが、グラファイトのc軸方向の熱伝導度値が5W/mKであることから、従来の高分子/無機フィラー複合体TIMの熱伝導率と同等以上であると推測される。
また、炭素質膜の厚さが10nm以上5μm以下の場合、従来の高分子/無機フィラー複合体TIMの1/100〜1/10000の薄さであるため、バルク熱抵抗が極めて小さくなり、層間熱抵抗を極めて小さくすることができる。
The reason why the interlayer thermal resistance can be made extremely small by using the carbonaceous film TIM of the present invention can be explained as follows. The first reason is that the thermal conductivity of the carbonaceous film is almost equivalent to that of the conventional polymer / inorganic filler composite TIM. As described above, the conventional polymer / inorganic filler composite TIM has a thermal conductivity of 1 to 5 W / mK and a thickness of about 0.5 to 5 mm. Although the thermal conductivity in the thickness direction of the carbonaceous film TIM of the present invention varies depending on the degree of graphite structure development, since the thermal conductivity value in the c-axis direction of graphite is 5 W / mK, It is presumed to be equal to or higher than the thermal conductivity of the inorganic filler composite TIM.
In addition, when the thickness of the carbonaceous film is 10 nm or more and 5 μm or less, it is 1/100 to 1/10000 of the conventional polymer / inorganic filler composite TIM, so that the bulk thermal resistance becomes extremely small, and the interlayer Thermal resistance can be made extremely small.

第二の理由は、極めて薄いにも関わらずその界面熱抵抗も小さくすることができる点である。先に述べた様に、一般的にはTIMが薄い場合、界面での接触面積の増大や面接合の実現が難しくなるためその界面熱抵抗は大きくなる傾向がある。しかしながら、本発明の炭素質膜TIMは、部材の凹凸を含む全表面に密着しており、部材との事実上の面接触を実現し、層間の界面熱抵抗を著しく低減できるのである。
加熱された金属部材や無機部材上にCVD法を用いて炭素質膜を形成した場合、炭素質膜は部材表面の凹凸を含めた全表面を覆う様に形成される。また、炭素質薄膜をCVD法で作製すると、金属や無機部材の触媒作用によってガス状の炭素源は加熱された部材表面で炭素ラジカルとなり、それらが互いに結合して金属表面と強固に接合した炭素膜を形成すると考えられている。すなわち、この様にして形成された炭素質膜は、蒸着やスパッタリング法などで物理的に部材表面に沈積させた炭素膜とは異なり、金属の凹凸を含む全表面に密着した膜となるだけでなく、表面で化学結合を伴う強固な接合を形成することができる。
The second reason is that the interface thermal resistance can be reduced even though it is extremely thin. As described above, in general, when the TIM is thin, it is difficult to increase the contact area at the interface and to realize surface bonding, so that the interface thermal resistance tends to increase. However, the carbonaceous film TIM of the present invention is in intimate contact with the entire surface including the irregularities of the member, and can achieve practical surface contact with the member and can significantly reduce the interfacial thermal resistance.
When a carbonaceous film is formed on a heated metal member or inorganic member using a CVD method, the carbonaceous film is formed so as to cover the entire surface including the unevenness of the member surface. In addition, when a carbon thin film is produced by the CVD method, the gaseous carbon source becomes a carbon radical on the heated member surface by the catalytic action of a metal or an inorganic member, and these carbon atoms are bonded to each other and firmly bonded to the metal surface. It is believed to form a film. That is, the carbonaceous film formed in this way is different from a carbon film physically deposited on the surface of a member by vapor deposition or sputtering, and only a film adhered to the entire surface including metal irregularities. And a strong bond with a chemical bond can be formed on the surface.

第三の理由は、炭素質膜がその厚さ方向に不均一な構造を有することに由来する。本発明において、炭素質膜は膜厚方向にグラファイト構造及びアモルファス構造を含み、アモルファス構造の部分は比較的柔らかいため、第二部材との熱接合を行う場合にその界面熱抵抗値を小さくすることに効果があると考えられる。すなわち、図3(b)に示すように、第二部材の表面の凹凸が比較的柔らかいアモルファス炭素部分に食い込むことでその接触面積の増大に役立っていると考えられる。 The third reason is that the carbonaceous film has a non-uniform structure in the thickness direction. In the present invention, the carbonaceous film includes a graphite structure and an amorphous structure in the film thickness direction, and the amorphous structure portion is relatively soft. Therefore, when the thermal bonding with the second member is performed, the interface thermal resistance value is reduced. It is considered effective. That is, as shown in FIG. 3B, it is considered that the unevenness on the surface of the second member bites into a relatively soft amorphous carbon portion, which helps increase the contact area.

第四の理由は、炭素質膜中に形成されたグラファイト構造とアモルファス構造が熱抵抗の低減に役立っている点である。グラファイト層の面方向の熱伝導特性は極めて高い(高品質グラファイト結晶の熱伝導率の最高値は1950W/mKである)。炭素質膜中での面方向への熱拡散は熱伝導率の向上に寄与する。一方、グラファイト層を伝わってきた熱は、アモルファス構造部分では、面方向だけでなく膜厚方向にも伝わる。つまり、この様な構造を内部に含んだ炭素質膜では、熱は膜厚方向と膜の面方向にも伝わり、結果的に熱抵抗値を低減することになる。 The fourth reason is that the graphite structure and amorphous structure formed in the carbonaceous film are useful for reducing thermal resistance. The heat conductivity in the plane direction of the graphite layer is extremely high (the highest value of the heat conductivity of the high-quality graphite crystal is 1950 W / mK). Thermal diffusion in the plane direction in the carbonaceous film contributes to improvement of thermal conductivity. On the other hand, the heat transmitted through the graphite layer is transmitted not only in the surface direction but also in the film thickness direction in the amorphous structure portion. In other words, in the carbonaceous film including such a structure inside, heat is transmitted also in the film thickness direction and the film surface direction, and as a result, the thermal resistance value is reduced.

TIMとしての実用的特性は、その熱抵抗特性で評価する必要がある。先に述べた様にTIMの実用的な熱抵抗値はTIM材料自体のバルク熱抵抗と界面熱抵抗の和である。本願発明の炭素質膜TIMは、膜厚が薄いことからそのバルク熱抵抗が小さいことは明らかである。しかしながら、炭素質膜自体は固体であり流動性はないので、界面熱抵抗の大きさが問題となる。熱抵抗の大きさが膜の厚さによって異なり、その大きさが厚さに比例しない場合には、厚さによって界面熱抵抗が異なることを意味している。この場合には、界面熱抵抗の値を最も小さく出来る最適の厚さが存在する事になる。本発明の極めて薄いTIMでは、先に述べたようにTIMのバルク熱抵抗は極めて小さいので、界面熱抵抗の大きさを小さく出来る最適の厚さを決める事が重要となる。 Practical characteristics as a TIM need to be evaluated by their thermal resistance characteristics. As described above, the practical thermal resistance value of TIM is the sum of bulk thermal resistance and interfacial thermal resistance of TIM material itself. Since the carbonaceous film TIM of the present invention is thin, it is clear that its bulk thermal resistance is small. However, since the carbonaceous film itself is solid and has no fluidity, the magnitude of the interfacial thermal resistance becomes a problem. When the magnitude of the thermal resistance varies depending on the thickness of the film and the magnitude is not proportional to the thickness, this means that the interfacial thermal resistance varies depending on the thickness. In this case, there exists an optimum thickness that can minimize the value of the interfacial thermal resistance. In the extremely thin TIM of the present invention, as described above, the bulk thermal resistance of the TIM is extremely small. Therefore, it is important to determine an optimum thickness that can reduce the size of the interface thermal resistance.

また、本発明の炭素質膜TIMは500℃での連続使用でもその熱抵抗特性には変化がなく、極めて優れた耐熱特性を有している。そのため本発明の炭素質膜TIMは高性能高分子/無機フィラー複合体TIMの耐熱性の問題を解決することができる。 Further, the carbonaceous film TIM of the present invention does not change its thermal resistance characteristics even when continuously used at 500 ° C., and has extremely excellent heat resistance characteristics. Therefore, the carbonaceous film TIM of the present invention can solve the problem of heat resistance of the high performance polymer / inorganic filler composite TIM.

したがって、本発明の炭素質膜TIMは、従来のCPUやLEDなど高温となる発熱源から放熱フィンなどの放熱部材へ熱移動を行う場合に極めて有効なTIMとなる。実際に本発明の炭素質膜TIMを用いる場合には、例えば、表面に本発明の炭素質膜炭素質膜を形成した放熱フィンとCPUやLED素子などの高温発熱源とを直接接合すればよく、この時ビスやバネで機械的に接合させることは有効である。 Therefore, the carbonaceous film TIM of the present invention is a very effective TIM when performing heat transfer from a heat generating source such as a conventional CPU or LED to a heat radiating member such as a heat radiating fin. When the carbonaceous film TIM of the present invention is actually used, for example, the heat radiation fin having the carbonaceous film of the present invention formed on the surface thereof and a high temperature heat source such as a CPU or LED element may be directly joined. At this time, it is effective to mechanically join with a screw or a spring.

(流動性物質)
層間熱接続部材は、さらに常温以上で流動性を有する物質を含むことが好ましい。ここで、「流動性」とは、液状であり常温で容易に流れる状態、あるいは、ペースト状で粘性が高く容易には流れないが、圧力をかけることにより変形したり広がったりすることが可能な状態を意味する。
炭素質膜の表面をオイルなどの流動性物質でぬらすことにより、界面の熱抵抗をさらに低減することができる。
すなわち、本発明の熱接続方法として、本発明の炭素質膜と、少なくとも常温以上で流動性を有する物質の複合体とすることは界面抵抗を低減するための手法として好ましい。
(Fluid material)
The interlayer thermal connection member preferably further contains a substance having fluidity at room temperature or higher. Here, “fluidity” means a liquid state that easily flows at room temperature, or a paste that is highly viscous and does not flow easily, but can be deformed or spread by applying pressure. Means state.
By wetting the surface of the carbonaceous film with a fluid substance such as oil, the thermal resistance at the interface can be further reduced.
That is, as a thermal connection method of the present invention, a composite of the carbonaceous film of the present invention and a substance having fluidity at least at room temperature or more is preferable as a technique for reducing the interface resistance.

例えば、図3(b)に示した炭素質膜のアモルファス炭素部分と部材Bとの接合界面は、オイルなどの液体を用いることにより、その界面熱抵抗を低減することができる。オイル状物質を用いるとTIMの高耐熱性は多少犠牲になるが、高沸点の液体を選択することにより、従来の高分子/無機フィラー複合体TIMを凌駕する耐熱特性を実現することができる。 For example, the interface thermal resistance of the bonding interface between the amorphous carbon portion of the carbonaceous film shown in FIG. 3B and the member B can be reduced by using a liquid such as oil. When an oil-like substance is used, the high heat resistance of TIM is sacrificed to some extent, but by selecting a liquid having a high boiling point, heat resistance characteristics that surpass conventional polymer / inorganic filler composite TIM can be realized.

流動性物質としては特に制限はないが、油状物質(オイル)や流動性高分子を挙げることができる。油状物質としては、鉱油、植物性油、合成油、精油、食用油、動物性油、およびこれらの混合物が好ましい。また、流動性高分子としては、シリコーン樹脂が好ましい。シリコーンなどの流動性高分子と複合する場合には、液体状のモノマーを炭素質膜に含浸させておき、含浸の後にこれらを加熱、光、触媒などにより重合させることが好ましい。なお、「複合する」とは、例えば炭素質膜をオイルなどで濡らすことをいう。 The fluid substance is not particularly limited, and examples thereof include an oil substance (oil) and a fluid polymer. As the oily substance, mineral oil, vegetable oil, synthetic oil, essential oil, edible oil, animal oil, and mixtures thereof are preferable. Moreover, as the fluid polymer, a silicone resin is preferable. In the case of compounding with a fluid polymer such as silicone, it is preferable to impregnate the carbonaceous film with a liquid monomer and polymerize them with heat, light, catalyst, etc. after the impregnation. “Composite” means, for example, wetting a carbonaceous film with oil or the like.

本願発明のTIMの特徴の一つである耐熱性、高耐久特性を失わないためには、上記流動性物質は蒸気圧の低い材料であることが好ましく、沸点が200℃以上であることがより好ましい。油状物質としては、沸点が200℃以上であることが好ましく、300℃以上であることがより好ましい。シリコーン樹脂としては、20℃〜100℃の間で流動性を有するものが好ましい。 In order not to lose the heat resistance and high durability characteristics which are one of the features of the TIM of the present invention, the fluid substance is preferably a material having a low vapor pressure, and more preferably has a boiling point of 200 ° C. or higher. preferable. The oily substance preferably has a boiling point of 200 ° C. or higher, more preferably 300 ° C. or higher. As a silicone resin, what has fluidity | liquidity between 20 to 100 degreeC is preferable.

流動性物質の含有量は、炭素質膜の重量に対して1〜200重量%であることが好ましく、2〜100重量%であることがより好ましく、5〜50%であることが最も好ましい。1重量%未満であると添加する効果がほとんど得られない傾向がある。200重量%を超えると、流動性物質の熱抵抗のために、複合体の熱接続抵抗が大きくなる傾向がある。 The content of the fluid substance is preferably 1 to 200% by weight, more preferably 2 to 100% by weight, and most preferably 5 to 50% with respect to the weight of the carbonaceous film. If it is less than 1% by weight, the effect of adding tends to be hardly obtained. When it exceeds 200% by weight, the thermal connection resistance of the composite tends to increase due to the thermal resistance of the flowable substance.

流動性物質が部材に対し接着性を有する場合は、必ずしもTIMを機械的にビスやネジ、あるいはバネを用いてかしめたり、荷重を加えて熱接合を行う必要はない。 When the fluid substance has adhesiveness to the member, it is not always necessary to caulk the TIM mechanically using screws, screws, or springs, or to apply heat to perform thermal bonding.

(炭素質膜の製造方法)
炭素質膜形成方法は特に限定されず、化学気相成長法(Chemical Vapor Deposition:以下CVD法と略す)などが挙げられる。CVD法は、化学反応を利用して基板上に薄膜を形成する蒸着法の一つである。具体的には、石英などの反応管内に部材(基板)をセットし、真空排気の後に、加熱した基板上に目的とする薄膜の成分を含む原料ガスを供給し、気相化学反応により基板表面に膜を形成する。CVD法によれば、部材(基板)表面に近接した部分にグラファイト構造が発達し、部材から離れるに従って表面の触媒作用の効果がなくなるため、グラファイト構造の成長が妨げられ、アモルファス炭素に富む膜となるので、膜厚方向で不均一構造を有する本発明の炭素質膜TIMの形成には好ましい。
(Method for producing carbonaceous film)
The carbonaceous film forming method is not particularly limited, and examples thereof include chemical vapor deposition (hereinafter abbreviated as CVD). The CVD method is one of vapor deposition methods for forming a thin film on a substrate using a chemical reaction. Specifically, a member (substrate) is set in a reaction tube such as quartz, and after evacuation, a source gas containing a target thin film component is supplied onto the heated substrate, and the substrate surface is subjected to a gas phase chemical reaction. A film is formed. According to the CVD method, a graphite structure develops in a portion close to the surface of the member (substrate), and the catalytic effect of the surface disappears as it is separated from the member, so that the growth of the graphite structure is hindered, and a film rich in amorphous carbon Therefore, it is preferable for forming the carbonaceous film TIM of the present invention having a non-uniform structure in the film thickness direction.

炭素質膜を形成する部材(基板)としては、金属部材、無機部材などが好ましい。炭素質膜形成反応におけるラジカル発生反応での触媒作用に優れるという理由から、金属部材としては、銅、ニッケル、鉄、コバルトおよびアルミニウムが好ましく、銅、およびニッケルは特に好ましい。
また、無機部材として、各種のセラミック基板も好ましく用いられる。
As the member (substrate) for forming the carbonaceous film, a metal member, an inorganic member, or the like is preferable. As the metal member, copper, nickel, iron, cobalt, and aluminum are preferable, and copper and nickel are particularly preferable because of excellent catalytic action in the radical generation reaction in the carbonaceous film forming reaction.
Various ceramic substrates are also preferably used as the inorganic member.

炭素質膜の形成方法としては、CVD法以外に、物理的な方法である蒸着法やスパッタリング法が知られている。しかし、これらの方法では生じた炭素質膜は厚さ方向に均一な構造であり、不均一構造の炭素質膜を作製するのは難しい。また、これらの物理的手法で得られる炭素質膜をTIMとして用いても、その界面熱抵抗値が大きいために高性能TIMを得ることはできない。 As a method for forming a carbonaceous film, a physical vapor deposition method and a sputtering method are known in addition to the CVD method. However, the carbonaceous film produced by these methods has a uniform structure in the thickness direction, and it is difficult to produce a carbonaceous film having a non-uniform structure. Even if a carbonaceous film obtained by these physical methods is used as a TIM, a high-performance TIM cannot be obtained because of its large interfacial thermal resistance value.

CVD法には様々な方法が存在し、炭素質膜の不均一構造を形成できる手法であればCVD法の種類は問わないが、化学反応の制御に熱を用いる熱CVD法、および、プラズマを用いて原料ガスの原子や分子を励起するプラズマCVD法が好ましい。 Various methods exist for the CVD method, and any type of CVD method can be used as long as it can form a heterogeneous structure of a carbonaceous film. However, a thermal CVD method using heat to control a chemical reaction, and plasma are used. A plasma CVD method is preferred which uses and excites atoms and molecules of the source gas.

熱CVD法によって炭素質膜を作製する場合、加熱した金属部材や無機・セラミック部材上にメタンやエタン、あるいはベンゼンなどの炭素源をガス状にして供給する。部材上でこれらの炭素源が分解して炭素ラジカルが発生し、これらが互いに反応して炭素質膜が形成される。部材表面の温度は300℃〜1300℃が好ましく、400℃〜1300℃がより好ましく、500℃〜1300℃であることが特に好ましい。部材が銅である場合には800℃〜1100℃が最も好ましく、ニッケルである場合には900℃〜1200℃が最も好ましい。 When a carbonaceous film is produced by a thermal CVD method, a carbon source such as methane, ethane, or benzene is supplied in a gaseous state on a heated metal member or inorganic / ceramic member. These carbon sources are decomposed on the member to generate carbon radicals, which react with each other to form a carbonaceous film. The temperature of the member surface is preferably 300 ° C to 1300 ° C, more preferably 400 ° C to 1300 ° C, and particularly preferably 500 ° C to 1300 ° C. When the member is copper, 800 ° C. to 1100 ° C. is most preferable, and when it is nickel, 900 ° C. to 1200 ° C. is most preferable.

プラズマCVD法によって炭素質膜を形成する場合、直流(DC)・高周波(RF)・マイクロ波などを供給することで原料ガスをプラズマ状態とし、これによって炭素源となる原料ガスの原子や分子を励起して化学的に活性とする。プラズマCVDには励起方法によって幾つかの種類があるが、その励起方法によらず本発明の炭素質膜を作製する手法として好ましい。プラズマCVD法では、原料ガスがすでにプラズマ状態にあるので、部材表面で炭素源を分解させて炭素ラジカルを生成させる必要がなく、部材の加熱温度を熱CVDの場合よりも低くすることができる。プラズマCVDを用いる場合、部材表面の温度は300℃〜1300℃が好ましく、300℃〜1000℃がより好ましい。 When a carbonaceous film is formed by the plasma CVD method, the source gas is turned into a plasma state by supplying direct current (DC), high frequency (RF), microwave, etc., so that atoms and molecules of the source gas serving as a carbon source are changed. Excited and chemically active. Although there are several types of plasma CVD depending on the excitation method, it is preferable as a method for producing the carbonaceous film of the present invention regardless of the excitation method. In the plasma CVD method, since the source gas is already in a plasma state, it is not necessary to decompose the carbon source on the member surface to generate carbon radicals, and the heating temperature of the member can be made lower than in the case of thermal CVD. When plasma CVD is used, the temperature of the member surface is preferably 300 ° C to 1300 ° C, more preferably 300 ° C to 1000 ° C.

熱CVDやプラズマCVDにおいては、部材の炭素質膜形成反応における触媒作用を大きく発現させるために、前処理によって部材表面の有機不純物や金属酸化物を取り除くことが好ましい。例えば、表面クリーニングの方法として、加熱した部材表面に水素ガスを供給することが好ましい。水素ガスによるグリーニングは銅やニッケルなどの金属部材の場合には特に有効である。水素ガスで表面クリーニングする場合は、アルゴンなどの不活性ガスと共に加熱された部材表面に供給するか、あるいは真空中へ少量(50〜400sccm程度)の水素ガスを供給することで実施する。この様な前処理によって金属部材表面の金属酸化物や有機物を除去することができ、金属の炭素質膜形成反応における触媒作用をより強力に発現させ、炭素質膜中にグラファイト構造を発達させると共に、金属表面との強固な面接合を実現することができる。 In thermal CVD and plasma CVD, it is preferable to remove organic impurities and metal oxides on the surface of the member by pretreatment in order to greatly exert a catalytic action in the carbonaceous film forming reaction of the member. For example, as a surface cleaning method, it is preferable to supply hydrogen gas to the heated member surface. Greening with hydrogen gas is particularly effective for metal members such as copper and nickel. When cleaning the surface with hydrogen gas, it is carried out by supplying a heated member surface together with an inert gas such as argon, or by supplying a small amount (about 50 to 400 sccm) of hydrogen gas into a vacuum. Such pre-treatment can remove metal oxides and organic substances on the surface of the metal member, more strongly exerts the catalytic action in the carbon-carbon film formation reaction of the metal, and develops a graphite structure in the carbonaceous film. In addition, it is possible to realize strong surface bonding with the metal surface.

炭素質膜形成反応は、熱CVDでもプラズマCVDでも、反応室内部の空気を真空ポンプで減圧・除去した上で、真空中に炭素源となるガスを供給する方法で行われる。本発明の炭素質膜形成のための炭素源は特に限定されないが、メタン、エタン、プロパンなどの常温で気体である物質、あるいはベンゼンなどの常温では液体であるが加熱によってガス化される物質、などを選択することができる。炭素源として用いる物質は、ガス状になるものであれば、熱CVDの場合でもプラズマCVDの場合でも特に限定されない。 The carbonaceous film forming reaction is performed by a method of supplying a gas serving as a carbon source in vacuum after the pressure in the reaction chamber is reduced and removed by a vacuum pump in both thermal CVD and plasma CVD. The carbon source for forming the carbonaceous film of the present invention is not particularly limited, but a substance that is a gas at room temperature such as methane, ethane, propane, or a substance that is liquid at room temperature such as benzene but is gasified by heating, Etc. can be selected. The substance used as the carbon source is not particularly limited as long as it is in a gaseous state, whether it is thermal CVD or plasma CVD.

例えば熱CVDの場合、加熱された金属部材上にガス状の炭素源を供給すれば、金属部材上で炭素源が分解して炭素ラジカルが発生し、互いに反応して炭素質膜を形成する。この時、炭素質膜は部材表面の凹凸に沿ってその表面を完全に覆う様にして形成され、金属表面と強固に結合した炭素質皮膜となる。また、形成される炭素質膜は、金属表面に近い部分ではグラファイト構造の発達した膜となり、金属表面から離れるに従ってアモルファス炭素に富む膜となる。 For example, in the case of thermal CVD, if a gaseous carbon source is supplied onto a heated metal member, the carbon source is decomposed on the metal member to generate carbon radicals, which react with each other to form a carbonaceous film. At this time, the carbonaceous film is formed so as to completely cover the surface of the member along the unevenness of the member surface, and becomes a carbonaceous film firmly bonded to the metal surface. The formed carbonaceous film is a film having a graphite structure developed near the metal surface, and becomes a film rich in amorphous carbon as the distance from the metal surface increases.

グラファイト構造発達の程度は、部材の種類と加熱温度によって変わる。しかしCVD法によって形成される炭素質膜が、基板と強固に接合した膜として形成され、その構造が膜厚方向に不均一構造であることには変わりない。CVD法によって作製される炭素質薄膜の厚さは、先に述べた理由から、10nm以上5μm以下であることが好ましく、10nm以上2μm以下がより好ましい。 The degree of graphite structure development varies with the type of member and the heating temperature. However, the carbonaceous film formed by the CVD method is formed as a film firmly bonded to the substrate, and the structure is still non-uniform in the film thickness direction. The thickness of the carbon thin film produced by the CVD method is preferably 10 nm or more and 5 μm or less, and more preferably 10 nm or more and 2 μm or less for the reason described above.

(層間熱接続方法)
本発明の層間熱接続方法は、上記層間熱接続部材を、熱接続する部材間に設置する工程を含む。
(Interlayer thermal connection method)
The interlayer thermal connection method of the present invention includes a step of installing the interlayer thermal connection member between members to be thermally connected.

本発明の炭素質膜TIMのみで層間を接続することは、耐熱性に優れた熱接続を実現するためには好ましい。炭素質膜TIMのみで層間を接続する方法として、単に機械的な圧力で固定しても良く、機械的にビスやネジ、あるいはバネを用いてかしめることは有効であり好ましい。
この様な接続法を用いた場合、本願発明の炭素質膜TIMでは500℃の高温でもその熱抵抗特性には変化がなく、極めて優れた耐熱特性を有していることが明らかになった。これは炭素質膜が本来有している優れた耐熱性に基づくものである。
It is preferable to connect the layers only with the carbonaceous film TIM of the present invention in order to realize thermal connection with excellent heat resistance. As a method of connecting the layers only with the carbonaceous film TIM, it may be simply fixed by mechanical pressure, and it is effective and preferable to use a screw, a screw, or a spring mechanically.
When such a connection method was used, the carbonaceous film TIM of the present invention did not change even at a high temperature of 500 ° C., and it was revealed that the carbonaceous film TIM has extremely excellent heat resistance characteristics. This is based on the excellent heat resistance inherent to the carbonaceous film.

以下、本願発明を実施例によって詳細に説明するが、本願発明はこれらの実施例の記載に何ら制約されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated in detail by an Example, this invention is not restrict | limited at all by description of these Examples.

<界面熱抵抗値の測定原理>
TIMとしての実用的な熱抵抗値は、基本的にJIS A 1412−1、又は、ASTM D5470に基づき、図5(a)に示した装置と原理によって測定することができる。2個の銅ブロック(大きさ:10mm×10mm×42.5mm)の間に試料を挟んで一定荷重(特に記載がなければ3.0Kgf/cm)を印加し、銅ブロックの下面に取り付けたヒーターで、各熱電対によって測定された温度が一定の値になるまで加熱する。熱電対は、それぞれの銅ブロック5箇所(それぞれ試料界面から2.5mm、12.5mm、22.5mm、32.5mm、及び、42.5mm離れた位置の中心)の温度を測定する。測定結果は図5(b)に示すようなグラフとして得られ、試料を挟んだ部分には温度差(Δt)が発生する。この温度差はTIMの熱抵抗によって生じる温度差である。また、先に述べたようにTIMの熱抵抗値はTIMのバルク熱抵抗値と銅との界面熱抵抗値の和である。
<Measurement principle of interfacial thermal resistance value>
A practical thermal resistance value as a TIM can be measured by the apparatus and principle shown in FIG. 5A based on JIS A 1412-1 or ASTM D5470. A sample was sandwiched between two copper blocks (size: 10 mm × 10 mm × 42.5 mm), a constant load (3.0 kgf / cm 2 unless otherwise specified) was applied, and the sample was attached to the lower surface of the copper block. Heat with a heater until the temperature measured by each thermocouple reaches a certain value. The thermocouple measures the temperature of each of the five copper blocks (centers at positions 2.5 mm, 12.5 mm, 22.5 mm, 32.5 mm, and 42.5 mm away from the sample interface, respectively). The measurement result is obtained as a graph as shown in FIG. 5B, and a temperature difference (Δt) occurs in a portion sandwiching the sample. This temperature difference is a temperature difference caused by the thermal resistance of the TIM. As described above, the thermal resistance value of the TIM is the sum of the bulk thermal resistance value of the TIM and the interface thermal resistance value of copper.

上述の方法によって測定された熱抵抗値から界面熱抵抗値とバルク熱抵抗値を決定するための原理手法を図6に示す。まず、厚さの異なるTIM試料の熱抵抗値を測定する。図6において、熱抵抗(Rトータル)は界面熱抵抗(R界面)とバルク熱抵抗(Rバルク)の和であり、試料厚さがゼロの場合の熱抵抗値が界面熱抵抗値である。熱抵抗(Rトータル)は、TIMの面積と、加熱熱量から換算する。 FIG. 6 shows a principle method for determining the interfacial thermal resistance value and the bulk thermal resistance value from the thermal resistance value measured by the above method. First, the thermal resistance values of TIM samples having different thicknesses are measured. In FIG. 6, the thermal resistance (R total ) is the sum of the interface thermal resistance (R interface ) and the bulk thermal resistance (R bulk ), and the thermal resistance value when the sample thickness is zero is the interface thermal resistance value. Thermal resistance (R total ) is converted from the area of TIM and the amount of heat.

本実施例では厚さの異なる炭素質膜を形成した場合、それぞれの直線は平行移動した特性になり、厚さゼロに外挿して求めた界面熱抵抗は厚さに比例しなかった。この事は本発明の炭素質膜TIMの特性がほとんど界面熱抵抗で決定される事を示している。 In this example, when carbonaceous films having different thicknesses were formed, each straight line had a parallel movement characteristic, and the interfacial thermal resistance obtained by extrapolating to zero thickness was not proportional to the thickness. This indicates that the characteristics of the carbonaceous film TIM of the present invention are almost determined by the interfacial thermal resistance.

本実施例における炭素質膜の厚さは10nm〜2μmの範囲内であり、従来の高分子/無機フィラー複合体TIM(0.5mm〜5mm)の厚さの1/250〜1/500000と極めて薄く、しかも炭素質膜の熱伝導率は高分子/無機フィラー複合体とほぼ同じであるために、そのバルク熱抵抗は事実上無視できるほど小さいと考えてよい。従って、銅基板厚さがゼロの場合の熱抵抗値が、銅/炭素質膜の界面熱抵抗値であるとみなすことができる。
このことは、厚さの異なる炭素質膜において測定される熱抵抗値が炭素質膜の厚さには比例しないことからも明らかである。実際の測定結果は下記実施例で述べる。
The thickness of the carbonaceous film in this example is in the range of 10 nm to 2 μm, which is 1/250 to 1 / 500,000 of the thickness of the conventional polymer / inorganic filler composite TIM (0.5 mm to 5 mm). Since the thermal conductivity of the thin carbonaceous film is almost the same as that of the polymer / inorganic filler composite, it may be considered that its bulk thermal resistance is practically negligible. Therefore, the thermal resistance value when the copper substrate thickness is zero can be regarded as the interfacial thermal resistance value of the copper / carbonaceous film.
This is also clear from the fact that the thermal resistance values measured in carbonaceous films having different thicknesses are not proportional to the thickness of the carbonaceous film. Actual measurement results are described in the following examples.

したがって、本発明の炭素質膜TIMにおいてはその界面熱抵抗値を見積もることが重要になる。本実施例において我々は、図5の原理に基づき後述する新しい手法を用いて界面熱抵抗値を決定した。 Therefore, it is important to estimate the interface thermal resistance value in the carbonaceous film TIM of the present invention. In this example, we determined the interfacial thermal resistance value using a new method described later based on the principle of FIG.

(実施例1〜5)
厚さの異なる4種類(0.3mm、0.5mm、1mm、2mm)の銅基板(10mm×10mm、表面粗度Rz=1.6μm)を準備し、熱CVD法でそれぞれの銅基板上に、厚さの異なる5種類の炭素質膜(22nm、87nm、210nm、430nm、1.1μm)を形成した。炭素質膜の形成方法は以下の通りである。
(Examples 1-5)
Four types (0.3 mm, 0.5 mm, 1 mm, 2 mm) of copper substrates (10 mm × 10 mm, surface roughness Rz = 1.6 μm) with different thicknesses are prepared, and each of the copper substrates is formed by thermal CVD. Five types of carbonaceous films (22 nm, 87 nm, 210 nm, 430 nm, 1.1 μm) having different thicknesses were formed. The method for forming the carbonaceous film is as follows.

上記4種類の銅基板を真空炉中に設置し、まずアルゴン1000sccm中で1000℃まで炉を昇温し、次に水素(300sccm)とアルゴン1000sccm中で10分間処理し、銅表面の酸化物や有機物をクリーニングした。続いて、水素(300sccm)、アルゴン1000sccm、及び、メタン250sccmを下記の所定時間流して銅基板上に炭素質膜を形成した。反応後、炉のヒーターを切り、温度を急激に低下させた。反応時間(メタンガスを含むガスを流した時間)1分間で厚さ22nm、反応時間3分間で厚さ約87nm、反応時間10分で厚さ約210nmの炭素質膜をそれぞれ形成した。また、メタンガス濃度を1000sccmに上げ、反応時間2分間で厚さ430nm、10分間で厚さ1.1μnmの炭素質膜をそれぞれ形成した。 The above four types of copper substrates are placed in a vacuum furnace, first the furnace is heated to 1000 ° C. in 1000 sccm of argon, and then treated for 10 minutes in hydrogen (300 sccm) and 1000 sccm of argon. Organics were cleaned. Subsequently, hydrogen (300 sccm), argon 1000 sccm, and methane 250 sccm were flowed for the following predetermined time to form a carbonaceous film on the copper substrate. After the reaction, the furnace heater was turned off and the temperature was rapidly reduced. A carbonaceous film having a thickness of 22 nm in a reaction time (a time in which a gas containing methane gas was flowed) for 1 minute, a thickness of about 87 nm in a reaction time of 3 minutes, and a thickness of about 210 nm in a reaction time of 10 minutes was formed. Further, the methane gas concentration was increased to 1000 sccm, and a carbonaceous film having a thickness of 430 nm was formed for 2 minutes and a thickness of 1.1 μm was formed for 10 minutes.

こうして作製した試料を図5(a)に示した装置を用いて、図7(a)に示すように測定ブロック間に狭持し、熱抵抗特性を測定した。それぞれの試料について、銅基板の厚さをx軸、熱抵抗(Rトータル)をy軸にとり、図6に示すようにプロットした。炭素質膜の厚さを変えたそれぞれのプロットは直線上に位置しており、各直線はY軸(Rトータル)方向に平行移動した形で得られた。このことからも本発明の炭素質膜の熱抵抗値が界面熱抵抗で決まっていることが判った。
銅基板の厚さをゼロに外挿した値の1/2を界面熱抵抗値として表1に示す。外挿値の1/2を界面熱抵抗値とする理由は、銅基板の全面に炭素質膜が形成されており、銅/炭素質膜の界面が各銅基板の上下の面に存在するためである。界面熱抵抗値は0.07〜0.25K・cm/Wの範囲であった。先に述べた様に本発明の炭素質膜は極めて薄く、バルク熱抵抗値はほとんど無視できるので、銅基板の厚さがゼロの場合の熱抵抗値は、銅/炭素質膜の界面熱抵抗値とみなすことができる。また、当該界面熱抵抗値は、炭素質膜の熱抵抗値とみなすことができる。また、測定された界面熱抵抗値は形成された炭素質膜の厚さに比例せず、炭素質膜が430nmの時にその熱抵抗は最小値(0.07K・cm/W)であった。
The sample produced in this manner was sandwiched between measurement blocks as shown in FIG. 7A using the apparatus shown in FIG. 5A, and the thermal resistance characteristics were measured. For each sample, the copper substrate thickness was plotted on the x-axis and the thermal resistance (R total ) on the y-axis, and plotted as shown in FIG. Each plot in which the thickness of the carbonaceous film was changed was located on a straight line, and each straight line was obtained by parallel translation in the Y-axis (R total ) direction. This also indicates that the thermal resistance value of the carbonaceous film of the present invention is determined by the interfacial thermal resistance.
Table 1 shows ½ of the value obtained by extrapolating the thickness of the copper substrate to zero as the interfacial thermal resistance value. The reason why 1/2 of the extrapolated value is the interfacial thermal resistance value is that the carbonaceous film is formed on the entire surface of the copper substrate, and the copper / carbonaceous film interface exists on the upper and lower surfaces of each copper substrate. It is. The interface thermal resistance value was in the range of 0.07 to 0.25 K · cm 2 / W. As described above, since the carbonaceous film of the present invention is extremely thin and the bulk thermal resistance value is almost negligible, the thermal resistance value when the thickness of the copper substrate is zero is the interface thermal resistance of the copper / carbonaceous film. Can be regarded as a value. The interfacial thermal resistance value can be regarded as the thermal resistance value of the carbonaceous film. The measured interfacial thermal resistance value was not proportional to the thickness of the formed carbonaceous film, and the thermal resistance was the minimum value (0.07 K · cm 2 / W) when the carbonaceous film was 430 nm. .

図8に実施例1で作製した厚さ22nmの炭素質膜の断面透過型電子顕微鏡写真を示す。炭素質膜は凹凸のある銅基板表面に完全に密着して形成されており、銅との界面に近い部分(A)ではグラファイト構造の層構造が観察されるのに対して、界面から離れるにつれて層構造は観察されなくなり、界面から離れた部分(B)では炭素質膜はアモルファス構造に変化していることがわかった。すなわち、本発明の炭素質膜は膜の厚さ方向に不均一構造となっている。 FIG. 8 shows a cross-sectional transmission electron micrograph of a carbonaceous film having a thickness of 22 nm prepared in Example 1. The carbonaceous film is formed in close contact with the uneven copper substrate surface, and in the portion (A) close to the interface with copper, a layered structure of the graphite structure is observed, but as the distance from the interface increases. The layer structure was not observed, and it was found that the carbonaceous film changed to an amorphous structure in the part (B) away from the interface. That is, the carbonaceous film of the present invention has a non-uniform structure in the thickness direction of the film.

(比較例1)
実施例1と同じ方法で、厚さの異なる4種類の銅基板のみ(炭素質膜を形成しない)の熱抵抗値を測定し、厚さゼロに外挿して銅/銅の界面熱抵抗値を測定した。界面熱抵抗値は10.6K・cm/Wであった。
(Comparative Example 1)
In the same manner as in Example 1, the thermal resistance values of only four types of copper substrates having different thicknesses (no carbonaceous film formed) were measured, and extrapolated to zero thickness to obtain the copper / copper interface thermal resistance value. It was measured. The interfacial thermal resistance value was 10.6 K · cm 2 / W.

(比較例2)
実施例1と同様の方法で、4種類の銅基板上にそれぞれ厚さ2nmの炭素質膜を形成し、その熱抵抗値を測定した。界面熱抵抗値は7.6K・cm/Wであった。
(Comparative Example 2)
A carbonaceous film having a thickness of 2 nm was formed on each of four types of copper substrates in the same manner as in Example 1, and the thermal resistance values were measured. The interfacial thermal resistance value was 7.6 K · cm 2 / W.

(比較例3)
市販の高分子/無機フィラー複合体TIMをそのまま図5の装置に挟んで、熱抵抗特性を測定した。熱抵抗値は1.1K・cm/Wであった。
(Comparative Example 3)
A commercially available polymer / inorganic filler composite TIM was sandwiched between the devices shown in FIG. 5 and the thermal resistance characteristics were measured. The thermal resistance value was 1.1 K · cm 2 / W.

Figure 0006313547
Figure 0006313547

以上、実施例1〜5と比較例1〜3の実験結果から明らかであるように、本発明の炭素質膜TIMは、従来の高分子/無機フィラー複合体TIMの熱抵抗値よりもはるかに小さい熱抵抗値を示し、極めて優れた特性を有することが分かった。 As described above, as is clear from the experimental results of Examples 1 to 5 and Comparative Examples 1 to 3, the carbonaceous film TIM of the present invention is far more than the thermal resistance value of the conventional polymer / inorganic filler composite TIM. It was found to have a small thermal resistance value and extremely excellent characteristics.

(実施例6〜9)
表面粗度が異なる3種類の銅基板(部材)を準備した。
(1)福田電子社製圧延銅箔RCF(厚さ300μm、表面粗度Rz=3.0μm)
(2)表面研磨銅ブロック(厚さ1.0mm、表面粗度Rz=1.6μm)
(3)日本製箔株式会社製圧延銅箔(厚さ35μm、表面粗度Rz=0.4μm)
これらの銅部材上に厚さの異なる4種類の炭素質被膜を形成し、その熱抵抗値を求めた。本実施例では銅基板の厚さを変えていないが、実施例1〜5と同じ銅部材を用いたので、厚さ−熱抵抗直線は実施例1〜5で得られた直線と同じ傾きであると仮定して、厚さゼロに外挿し、界面熱抵抗値を求めた。特に炭素質膜が薄い場合、基板の粗度が小さくなるに伴い界面熱抵抗値が低下した。これは、炭素質膜が薄くても熱抵抗が小さくできることを示している。
(Examples 6 to 9)
Three types of copper substrates (members) with different surface roughness were prepared.
(1) Rolled copper foil RCF manufactured by Fukuda Electronics Co., Ltd. (thickness 300 μm, surface roughness Rz = 3.0 μm)
(2) Surface polished copper block (thickness 1.0 mm, surface roughness Rz = 1.6 μm)
(3) Rolled copper foil manufactured by Nippon Foil Co., Ltd. (thickness 35 μm, surface roughness Rz = 0.4 μm)
Four types of carbonaceous films having different thicknesses were formed on these copper members, and the thermal resistance values were obtained. In this example, the thickness of the copper substrate was not changed, but since the same copper member as in Examples 1 to 5 was used, the thickness-heat resistance straight line had the same inclination as the straight line obtained in Examples 1 to 5. Assuming there was an extrapolation to zero thickness, the interfacial thermal resistance value was determined. In particular, when the carbonaceous film was thin, the interfacial thermal resistance value decreased as the roughness of the substrate decreased. This indicates that the thermal resistance can be reduced even if the carbonaceous film is thin.

Figure 0006313547
Figure 0006313547

(実施例10)
実施例3で用いたものと同じ銅基板(厚さ1mm)上に炭素質膜(厚さ210nm)を形成した試料2個を積層し、その熱抵抗値を測定した。図7(b)に測定方法を示す。得られた厚さ−熱抵抗直線から、基板厚さゼロの場合の熱抵抗値を算出し、実施例3で求めた界面熱抵抗値の2倍の値を差し引いて、界面熱抵抗値を算出したところ、0.03K・cm/Wであった。この値は、銅/炭素質膜/炭素質膜/銅の界面熱抵抗値であり、極めて小さいことが分かった。この結果から、炭素質膜を2つの熱接合部材の表面に形成しておいて熱接合を行うことは極めて有効であることが分かった。
なお、図7(b)において、1は測定装置の試料狭持用ブロック、2は炭素質膜、3は銅基板、4は銅/炭素質膜/炭素質膜/銅で形成された界面、5は熱電対である。
(Example 10)
Two samples in which a carbonaceous film (thickness 210 nm) was formed on the same copper substrate (thickness 1 mm) as used in Example 3 were laminated, and the thermal resistance value was measured. FIG. 7B shows the measurement method. From the obtained thickness-thermal resistance line, the thermal resistance value when the substrate thickness is zero is calculated, and the interface thermal resistance value is calculated by subtracting twice the interface thermal resistance value obtained in Example 3. As a result, it was 0.03 K · cm 2 / W. This value is an interfacial thermal resistance value of copper / carbonaceous film / carbonaceous film / copper and was found to be extremely small. From this result, it was found that it is extremely effective to perform the thermal bonding by forming the carbonaceous film on the surfaces of the two thermal bonding members.
In FIG. 7B, 1 is a sample holding block of the measuring apparatus, 2 is a carbonaceous film, 3 is a copper substrate, 4 is an interface formed of copper / carbonaceous film / carbonaceous film / copper, 5 is a thermocouple.

(実施例11〜14)
ニッケル、鉄、アルミニウム、アルミナの4種類の基板(部材)を用意し、実施例1と同様の方法で炭素質膜を作製した。形成された炭素質膜の熱抵抗値を表3に示す。ここで観察された熱抵抗値は必ずしも最小界面熱抵抗値を示すものではないが、ニッケル、鉄、アルミナなどの基板でもTIMとして本発明の炭素質膜が有効であることを示している。
(Examples 11-14)
Four types of substrates (members) of nickel, iron, aluminum, and alumina were prepared, and a carbonaceous film was produced by the same method as in Example 1. Table 3 shows the thermal resistance value of the formed carbonaceous film. Although the observed thermal resistance value does not necessarily indicate the minimum interface thermal resistance value, it indicates that the carbonaceous film of the present invention is effective as a TIM even on a substrate such as nickel, iron, or alumina.

Figure 0006313547
Figure 0006313547

(実施例15〜18)
厚さ1mmの銅基板上に厚さ490nmの炭素質膜が形成された試料を作製し、市販のキャノーラ油(発煙点204℃)に浸漬し、その後吸油性の紙の上に置きキャノーラ油を吸収させて、それぞれ吸収量の異なる炭素質膜を作製した。吸収量は重量測定により見積もった。20重量%、50重量%、及び、200重量%のキャノーラ油が添加された炭素質膜を作製した。これらを用いてその熱抵抗を実施例1と同様の方法で測定した。実験結果を表4に示す。オイル含浸のない炭素質膜の界面熱抵抗に比べて、キャノーラ油が含浸された場合には効果的にその熱抵抗を低下させることができ、特に荷重圧力が小さい場合にその効果は顕著であった。これは炭素質膜中に添加されたキャノーラ油により界面の実質的接触面積が増加し、界面熱抵抗を小さくしたためであると考えられる。特に、図3(b)に示した炭素質膜のアモルファス炭素部分と部材Bとの界面熱抵抗がキャノーラ油によって低減できたものと考えられる。
(Examples 15 to 18)
A sample in which a carbonaceous film having a thickness of 490 nm is formed on a 1 mm-thick copper substrate is immersed in a commercially available canola oil (smoke point 204 ° C.), and then placed on oil-absorbing paper to put the canola oil. Carbon films having different absorption amounts were produced by absorption. The amount absorbed was estimated by weighing. Carbonaceous films to which 20% by weight, 50% by weight, and 200% by weight of canola oil were added were produced. Using these, the thermal resistance was measured in the same manner as in Example 1. The experimental results are shown in Table 4. Compared to the interfacial thermal resistance of the carbonaceous film without oil impregnation, the thermal resistance can be effectively reduced when impregnated with canola oil, and the effect is particularly remarkable when the load pressure is small. It was. This is presumably because the canola oil added to the carbonaceous film increased the substantial contact area at the interface and reduced the interface thermal resistance. In particular, it is considered that the interface thermal resistance between the amorphous carbon portion of the carbonaceous film shown in FIG. 3B and the member B can be reduced by the canola oil.

Figure 0006313547
Figure 0006313547

(実施例19)
本発明の炭素質膜TIMの実用的な特性評価を以下の方法で行った。まず、銅ブロック(5cm×5cm×3cm、ヒートシンクを仮定)上に実施例1と同じ方法で厚さ500nmの炭素質膜を形成した。次に、10mm×10mm×1.8mmのセラミック製のモデルヒーター(発熱体としてのCPUを仮定)を上記銅ブロックの中央に置き、圧縮加重3.0kgf/cmを印加した。モデルヒーターに2.0Wの電力を供給し、10分後のモデルヒーターの温度と銅ブロックの温度をそれぞれに埋め込まれた熱電対を用いて測定した。モデルヒーター−銅ブロックの層間の熱抵抗値R(K・cm/W)を、ヒーターの温度をT、銅ブロックの温度をTとして、以下の式で計算した。
R=(T−T)/2
測定の結果、得られた熱抵抗値は0.32K・cm/Wであった。また、この値は48時間経過後も全く変わらなかった。
(Example 19)
Practical characteristics evaluation of the carbonaceous film TIM of the present invention was performed by the following method. First, a carbonaceous film having a thickness of 500 nm was formed on a copper block (5 cm × 5 cm × 3 cm, assuming a heat sink) by the same method as in Example 1. Next, a 10 mm × 10 mm × 1.8 mm ceramic model heater (assuming a CPU as a heating element) was placed in the center of the copper block, and a compression load of 3.0 kgf / cm 2 was applied. 2.0 W was supplied to the model heater, and the temperature of the model heater and the temperature of the copper block after 10 minutes were measured using thermocouples embedded in each. The thermal resistance value R (K · cm 2 / W) between the model heater and the copper block was calculated by the following formula, assuming that the heater temperature was T 1 and the copper block temperature was T 2 .
R = (T 1 −T 2 ) / 2
As a result of the measurement, the obtained thermal resistance value was 0.32 K · cm 2 / W. Also, this value did not change at all after 48 hours.

(比較例4)
実施例19と同じ方法で、炭素質膜を形成しない銅ブロックの熱抵抗値を測定した。測定の結果、得られた熱抵抗値は11.5K・cm/Wであった。
(Comparative Example 4)
In the same manner as in Example 19, the thermal resistance value of the copper block not forming the carbonaceous film was measured. As a result of the measurement, the obtained thermal resistance value was 11.5 K · cm 2 / W.

(比較例5)
比較例4と同じ方法で、銅ブロックとモデルヒーター間に市販の高分子/無機フィラー複合体TIMを挟み、熱抵抗値を測定した。測定の結果、得られた熱抵抗値は1.1K・cm/Wであった。また、この値は48時間経過後には1.3K・cm/Wになった。
(Comparative Example 5)
In the same manner as in Comparative Example 4, a commercially available polymer / inorganic filler composite TIM was sandwiched between the copper block and the model heater, and the thermal resistance value was measured. As a result of the measurement, the obtained thermal resistance value was 1.1 K · cm 2 / W. Also, this value became 1.3 K · cm 2 / W after 48 hours.

以上の実施例で示した様に、金属、あるいは無機基板上に熱CVDで形成された炭素質膜は、極めて優れたTIMとしての特性を有し、その熱抵抗値は、例えば実施例1〜5では0.07〜0.25K・cm/Wであった。一般に使用される高分子/無機フィラー複合体TIMの熱抵抗値が0.4〜3K・cm/W程度であることを考慮すれば、本発明の炭素質膜TIMが極めてすぐれた特性を有していることが分かる。また、実施例19、比較例4及び比較例5の結果から、本発明の炭素質膜が実用的に極めてすぐれた特性を有することが分かった。 As shown in the above examples, a carbonaceous film formed by thermal CVD on a metal or inorganic substrate has extremely excellent TIM characteristics, and the thermal resistance value thereof is 5 was 0.07 to 0.25 K · cm 2 / W. Considering that the heat resistance value of the generally used polymer / inorganic filler composite TIM is about 0.4 to 3 K · cm 2 / W, the carbonaceous film TIM of the present invention has extremely excellent characteristics. You can see that Further, from the results of Example 19, Comparative Example 4 and Comparative Example 5, it was found that the carbonaceous film of the present invention has practically excellent characteristics.

Claims (13)

膜厚方向にグラファイト構造及びアモルファス構造を含む炭素質膜と、金属部材又は無機部材を有する層間熱接続部材であって、
金属部材又は無機部材と炭素質膜に含まれるグラファイト構造が接合している層間熱接続部材であり、炭素質膜の厚さが10nm〜5μmである層間熱接続部材
A carbonaceous film containing a graphite structure and an amorphous structure in the film thickness direction, and an interlayer thermal connection member having a metal member or an inorganic member,
An interlayer thermal connection member , which is an interlayer thermal connection member in which a graphite structure included in a metal member or an inorganic member and a carbonaceous film is joined , and the thickness of the carbonaceous film is 10 nm to 5 μm .
膜厚方向にグラファイト構造及びアモルファス構造を含む炭素質膜と、金属部材又は無機部材を有し、金属部材又は無機部材と炭素質膜に含まれるグラファイト構造が接合している層間熱接続部材であって、
無機部材がセラミックである層間熱接続部材。
An interlayer thermal connection member having a carbonaceous film including a graphite structure and an amorphous structure in the film thickness direction, a metal member or an inorganic member, and the graphite structure included in the carbon member is bonded to the metal member or the inorganic member. And
Inorganic member Ru ceramic der layer thermal connecting member.
膜厚方向にグラファイト構造及びアモルファス構造を含む炭素質膜と、金属部材又は無機部材を有し、金属部材又は無機部材と炭素質膜に含まれるグラファイト構造が接合している層間熱接続部材であって、
炭素質膜が化学気相成長法によって形成されていることを特徴とする層間熱接続部材。
An interlayer thermal connection member having a carbonaceous film including a graphite structure and an amorphous structure in the film thickness direction, a metal member or an inorganic member, and the graphite structure included in the carbon member is bonded to the metal member or the inorganic member. And
Layer thermal connecting member you characterized in that the carbonaceous film is formed by chemical vapor deposition.
炭素質膜の厚さが10nm〜1100nmであることを特徴とする請求項1〜3のいずれか1項に記載の層間熱接続部材。 The interlayer heat connecting member according to any one of claims 1 to 3, wherein the carbonaceous film has a thickness of 10 nm to 1100 nm. 金属部材が銅、ニッケル、鉄、コバルト及びアルミニウムからなる群から選択される少なくとも1種類である請求項1〜のいずれか1項に記載の層間熱接続部材。 The interlayer thermal connection member according to any one of claims 1 to 4 , wherein the metal member is at least one selected from the group consisting of copper, nickel, iron, cobalt, and aluminum. 金属部材が、銅またはニッケルである請求項に記載の層間熱接続部材。 The interlayer thermal connection member according to claim 5 , wherein the metal member is copper or nickel. 金属部材の表面粗度Rzが2μm以下である請求項1〜のいずれか1項に記載の層間熱接続部材。 Interfacial thermal connecting member according to any one of claims 1 to 6 surface roughness Rz of the metal member is 2μm or less. 炭素質膜と金属部材または無機部材が隙間なく接合されていることを特徴とする請求項1〜7のいずれか1項に記載の層間熱接続部材。 The interlayer heat connecting member according to any one of claims 1 to 7, wherein the carbonaceous film and the metal member or the inorganic member are joined without a gap. さらに、常温以上で流動性を有する流動性物質を含む請求項1〜のいずれか1項に記載の層間熱接続部材。 Furthermore, the interlayer thermal connection member of any one of Claims 1-8 containing the fluid substance which has fluidity | liquidity above normal temperature. 前記流動性物質の沸点が200℃以上であることを特徴とする請求項に記載の層間熱接続部材。 The interlayer heat connection member according to claim 9 , wherein the fluid substance has a boiling point of 200 ° C. or more. 膜厚方向にグラファイト構造及びアモルファス構造を含む炭素質膜と、金属部材又は無機部材を有する層間熱接続部材であって、金属部材又は無機部材と炭素質膜に含まれるグラファイト構造が接合している層間熱接続部材の製造方法であって、
炭素質膜を化学気相成長法によって形成する工程を含む層間熱接続部材の製造方法。
Interlayer thermal connection member having a carbonaceous film including a graphite structure and an amorphous structure in the film thickness direction and a metal member or an inorganic member, wherein the graphite structure contained in the carbonaceous film is joined to the metal member or the inorganic member. A method of manufacturing an interlayer thermal connection member,
Method for producing a process of including a layer between the heat connecting member formed by chemical vapor deposition of carbon membranes.
化学気相成長法において、400〜1300℃に加熱された部材上で炭素質膜を形成することを特徴とする請求項11に記載の層間熱接続部材の製造方法。 The method for producing an interlayer thermal connection member according to claim 11 , wherein in the chemical vapor deposition method, a carbonaceous film is formed on a member heated to 400 to 1300 ° C. 請求項1〜10のいずれか1項に記載の層間熱接続部材を、熱接続する部材間に設置する工程を含む層間熱接続方法。 Claim 1 of the interlayer heat connection member according to any one of 10, interlayer heat connection method comprising the step of installing between the members to be thermally connected.
JP2013124664A 2013-06-13 2013-06-13 Interlayer thermal connection member, method for manufacturing interlayer thermal connection member, and interlayer thermal connection method Active JP6313547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013124664A JP6313547B2 (en) 2013-06-13 2013-06-13 Interlayer thermal connection member, method for manufacturing interlayer thermal connection member, and interlayer thermal connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013124664A JP6313547B2 (en) 2013-06-13 2013-06-13 Interlayer thermal connection member, method for manufacturing interlayer thermal connection member, and interlayer thermal connection method

Publications (2)

Publication Number Publication Date
JP2015002199A JP2015002199A (en) 2015-01-05
JP6313547B2 true JP6313547B2 (en) 2018-04-18

Family

ID=52296559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013124664A Active JP6313547B2 (en) 2013-06-13 2013-06-13 Interlayer thermal connection member, method for manufacturing interlayer thermal connection member, and interlayer thermal connection method

Country Status (1)

Country Link
JP (1) JP6313547B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010626B2 (en) * 2017-08-15 2022-01-26 株式会社カネカ Interlayer heat connection member and interlayer heat connection method
JP2021132072A (en) * 2020-02-18 2021-09-09 三菱マテリアル株式会社 Composite heat-transfer member and manufacturing method of the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146793A (en) * 1984-12-21 1986-07-04 Toshiba Corp Substrate
JPH01181550A (en) * 1988-01-12 1989-07-19 Toppan Printing Co Ltd Multi-layer electronic circuit
JP2003008263A (en) * 2001-06-27 2003-01-10 Sony Corp Heat conduction member and electronic device having heat conduction member
JP3431914B2 (en) * 2002-05-10 2003-07-28 株式会社半導体エネルギー研究所 Method for manufacturing carbon or carbon-based film
JP4380226B2 (en) * 2003-06-06 2009-12-09 パナソニック株式会社 Thermally conductive sheet and heat dissipation structure using the same
US8720537B2 (en) * 2009-07-13 2014-05-13 Panasonic Corporation Graphite sheet and heat transfer structure using same
JP5707810B2 (en) * 2010-09-22 2015-04-30 サンケン電気株式会社 Manufacturing method of semiconductor module
CA2800269A1 (en) * 2011-02-09 2012-08-16 Incubation Alliance, Inc. Method for producing multilayer graphene-coated substrate

Also Published As

Publication number Publication date
JP2015002199A (en) 2015-01-05

Similar Documents

Publication Publication Date Title
Yan et al. Soft and self‐adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling
Chung Performance of thermal interface materials
WO2018143189A1 (en) Thermal interface material, interface thermal coupling method, and production method for thermal interface material
JP6043188B2 (en) Interlayer thermal connection member and interlayer thermal connection method
CN110168719B (en) Heat transfer member and heat dissipation structure comprising same
JP6023474B2 (en) Thermally conductive insulating sheet, metal base substrate and circuit board, and manufacturing method thereof
WO2002081187A2 (en) Anisotropic thermal solution
JP2008078380A (en) Heat dissipation sheet
TWI345933B (en) Methods and devices for cooling printed circuit boards
JPH11340673A (en) Electromagnetic wave shielding sheet of high thermal conductivity and its manufacture
JP6108389B2 (en) Interlayer thermal connection member and interlayer thermal connection method
CN103906416A (en) Method for manufacturing artificial graphite radiating film with catalytic graphitization technology
JP6313547B2 (en) Interlayer thermal connection member, method for manufacturing interlayer thermal connection member, and interlayer thermal connection method
JP2010077013A (en) Carbon-metal composite and circuit member or heat radiation member using the same
JP2009260169A (en) Heat sink and heat radiating apparatus
TWM540741U (en) Multi-layer composite heat conduction structure
JP7022706B2 (en) Layered thermal bonding member, interlayer thermal bonding method, manufacturing method of interlayer thermal bonding member
JP2020053613A (en) Composite substrate
JP7137713B2 (en) Surface layer porous graphite sheet
JP5278737B2 (en) Manufacturing method of heat dissipation material
JP6800034B2 (en) Interlayer bonding part, interlayer thermal bonding member, interlayer thermal bonding method, and method for manufacturing interlayer thermal bonding member
JP2010118502A (en) Heat radiation structure
JP2009266983A (en) Heat dissipation structure and manufacturing method therefor, and heat radiator using heat-dissipating structure
TWM488831U (en) Heat-dissipating sheet structure and heat-dissipating case
JP2009260168A (en) Heat-dissipating structure, heat radiating device, and manufacturing method for the heat-dissipating structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180131

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180323

R150 Certificate of patent or registration of utility model

Ref document number: 6313547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250