JP6800034B2 - Interlayer bonding part, interlayer thermal bonding member, interlayer thermal bonding method, and method for manufacturing interlayer thermal bonding member - Google Patents

Interlayer bonding part, interlayer thermal bonding member, interlayer thermal bonding method, and method for manufacturing interlayer thermal bonding member Download PDF

Info

Publication number
JP6800034B2
JP6800034B2 JP2017017695A JP2017017695A JP6800034B2 JP 6800034 B2 JP6800034 B2 JP 6800034B2 JP 2017017695 A JP2017017695 A JP 2017017695A JP 2017017695 A JP2017017695 A JP 2017017695A JP 6800034 B2 JP6800034 B2 JP 6800034B2
Authority
JP
Japan
Prior art keywords
interlayer
film
thermal bonding
graphite
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017017695A
Other languages
Japanese (ja)
Other versions
JP2018123034A (en
Inventor
村上 睦明
睦明 村上
篤 多々見
篤 多々見
正満 立花
正満 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2017017695A priority Critical patent/JP6800034B2/en
Publication of JP2018123034A publication Critical patent/JP2018123034A/en
Application granted granted Critical
Publication of JP6800034B2 publication Critical patent/JP6800034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、発熱源からの熱を速やかに冷却・放熱部に伝達するための層間接合部、層間熱接合部材、層間熱接合方法、及び層間熱接合部材の製造方法に関する。 The present invention relates to an interlayer bonding portion, an interlayer thermal bonding member, an interlayer thermal bonding method, and a method for manufacturing an interlayer thermal bonding member for rapidly transferring heat from a heat generation source to a cooling / heat dissipation portion.

近年、電子機器やLED照明などにおける熱の問題が解決するべき大きな課題となっている。放熱・冷却には熱伝導、熱放射、熱の対流を利用する方法があり、発熱源の熱を効果的に放熱・冷却するには、これらの放熱・冷却方式を組み合わせ、発熱部の熱を回路基板や冷却フィン、ヒートシンクなどの放熱・冷却部に効率よく伝達する必要があり、そのためには発熱部と放熱・冷却部間の熱抵抗の低減が重要となる。 In recent years, the problem of heat in electronic devices and LED lighting has become a major issue to be solved. There are methods that use heat conduction, heat radiation, and heat convection for heat dissipation and cooling. To effectively dissipate and cool the heat of the heat generation source, combine these heat dissipation and cooling methods to dissipate the heat of the heat generating part. It is necessary to efficiently transmit heat to the heat dissipation / cooling parts such as the circuit board, cooling fins, and heat sink, and for that purpose, it is important to reduce the heat resistance between the heat generation part and the heat dissipation / cooling part.

金属やセラミックなどの硬い部材同士を単に接合しても、部材表面の凹凸のために層間の接合は点接触となり、結果として層間には熱伝導率の低い空気層(熱伝導率:0.02W/mK)が存在するため、大きな熱抵抗が生じる。層間熱接合部材(Thermal Interface Material、以下TIMと略す)はこのような層間の熱抵抗を下げるために用いられ、金属同士や金属とセラミックなどの部材間に挟持して使用される。この場合TIM自体の熱伝導率が高い事と、各部材とTIMとの間の界面での熱抵抗が小さいことが重要となる。界面熱抵抗を小さくするためには、界面の接触面積を増大させ面接触に近づけることが必要である。そのために従来、面接触とするための柔軟性高分子材料などの流動性を有する物質と、TIM自体を高熱伝導性にするための高熱伝導性無機フィラーを混合したものが用いられて来た(以下、複合型TIMと略す)。 Even if hard members such as metal and ceramic are simply joined together, the bonding between the layers becomes point contact due to the unevenness of the member surface, and as a result, an air layer with low thermal conductivity (thermal conductivity: 0.02 W) / MK) is present, which causes a large thermal resistance. An interlayer thermal bonding member (Thermal Interface Material, hereinafter abbreviated as TIM) is used to reduce the thermal resistance between such interlayers, and is used by sandwiching the metal with each other or between a member such as a metal and a ceramic. In this case, it is important that the thermal conductivity of the TIM itself is high and that the thermal resistance at the interface between each member and the TIM is small. In order to reduce the interfacial thermal resistance, it is necessary to increase the contact area of the interface and bring it closer to surface contact. For this purpose, conventionally, a mixture of a fluid substance such as a flexible polymer material for surface contact and a highly thermally conductive inorganic filler for making the TIM itself highly thermally conductive has been used ( Hereinafter, it is abbreviated as composite TIM).

高熱伝導性フィラーとしては、例えば、溶融シリカ(1〜2W/mK)、酸化アルミニウム(20〜35W/mK)六方晶窒化ホウ素(30〜60W/mK)、酸化マグネシウム(45〜60W/mK)、窒化アルミニウム(150〜250W/mK)、グラファイト(後述)等がある。また、マトリックスである柔軟性物質としてはアクリル樹脂、エポキシ樹脂、あるいはシリコン樹脂などの柔軟性高分子が用いられることが多い。複合型TIMによって界面は面接触となり、層間から空気層が除かれるために層間の熱抵抗を低減する事ができる。しかしながら、この様な複合型TIMでは高熱伝導性実現のために高熱伝導性無機フィラーの添加量を増加させると流動性が損なわれ、界面の熱抵抗が増加するという問題がある。そのため、複合型TIMでは、TIM自体の熱伝導度としては、通常品で1〜2W/mK、高熱伝導品でも5W/mK程度の特性しか実現されていないのが現状である。また、複合型TIMの一般的な厚さは0.5〜5mm程度である。この様な厚さが必要な理由は熱接合される部材の表面凹凸にTIMが入り込む必要があるからである。 Examples of the high thermal conductive filler include fused silica (1 to 2 W / mK), aluminum oxide (20 to 35 W / mK) hexagonal boron nitride (30 to 60 W / mK), magnesium oxide (45 to 60 W / mK), and the like. There are aluminum nitride (150 to 250 W / mK), graphite (described later) and the like. Further, as the flexible substance as the matrix, a flexible polymer such as an acrylic resin, an epoxy resin, or a silicone resin is often used. The interface is in surface contact with the composite TIM, and the air layer is removed from the layers, so that the thermal resistance between the layers can be reduced. However, in such a composite type TIM, if the amount of the high thermal conductive inorganic filler added is increased in order to realize high thermal conductivity, the fluidity is impaired and the thermal resistance at the interface is increased. Therefore, in the composite type TIM, the thermal conductivity of the TIM itself is only about 1 to 2 W / mK for the normal product and about 5 W / mK for the high thermal conductive product. The general thickness of the composite TIM is about 0.5 to 5 mm. The reason why such a thickness is necessary is that the TIM needs to enter the surface unevenness of the member to be heat-bonded.

TIMの実用的な特性である熱抵抗値は、TIM自体の熱抵抗と界面での熱抵抗の和であり、通常0.4〜4.0K・cm/W程度である。なお、この熱抵抗値は接合面に加圧される圧力の大きさによって変わるので、その熱抵抗値を表示するには圧力の大きさを併記する必要がある。 The thermal resistance value, which is a practical characteristic of TIM, is the sum of the thermal resistance of TIM itself and the thermal resistance at the interface, and is usually about 0.4 to 4.0 K · cm 2 / W. Since this thermal resistance value changes depending on the magnitude of the pressure applied to the joint surface, it is necessary to indicate the magnitude of the pressure together in order to display the thermal resistance value.

代表的な複合型TIMを図1に示す。図1(a)は柔軟性高分子に添加されたフィラーが粒子状である場合、(b)は添加されたフィラーが燐片状である場合である。(c)は燐片状フィラーを膜面に対して垂直方向に配向(以下、縦配向と呼ぶ)させ、熱抵抗特性の向上を目指したものである。 A typical composite TIM is shown in FIG. FIG. 1A shows a case where the filler added to the flexible polymer is in the form of particles, and FIG. 1B shows a case where the filler added to the flexible polymer is in the form of flakes. (C) aims to improve the thermal resistance characteristics by orienting the flaky filler in the direction perpendicular to the film surface (hereinafter referred to as vertical orientation).

図2は、図1に示した各種複合体TIMを実際に部材間に狭持した場合の接合状態を示す。図2(a)は柔軟性物質(熱伝導性フィラーを含まない)のみで熱接合した場合である。この様な場合でも表面凹凸に柔軟性物質が入り込む事によって熱抵抗を下げる事が出来、特に部材の表面が凹凸の少ない鏡面に近い場合には、加圧によってTIMの厚さを非常に薄く出来るために小さな熱抵抗が実現できる。しかしながら、この様な柔軟性物質のみの系では部分的な熱の集中によって柔軟性物質が分解したり拡散したりする事が知られており(ブリーディングと呼ばれる)、TIMとして使用するのは難しいと言う課題がある。(b)は粒状フィラーを含む複合型TIMを用いて熱接合した場合である。また、(c)は燐片粒状フィラーを含む複合型TIMを用いて熱接合した場合である。(d)は縦配向した燐片状フィラーを含む複合型TIMを用いて熱接合した場合である。これらのフィラーは熱伝導性を向上させる目的以外に熱の集中を防ぎ、図2(a)の場合に起こるブリーディング現象を回避すると言う目的も有する。 FIG. 2 shows a joining state when the various composite TIMs shown in FIG. 1 are actually sandwiched between the members. FIG. 2A shows a case where heat bonding is performed using only a flexible substance (not containing a heat conductive filler). Even in such a case, the thermal resistance can be reduced by allowing the flexible substance to enter the surface irregularities, and especially when the surface of the member is close to a mirror surface with few irregularities, the thickness of the TIM can be made very thin by pressurization. Therefore, a small thermal resistance can be realized. However, it is known that such a flexible substance-only system decomposes or diffuses the flexible substance due to partial heat concentration (called bleeding), and it is difficult to use it as a TIM. There is a problem to say. (B) is a case of thermal bonding using a composite TIM containing a granular filler. Further, (c) is a case of thermal bonding using a composite type TIM containing a furnishing granular filler. (D) is a case of thermal bonding using a composite type TIM containing a vertically oriented scaly filler. In addition to the purpose of improving thermal conductivity, these fillers also have the purpose of preventing heat concentration and avoiding the bleeding phenomenon that occurs in the case of FIG. 2A.

グラファイトはその優れた耐熱性、耐薬品性、高熱伝導性、高電気伝導性のためエネルギー、宇宙、医療など幅広い分野で利用され、工業材料として重要な位置を占めている。そこで、本発明者らは厚さが10nm〜15μm、膜面方向の熱伝導率が500W/mk以上で、膜面方向と厚さ方向の熱伝導率の異方性が100以上であるグラファイトTIMを開発した。このグラファイトTIMは、例えば1.0kgf/cmの圧力下で0.98K・cm/W(厚さ13μm)〜0.33K・cm/W(厚さ105nm)の優れた熱抵抗特性を示している。(特許文献1) Graphite is used in a wide range of fields such as energy, space, and medicine due to its excellent heat resistance, chemical resistance, high thermal conductivity, and high electrical conductivity, and occupies an important position as an industrial material. Therefore, the present inventors have a thickness of 10 nm to 15 μm, a thermal conductivity in the film surface direction of 500 W / mk or more, and an anisotropy of the thermal conductivity in the film surface direction and the thickness direction of 100 or more. Was developed. This graphite TIM has excellent thermal resistance characteristics of 0.98 K · cm 2 / W (thickness 13 μm) to 0.33 K · cm 2 / W (thickness 105 nm) under a pressure of, for example, 1.0 kgf / cm 2. Shown. (Patent Document 1)

特開2014−133669号公報Japanese Unexamined Patent Publication No. 2014-133669

しかしながら、この様なグラファイトTIMは部材表面がほぼ鏡面と考えられる場合には優れた特性を示すものの、部材表面に凹凸が存在する様な実用的な部材である場合にはその特性が低下する。
そこで、本発明は従来の複合型TIMと比較して高性能(低熱抵抗)で熱接合される部材の凹凸にも対応できる層間熱接合部材、層間熱接合方法を提供すること、及び層間熱接合部材の製造方法を提供することを目的としている。
However, such a graphite TIM exhibits excellent characteristics when the surface of the member is considered to be substantially a mirror surface, but the characteristics are deteriorated when the member is a practical member having irregularities on the surface of the member.
Therefore, the present invention provides an interlayer thermal bonding member, an interlayer thermal bonding method, and an interlayer thermal bonding that can deal with unevenness of a member that is thermally bonded with high performance (low thermal resistance) as compared with a conventional composite TIM. It is an object of the present invention to provide a method for manufacturing a member.

本発明者らは先願発明(特許文献1)の改良をすすめ、図3(a)に示す様な従来の複合型TIMとは全く異なる構造のTIMを開発して本発明をなすに至った。図3(a)中、3aは柔軟性物質、3bはグラファイト膜である。本発明のTIMは特別な物性を持ったグラファイト膜とその表面を被覆する流動性を有する物質からなっている。本発明のTIMを凹凸のある部材間に狭持した場合の接合状況を図3(b)に示した。部材表面の凸部はグラファイト膜の内部にくい込み熱的接点を形成している。一方、部材の凹部には流動性物質が入り込み凹部を満たしている。これにより凹部の空気層は除かれる事になる。後述する様に、本発明に用いられるグラファイト膜は膜面方向に極めて高い熱伝導特性を有しているので、一つの接合点から流れ込んだ熱は直ちに拡散し対向する多くの他の接点から熱を流す事が出来る。すなわち本発明のTIMでは多点での接合が実現できるために優れた熱抵抗特性を実現できると考えられる。多点接合が実現できればその熱接合は面接合と同じ効果を持つ事ができる。この様な熱伝導の機構は先の図2(b)、(c)、(d)に示した従来のTIMの熱伝導機構とは全く異なるものである。 The present inventors have promoted the improvement of the prior invention (Patent Document 1), and have developed a TIM having a structure completely different from that of the conventional composite TIM as shown in FIG. 3A, and have completed the present invention. .. In FIG. 3A, 3a is a flexible substance and 3b is a graphite film. The TIM of the present invention comprises a graphite film having special physical properties and a fluid substance that coats the surface thereof. FIG. 3 (b) shows a joining state when the TIM of the present invention is sandwiched between uneven members. The convex portion on the surface of the member forms an internal recessed thermal contact of the graphite film. On the other hand, a fluid substance enters the recess of the member and fills the recess. As a result, the air layer in the recess is removed. As will be described later, since the graphite film used in the present invention has extremely high thermal conductivity in the film surface direction, the heat flowing from one junction immediately diffuses and heat is generated from many other contacts facing each other. Can be shed. That is, it is considered that the TIM of the present invention can realize excellent thermal resistance characteristics because it can be joined at multiple points. If multi-point bonding can be realized, the thermal bonding can have the same effect as surface bonding. Such a heat conduction mechanism is completely different from the heat conduction mechanism of the conventional TIM shown in FIGS. 2 (b), 2 (c) and 2 (d) above.

また、本発明のグラファイト膜TIMは従来の複合型TIM以上に優れた耐久性を有している事が分かった。これはグラファイト膜が面方向に高い熱伝導性を有しており、さらにTIM全体に均一に存在しているので、従来の複合型TIMに用いられるフィラーよりも熱の集中によるブリーディングを防止する非常に優れた効果を持つ事によっている。さらには、本発明のグラファイト膜TIMは熱抵抗の圧力依存性が極めて小さいと言う、従来全く知られていなかった新たな事実も明らかになった。例えば本発明により、0.1MPaと0.5MPaの大きさで加圧した(荷重を加えた)場合の熱抵抗値の圧力依存性(R0.1P/R0.5P)を2.0以下にする事が出来る。熱抵抗値の圧力依存性が極めて小さく、小さな加圧力で低い熱抵抗特性を示すという事は、機械的な強い締め付けを必要としない事を意味し、さらに機械的な締め付けが緩んだとしても、その熱抵抗がほとんど影響されないと言う実用上極めて有用な特性となる。 Further, it was found that the graphite film TIM of the present invention has superior durability to that of the conventional composite TIM. This is because the graphite film has high thermal conductivity in the plane direction and is evenly present throughout the TIM, which prevents bleeding due to heat concentration compared to the filler used in conventional composite TIMs. By having an excellent effect on. Furthermore, a new fact that has not been known at all in the past has been clarified that the graphite film TIM of the present invention has extremely small pressure dependence of thermal resistance. For example, according to the present invention, the pressure dependence (R 0.1P / R 0.5P ) of the thermal resistance value when pressurized (loaded) at the magnitudes of 0.1 MPa and 0.5 MPa is 2.0 or less. Can be done. The fact that the pressure dependence of the thermal resistance value is extremely small and that it exhibits low thermal resistance characteristics with a small pressing force means that strong mechanical tightening is not required, and even if the mechanical tightening is loosened, It is a practically extremely useful property that its thermal resistance is hardly affected.

すなわち、本発明の層間熱接合部は、2つの部材の層間で熱を伝達する層間熱接合部であって、
該層間接合部は、該2つの部材の間に挟持された層間熱接合部材を含み、
該層間熱接合部材はグラファイト膜と該グラファイト表面を被覆する流動性物質を含み、
該流動性物質層は、流動性物質の層であり、
グラファイト膜は厚さが15μm超かつ50μm以下であり、グラファイト膜の密度は1.40g/cm3〜2.26g/cm3であり、グラファイト膜の面方向の熱伝導率が500W/mK〜2000W/mKであり、グラファイト膜の重量(B)と流動性物質の重量(A)の比(A/B)が0.01〜4.0であり、さらに、
該2つの部材の少なくとも一方の部材の表面は、凹部及び凸部を有し、算術平均粗さRa値が0.1μm〜10μmであり、かつ、十点平均粗さRz値が1.0μm〜30μmであり、またさらに、
該凸部は前記グラファイト膜の内部にくい込み熱的接点を形成し、かつ、該凹部には前記流動性物質が入り込み該凹部を満たしている、層間熱接合である。
このように、複合型TIMと比較してはるかに薄い事からそのバルクの熱抵抗は小さく、さらに流動性性のある柔軟性物質層を設ける事で凹凸を有する部材間の界面熱接合を極めて小さく出来る。

That is, the interlayer heat bonded portion of the present invention is a interlayer heat bonded portion for transferring heat between the layers of the two members,
The interlayer bonding portion includes an interlayer thermal bonding member sandwiched between the two members.
The interlayer thermal bonding member contains a graphite film and a fluid material that coats the graphite surface.
The fluid material layer is a layer of fluid material and
The thickness of the graphite film is more than 15 μm and 50 μm or less, the density of the graphite film is 1.40 g / cm 3 to 2.26 g / cm 3 , and the thermal conductivity of the graphite film in the plane direction is 500 W / mK to 2000 W. / a mK, the ratio of the weight of the flowable material and the weight (B) of the graphite film (a) (a / B) is Ri der 0.01 to 4.0, further,
The surface of at least one of the two members has a concave portion and a convex portion, the arithmetic average roughness Ra value is 0.1 μm to 10 μm, and the ten-point average roughness Rz value is 1.0 μm to It is 30 μm, and further
The convex portion is an interlayer thermal joint portion in which the inside of the graphite film is formed into a thermal contact, and the concave portion is filled with the fluid substance .
In this way, since it is much thinner than the composite TIM, the thermal resistance of the bulk is small, and by providing a flexible material layer with fluidity, the interfacial thermal bonding between the members having irregularities is extremely small. You can.

本発明は上記グラファイト膜と流動性物質から形成され、流動性物質は部材との界面熱抵抗低減のために用いられる。本発明で言う流動性物質は常温で固体状の柔軟性物質と液体状の流動性物質に分けられる。常温で固体状である柔軟性物質とは加熱、常温での加圧、あるいは加圧と加熱の両方によって変形して流動性を示すものを言う。このような物質には柔らかい高分子材料以外に、ゲル状、グリース状、ワックス状の物質が含まれる。本発明で常温とは20℃の事を言い、また、柔軟性物質が常温で固体である物質の場合には、常温で無荷重の場合に示すその物質の厚さが、規定された温度・圧力で荷重を加えた場合に変形し、変形後の厚さが変形前の厚さの1/2以下になる事を言う。常温で固体である物質において、この様な定義による流動性が発現するための好ましい圧力は0.5MPa以下であり、流動性が発現する好ましい温度は上記圧力下で100℃以下である。 The present invention is formed from the above-mentioned graphite film and a fluid substance, and the fluid substance is used for reducing the interfacial thermal resistance with a member. The fluid substance referred to in the present invention is divided into a flexible substance that is solid at room temperature and a fluid substance that is liquid. A flexible substance that is solid at room temperature refers to a substance that is deformed by heating, pressurization at room temperature, or both pressurization and heating to exhibit fluidity. Such substances include gel-like, grease-like, and wax-like substances in addition to soft polymer materials. In the present invention, the room temperature means 20 ° C., and when the flexible substance is a substance that is solid at room temperature, the thickness of the substance shown when there is no load at room temperature is the specified temperature. It is deformed when a load is applied by pressure, and the thickness after deformation is 1/2 or less of the thickness before deformation. In a substance that is solid at room temperature, the preferable pressure for developing fluidity according to such a definition is 0.5 MPa or less, and the preferable temperature for developing fluidity is 100 ° C. or less under the above pressure.

本発明のTIMは熱接合を形成する時の圧力、あるいは圧力と加熱によって熱接合されるべき部材の凹凸の中に入り込む。これによって部在間に存在する空気層が除かれ、優れた熱抵抗特性が実現する。最適な流動性物質層の厚さは狭持されるべき部材の凹凸の大きさによって変わり、凹凸が大きい部材では必要な流動性層は厚くなり、凹凸の少ない部材では必要な流動性層は薄くなる。したがって、本発明において、優れた熱抵抗特性の実現には表面に形成された流動性層の量(厚さ)が重要である。検討の結果、本発明に用いられる流動性物質はその種類による影響は比較的少なく量による影響が大きい事が分かった。本発明において好ましい(流動性物質/グラファイト膜)の重量比は、0.01〜4.0の範囲である。本発明ではグラファイト面の両面に流動性層を設ける事が好ましいので、グラファイト膜の片面には最大でグラファイトの2倍の重量の流動性層が形成される事になる。低熱抵抗特性実現のために(流動性物質/グラファイト)の重量比は0.02〜3.0の範囲である事はより好ましく、0.04〜2.0の範囲である事はさらに好ましく、0.05〜1.0の範囲である事は最も好ましい。 The TIM of the present invention penetrates into the pressure at the time of forming a thermal bond, or the unevenness of a member to be thermally bonded by pressure and heating. As a result, the air layer existing in the space is removed, and excellent thermal resistance characteristics are realized. The optimum thickness of the fluid material layer depends on the size of the unevenness of the member to be held, the required fluid layer is thicker for the member with large unevenness, and the required fluid layer is thin for the member with less unevenness. Become. Therefore, in the present invention, the amount (thickness) of the fluid layer formed on the surface is important for realizing excellent thermal resistance characteristics. As a result of the examination, it was found that the fluid substance used in the present invention has a relatively small effect depending on the type and a large effect on the amount. The weight ratio of preferred (fluid material / graphite film) in the present invention is in the range of 0.01 to 4.0. In the present invention, it is preferable to provide fluid layers on both sides of the graphite surface, so that a fluid layer having a maximum weight twice that of graphite is formed on one surface of the graphite film. In order to realize the low thermal resistance characteristic, the weight ratio of (fluid substance / graphite) is more preferably in the range of 0.02 to 3.0, further preferably in the range of 0.04 to 2.0. Most preferably, it is in the range of 0.05 to 1.0.

流動性層を形成する素材として、油などの常温で流動性を示す液状物質を使用する事も可能である。本発明において流動性物質が常温で液体である場合、沸点が150℃以上の液体物質を言う。通常の複合型TIMではこの様な液状物質をマトリックスとして使用する事は出来ない。それは、通常の複合型TIMの場合には高分子層で膜を形成する必要があるためである。しかしながら、本発明のTIMの場合には芯となる膜状のグラファイト層がすでに存在しているためこの様な液状物質の使用も可能となる。 As a material for forming a fluid layer, it is also possible to use a liquid substance such as oil that exhibits fluidity at room temperature. In the present invention, when the fluid substance is liquid at room temperature, it means a liquid substance having a boiling point of 150 ° C. or higher. Such a liquid substance cannot be used as a matrix in a normal composite TIM. This is because, in the case of a normal composite TIM, it is necessary to form a film with a polymer layer. However, in the case of the TIM of the present invention, since a film-like graphite layer as a core already exists, such a liquid substance can be used.

部材の表面凹凸がさらに大きくなった時には、本発明グラファイト膜TIMの厚さ(15μm超〜50μmの範囲)では流動性層を設けたとしても対応出来ないことがある。その様な場合に、本発明の層間熱接合部材を複数枚積層して用いる事は有効である。図3(c)にはその一例として3枚積層した時のTIMを示した。この時グラファイト膜間の流動性層は最表面の層よりも薄くてもよい。それは最表面の流動性層は部材の凹凸に対応する必要があるが、グラファイト膜間の流動性層は単に接合のために用いられ、その様な役割(基板の凹凸に対応する)は必要ないからである。この様に、積層する事で広範囲の凹凸を有する部材間の熱接合が可能となるが、積層枚数が多くなり過ぎるとTIM自体の熱抵抗値が大きくなり過ぎると言う問題が発生する。本発明のTIMの場合に積層によって優れた熱抵抗特性(0.2MPaで加熱した場合の熱抵抗値が2.0℃cm/W以下)が実現できるTIMの厚さは400μm以下である。400μm以上であるとバルク熱抵抗が大きくなりすぎ良好な熱抵抗特性を実現できない。400μmという厚さは本発明にとっては最大の厚さとなるが、この様な厚さであっても従来の複合型TIMと比較すると十分に薄いTIMであることは言うまでもない。 When the surface unevenness of the member becomes larger, the thickness of the graphite film TIM of the present invention (in the range of more than 15 μm to 50 μm) may not be sufficient even if the fluidized layer is provided. In such a case, it is effective to stack and use a plurality of interlayer thermal bonding members of the present invention. FIG. 3C shows a TIM when three sheets are stacked as an example. At this time, the fluid layer between the graphite films may be thinner than the outermost layer. It is that the outermost fluid layer needs to correspond to the unevenness of the member, but the fluid layer between the graphite films is only used for bonding and does not need such a role (corresponding to the unevenness of the substrate). Because. In this way, by laminating, it is possible to heat-bond between members having a wide range of irregularities, but if the number of laminated members becomes too large, the thermal resistance value of the TIM itself becomes too large. In the case of the TIM of the present invention, the thickness of the TIM capable of achieving excellent thermal resistance characteristics (heat resistance value when heated at 0.2 MPa is 2.0 ° C. cm 2 / W or less) is 400 μm or less. If it is 400 μm or more, the bulk thermal resistance becomes too large and good thermal resistance characteristics cannot be realized. The thickness of 400 μm is the maximum thickness for the present invention, but it goes without saying that even such a thickness is sufficiently thin as compared with the conventional composite TIM.

TIMの熱抵抗特性は先に述べた様に部材の凹凸によっても影響される。本発明のグラファイトTIMはその厚さが400μm以下であるので、部材のすべての大きさの凹凸に対応できる訳ではない。0.2MPaでの加圧時において2.0℃cm/W以下の特性を実現できる範囲は、部材の表面凹凸が算術平均粗さRa表示で10μm以下、十点平均粗さRz表示で30μm以下の場合である。 The thermal resistance characteristics of TIM are also affected by the unevenness of the member as described above. Since the graphite TIM of the present invention has a thickness of 400 μm or less, it cannot cope with unevenness of all sizes of members. The range in which the characteristics of 2.0 ° C. cm 2 / W or less can be realized when pressurized at 0.2 MPa is that the surface unevenness of the member is 10 μm or less in the arithmetic average roughness Ra display and 30 μm in the ten-point average roughness Rz display. In the following cases.

この様な凹凸を越えるような凹凸に対しては、本発明のグラファイトTIMを用いても2.0℃cm/W以下の特性を実現する事は難しい。一方、部材表面の凹凸がRa表示で0.2μm以下、Rz表示で1.0μm以下である様な場合には必ずしも本発明の様な流動性層を必要とせず、流動性層が無くても2.0℃cm/W以下の特性を実現できる場合がある。すなわち本発明は、少なくとも一方の部材の表面の粗度を表すRa値が0.1μm〜10μm、Rz値が1.0μm〜30μm以下である2つの部材間の熱接合を行なうのに好ましいTIMであって、本発明のTIMを用いる事により熱抵抗値を2.0℃cm/W以下(ただし、0.2MPaで加圧した場合)とする事が出来る。 It is difficult to realize the characteristics of 2.0 ° C. cm 2 / W or less even by using the graphite TIM of the present invention for the unevenness exceeding such unevenness. On the other hand, when the unevenness of the member surface is 0.2 μm or less in Ra display and 1.0 μm or less in Rz display, the fluidity layer as in the present invention is not always required, and even if there is no fluidity layer. In some cases, characteristics of 2.0 ° C. cm 2 / W or less can be realized. That is, the present invention is a TIM preferable for performing thermal bonding between two members having a Ra value of 0.1 μm to 10 μm and an Rz value of 1.0 μm to 30 μm or less, which represents the roughness of the surface of at least one member. Therefore, by using the TIM of the present invention, the thermal resistance value can be set to 2.0 ° C. cm 2 / W or less (however, when pressurized at 0.2 MPa).

本発明のグラファイトTIMを作製する方法は特に限定されないが、グラファイトフィルムの部分は高分子膜を炭素化、黒鉛化する工程によって製造されることが好ましい。また、前記炭素化、黒鉛化の少なくとも1つの処理工程で、高分子膜、炭素化膜、またはグラファイト膜を複数の点で保持し、加圧しつつ熱処理しても良い。さらに、前記炭素化、黒鉛化の少なくとも1つの処理工程で、高分子膜、炭素化膜、又はグラファイト膜の少なくとも片方の面とスペーサーを積層し、加圧しつつ熱処理しても良い。スペーサーについては必要な凹凸と耐久性、耐熱性をもつものであれば特に限定されないが、スペーサーが炭素繊維またはグラファイト繊維等の炭素材料からなるフェルトである事は、好ましいスペーサーの一例である。 The method for producing the graphite TIM of the present invention is not particularly limited, but the graphite film portion is preferably produced by a step of carbonizing or graphitizing the polymer film. Further, in at least one treatment step of carbonization and graphitization, the polymer film, carbonized film, or graphite film may be held at a plurality of points and heat-treated while being pressurized. Further, in at least one of the carbonization and graphitization treatment steps, a spacer may be laminated on at least one surface of the polymer film, the carbonized film, or the graphite film, and heat treatment may be performed while applying pressure. The spacer is not particularly limited as long as it has the necessary unevenness, durability, and heat resistance, but it is an example of a preferable spacer that the spacer is felt made of a carbon material such as carbon fiber or graphite fiber.

前記、高分子原料の種類については特に限定されないが、縮合系芳香族高分子を含むものである事が好ましい。さらに、前記縮合系芳香族高分子が、30μm〜100μmの範囲の厚さの芳香族ポリイミド膜であり、ポリイミド膜を2400℃以上の温度で熱処理する事が好ましい。 The type of the polymer raw material is not particularly limited, but it is preferable that the polymer raw material contains a condensed aromatic polymer. Further, the condensed aromatic polymer is an aromatic polyimide film having a thickness in the range of 30 μm to 100 μm, and it is preferable to heat the polyimide film at a temperature of 2400 ° C. or higher.

すなわち上記課題を解決し得た本発明は以下の通りである。
(1)2つの部材の層間で熱を伝達する層間熱接合部材であって、層間熱接合部材はグラファイト膜とグラファイト膜の表面を被覆する流動性物質を含み、グラファイト膜は厚さが15μm超かつ50μm以下であり、グラファイト膜の密度は1.40g/cm〜2.26g/cmであり、グラファイト膜の面方向の熱伝導率が500W/mK〜2000W/mKであり、グラファイト膜の重量(B)と流動性物質の重量(A)の比(A/B)が0.01〜4.0である層間熱接合部材。
(2)流動性物質は20℃で固体であり、20℃環境下で0.5MPaの荷重を加えて変形し、変形後の厚さが変形前の厚さの1/2以下になる物質である(1)に記載の層間熱接合部材。
(3)流動性物質が20℃で液体であり、流動性物質の沸点が150℃以上である(1)に記載の層間熱接合部材。
(4)流動性物質がアクリル系高分子、エポキシ系樹脂またはシリコン系高分子から選択された少なくとも1種類を含む(1)または(2)に記載の層間熱接合部材。
(5)(1)〜(4)のいずれか1つに記載の層間熱接合部材を複数枚積層した層間熱接合部材であって、総厚さが400μm以下である層間熱接合部材。
(6)0.2MPaの荷重を加えたときの熱抵抗値が2.0℃cm/W以下であり、0.1MPaの荷重を加えたときの熱抵抗値(R0.1P)と0.5MPaの荷重を加えたときの熱抵抗値(R0.5P)の比(R0.1P/R0.5P)が1.0〜2.0である(1)〜(5)のいずれか1つに記載の層間熱接合部材を用いた層間熱接合方法。
(7)(1)〜(5)のいずれか1つに記載の層間熱接合部材によって接合する層間熱接合方法であって、2つの部材の少なくとも一方の部材の表面は算術平均粗さRa値が0.1μm〜10μmであり、かつ、十点平均粗さRz値が1.0μm〜30μmである層間熱接合方法。
(8)高分子膜を炭素化して炭素化膜を得る炭素化工程および炭素化膜を黒鉛化してグラファイト膜を得る黒鉛化工程を有する(1)〜(5)のいずれか1つに記載の層間熱接合部材の製造方法。
(9)高分子膜は縮合系芳香族高分子を含み、黒鉛化工程の温度は2400℃以上である(8)に記載の層間熱接合部材の製造方法。
(10)炭素化工程および黒鉛化工程の少なくとも1つの工程で、高分子膜、炭素化膜またはグラファイト膜の少なくともいずれかの膜はスペーサーで狭持され、スペーサーと加圧され熱処理される(8)または(9)に記載の層間熱接合部材の製造方法。
(11)スペーサーの算術平均粗さRaは0.1μm〜20μmである(10)に記載の層間熱接合部材の製造方法。
That is, the present invention that has solved the above problems is as follows.
(1) An interlayer thermal bonding member that transfers heat between layers of two members. The interlayer thermal bonding member contains a graphite film and a fluid substance that covers the surfaces of the graphite film, and the graphite film has a thickness of more than 15 μm. and it is 50μm or less, the density of the graphite film was 1.40g / cm 3 ~2.26g / cm 3 , the plane direction of the thermal conductivity of the graphite film is 500W / mK~2000W / mK, graphite film An interlayer thermal bonding member in which the ratio (A / B) of the weight (B) to the weight (A) of the fluid substance is 0.01 to 4.0.
(2) A fluid substance is a substance that is solid at 20 ° C and is deformed by applying a load of 0.5 MPa in an environment of 20 ° C, and the thickness after deformation becomes 1/2 or less of the thickness before deformation. The interlayer thermal bonding member according to (1).
(3) The interlayer thermal bonding member according to (1), wherein the fluid substance is liquid at 20 ° C. and the boiling point of the fluid substance is 150 ° C. or higher.
(4) The interlayer thermal bonding member according to (1) or (2), wherein the fluid substance contains at least one selected from an acrylic polymer, an epoxy resin, or a silicon polymer.
(5) An interlayer thermal bonding member obtained by laminating a plurality of interlayer thermal bonding members according to any one of (1) to (4) and having a total thickness of 400 μm or less.
(6) The thermal resistance value when a load of 0.2 MPa is applied is 2.0 ° C. cm 2 / W or less, and the thermal resistance value (R 0.1P ) and 0 when a load of 0.1 MPa is applied. Any of (1) to (5) in which the ratio (R 0.1P / R 0.5P ) of the thermal resistance value (R 0.5P ) when a load of .5 MPa is applied is 1.0 to 2.0. The interlayer thermal bonding method using the interlayer thermal bonding member according to one of the above.
(7) The interlayer thermal joining method for joining by the interlayer thermal joining member according to any one of (1) to (5), wherein the surface of at least one of the two members has an arithmetic mean roughness Ra value. Is 0.1 μm to 10 μm, and the ten-point average roughness Rz value is 1.0 μm to 30 μm.
(8) The method according to any one of (1) to (5), which has a carbonization step of carbonizing a polymer film to obtain a carbonized film and a graphitization step of graphitizing the carbonized film to obtain a graphite film. A method for manufacturing an interlayer thermal bonding member.
(9) The method for producing an interlayer thermal bonding member according to (8), wherein the polymer film contains a condensed aromatic polymer and the temperature in the graphitization step is 2400 ° C. or higher.
(10) In at least one step of the carbonization step and the graphitization step, at least one of the polymer film, the carbonized film, and the graphite film is sandwiched by a spacer, pressed with the spacer, and heat-treated (8). ) Or (9). The method for manufacturing an interlayer heat-bonded member.
(11) The method for manufacturing an interlayer thermal bonding member according to (10), wherein the arithmetic mean roughness Ra of the spacer is 0.1 μm to 20 μm.

本発明によれば、凹凸のある部材への適用が可能で、優れた熱接合特性を有し、耐久性にも優れ、熱抵抗特性の圧力依存性が小さい層間熱接合部材が提供される。 According to the present invention, there is provided an interlayer thermal bonding member that can be applied to a member having irregularities, has excellent thermal bonding characteristics, has excellent durability, and has a small pressure dependence of thermal resistance characteristics.

各種複合型TIMの例。(a)粒状熱伝導性フィラーと柔軟性高分子からなるTIM,(b)燐片状フィラーと柔軟性高分子からなるTIM、(c)縦配向燐片状フィラーと柔軟性高分子からなるTIMExamples of various composite TIMs. (A) TIM composed of granular thermally conductive filler and flexible polymer, (b) TIM composed of flint-like filler and flexible polymer, (c) TIM composed of longitudinally oriented fluffy filler and flexible polymer 各種TIMを用いた部材間の接合状態。(a)流動性物質のみで熱接合する場合、(b)粒状フラーを含む複合型TIMを用いて熱接合した場合、(c)燐片粒状フラーを含む複合型TIMを用いて熱接合した場合、(d)縦配向した燐片状フィラーを含む複合型TIMを用いて熱接合した場合。Joining state between members using various TIMs. (A) When heat-bonding is performed only with a fluid substance, (b) When heat-bonding is performed using a composite TIM containing a granular fuller, (c) When heat-bonding is performed using a composite TIM containing a flaky granular fuller , (D) In the case of thermal bonding using a composite TIM containing a vertically oriented scaly filler. (a)本発明のTIMの構造、(b)本発明のTIMを部材間に狭持した場合のイメージ図。部材の凹部分は流動性物質で埋まっている、(c)多層に積層された本発明のTIMの一例。(A) Structure of the TIM of the present invention, (b) Image of the case where the TIM of the present invention is sandwiched between members. (C) An example of the TIM of the present invention laminated in multiple layers, in which the concave portion of the member is filled with a fluid substance. 表面粗度の異なる部材間の熱抵抗測定法(1)の図。The figure of the thermal resistance measurement method (1) between members having different surface roughness. 表面粗度の異なる部材間の熱抵抗特性測定法の原理(2)の図。片方の面に定められた凹凸が存在する銅箔を用い、この銅箔間にグラファイトTIMを狭持して測定を行なう。銅箔の他の面はほぼ鏡面と考えられ銅箔であり、この面は熱測定用ロッドとシリコングリースを介して接合している。The figure of the principle (2) of the method of measuring the thermal resistance characteristic between members having different surface roughness. A copper foil having defined irregularities on one surface is used, and a graphite TIM is sandwiched between the copper foils for measurement. The other surface of the copper foil is considered to be almost a mirror surface and is a copper foil, and this surface is joined to the heat measurement rod via silicon grease. 表面粗度の異なる部材間の熱抵抗特性測定法の原理(3)の図。The figure of the principle (3) of the method of measuring the thermal resistance characteristic between members having different surface roughness.

以下、本発明の実施の形態について詳細に説明する。なお、本明細書中に記載された学術文献および特許文献の全ては、本明細書中に参考として援用される。また、本明細書では特記しない限り数値範囲を表す「A〜B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意味する。 Hereinafter, embodiments of the present invention will be described in detail. All academic and patent documents described in the present specification are incorporated herein by reference. Further, unless otherwise specified in the present specification, "A to B" representing a numerical range means "A or more (including A and larger than A) and B or less (including B and smaller than B)".

(A)グラファイト膜
本発明において用いられるグラファイト膜の厚さは15μm超〜50μmの範囲である。厚さは16μm以上である事が好ましく、18μm以上が最も好ましい。また、本発明のグラファイト膜は50μm以下であることが好ましい。50μm以上の厚さでは、下記のグラファイト膜の熱伝導特性(熱を伝達する特性)や密度特性を満足する事が難しくなる。
(A) Graphite film The thickness of the graphite film used in the present invention is in the range of more than 15 μm to 50 μm. The thickness is preferably 16 μm or more, most preferably 18 μm or more. Further, the graphite film of the present invention is preferably 50 μm or less. With a thickness of 50 μm or more, it becomes difficult to satisfy the following heat conduction characteristics (heat transfer characteristics) and density characteristics of the graphite film.

本発明のグラファイト膜は密度が1.40〜2.26g/cmの範囲であり、密度は1.60〜2.26g/cmの範囲である事はより好ましく、1.80〜2.26g/cmの範囲である事は最も好ましい。なお、密度2.26g/cmは空気層を全く含まないグラファイトの密度であり、グラファイト膜中に空気層が含まれるかどうかはグラファイト膜の密度を測定することで確認できる。空気層の熱伝導率はきわめて低いので、グラファイト膜の内部に空気層が出来るだけ存在しないことが望ましく、密度の条件は空気層の存在を知る目安となる。 Graphite film of the present invention is in the range density of 1.40~2.26g / cm 3, the density that is more preferably in the range of 1.60~2.26g / cm 3, 1.80~2. Most preferably, it is in the range of 26 g / cm 3 . The density of 2.26 g / cm 3 is the density of graphite that does not contain an air layer at all, and whether or not the graphite film contains an air layer can be confirmed by measuring the density of the graphite film. Since the thermal conductivity of the air layer is extremely low, it is desirable that the air layer does not exist inside the graphite film as much as possible, and the density condition is a guide for knowing the existence of the air layer.

また、本発明のグラファイト膜面方向の熱伝導度は500W/mK以上であるが好ましく、600W/mK以上である事はより好ましく、800W/mK以上である事はさらに好ましく、1000W/mK以上である事は最も好ましい。グラファイトa−b面の熱伝導度の最高値は2000W/mKであるので、本発明における好ましい膜面方向の熱伝導度は500W/mK〜2000W/mKである。熱伝導度が大きい事は先に述べた多点接合効果によって優れた熱抵抗特性を実現するために必要な特性である。 Further, the thermal conductivity in the graphite film surface direction of the present invention is preferably 500 W / mK or more, more preferably 600 W / mK or more, further preferably 800 W / mK or more, and 1000 W / mK or more. Something is most preferable. Since the maximum value of the thermal conductivity of the graphite ab surface is 2000 W / mK, the preferable thermal conductivity in the film surface direction in the present invention is 500 W / mK to 2000 W / mK. The large thermal conductivity is a characteristic necessary to realize excellent thermal resistance characteristics by the multi-point bonding effect described above.

(B)高分子膜の製造方法
本発明のグラファイト膜の製造方法は特に限定されないが、例えば、高分子フィルムを熱処理する方法によって得ることができる。高分子フィルムとしては、縮合系芳香族高分子である事が好ましい。中でも、ポリアミド、ポリイミド、ポリキノキサリン、ポリオキサジアゾール、ポリベンズイミダゾール、ポリベンズオキサゾール、ポリベンズチアゾール、ポリキナゾリンジオン、ポリベンゾオキサジノン、ポリキナゾロン、ベンズイミダゾベンゾフェナントロリンラダーポリマー、およびこれらの誘導体から選択される少なくとも一種であることが好ましい。
(B) Method for Producing Polymer Film The method for producing a graphite film of the present invention is not particularly limited, but can be obtained by, for example, a method for heat-treating a polymer film. The polymer film is preferably a condensed aromatic polymer. Among them, polyamide, polyimide, polyquinoxaline, polyoxadiazole, polybenzimidazole, polybenzoxazole, polybenzthiazole, polyquinazolinedione, polybenzoxazineone, polyquinazoline, benzimidazolobenzophenanthroline ladder polymer, and derivatives thereof. It is preferable that it is at least one kind.

上記高分子フィルムの中でも、高品質のグラファイトに転化させることができるという点から縮合系芳香族であるポリイミドフィルムが好ましい。また、ポリイミドフィルムの中でも、グラファイトへの転化がより容易であるという点から、分子構造およびその高次構造が制御され、配向性に優れたフィルムが好ましい。この様な芳香族ポリイミドフィルムは、既知の手法で作製する事ができる。例えば、ポリイミド前駆体であるポリアミド酸の有機溶剤溶液をエンドレスベルト、ステンレスドラムなどの支持体上に流延し、乾燥・イミド化させることにより製造することができる。 Among the above-mentioned polymer films, a polyimide film having a condensed aromatic substance is preferable because it can be converted into high-quality graphite. Further, among the polyimide films, a film having a controlled molecular structure and its higher-order structure and excellent orientation is preferable because it is easier to convert to graphite. Such an aromatic polyimide film can be produced by a known method. For example, it can be produced by casting an organic solvent solution of polyamic acid, which is a polyimide precursor, on a support such as an endless belt or a stainless steel drum, and drying and imidizing the solution.

ポリアミド酸をイミド化させる方法は特に限定されず、前駆体であるポリアミド酸を加熱でイミド転化する熱キュア法、ポリアミド酸に無水酢酸等の酸無水物に代表される脱水剤や、ピコリン、キノリン、イソキノリン、ピリジン等の第3級アミン類をイミド化促進剤として用い、イミド転化するケミカルキュア法を挙げることができる。 The method for imidizing the polyamic acid is not particularly limited, and is a thermal cure method in which the precursor polyamic acid is imide-converted by heating, a dehydrating agent typified by an acid anhydride such as acetic anhydride, picolin, and quinoline. , Isoquinoline, pyridine and other tertiary amines are used as imidization accelerators, and a chemical cure method for imid conversion can be mentioned.

ケミカルキュア法によるフィルムの具体的な製造法としては、以下の方法が挙げられる。まず、ポリアミド酸溶液に、化学量論以上の脱水剤と触媒量のイミド化促進剤を加え、支持板やPET等の有機フィルム、ドラム又はエンドレスベルト等の支持体上に流延又は塗布して膜状とし、有機溶媒を蒸発させることにより自己支持性を有する膜を得る。次いで、これを更に加熱して乾燥させつつイミド化させ、ポリイミド重合体からなるポリイミドフィルムを得る。加熱の際の温度は、150℃から550℃の範囲の温度が好ましい。加熱の際の昇温速度には特に制限はないが、連続的もしくは断続的に、徐々に加熱して最高温度が上記の温度になるようにするのが好ましい。さらに、ポリイミドの製造工程中に、収縮を防止するためにフィルムを固定したり、延伸したりする工程を含む事が好ましい。この様な処理によって配向性を高くする事ができる。 Specific methods for producing a film by the chemical cure method include the following methods. First, a dehydrating agent having a stoichiometry or higher and an imidization accelerator having a catalytic amount are added to the polyamic acid solution, and the solution is cast or applied onto an organic film such as a support plate or PET, or a support such as a drum or an endless belt. A film having a self-supporting property is obtained by forming a film and evaporating an organic solvent. Next, this is further heated and dried while being imidized to obtain a polyimide film made of a polyimide polymer. The temperature during heating is preferably in the range of 150 ° C. to 550 ° C. The rate of temperature rise during heating is not particularly limited, but it is preferable to gradually heat the temperature continuously or intermittently so that the maximum temperature reaches the above temperature. Further, it is preferable that the polyimide manufacturing process includes a step of fixing or stretching the film in order to prevent shrinkage. By such a treatment, the orientation can be increased.

なお、最終的に得られるグラファイト膜の厚さは一般に出発高分子フィルムの種類によって異なるが、芳香族ポリイミドの場合、厚さが1μm以上では元の高分子フィルムの厚さの60〜40%程度となる事が多い。従って、最終的に厚さ15μm〜50μmのグラファイト膜を得るためには、出発高分子フィルムの厚さは25nm〜125μmの範囲であることが好ましい。 The thickness of the graphite film finally obtained varies depending on the type of the starting polymer film, but in the case of aromatic polyimide, when the thickness is 1 μm or more, it is about 60 to 40% of the thickness of the original polymer film. In many cases. Therefore, in order to finally obtain a graphite film having a thickness of 15 μm to 50 μm, the thickness of the starting polymer film is preferably in the range of 25 nm to 125 μm.

(C)グラファイト膜の製造方法
本発明のグラファイト膜TIM(層間熱接合部材)の製造方法は、必要な特性を有するグラファイトが得られる方法であれば特に限定されないが、上記高分子膜の炭素化、黒鉛化によって作製する事は好ましい。この様な炭素化、黒鉛化の工程は単一炉で連続して実施しても良く、個別の炉で実施しても良い。ここでは、高分子フィルムの炭素化・黒鉛化の手法について述べる。炭素化の方法としては特に限定されず、例えば、出発物質である高分子フィルムを不活性ガス中、あるいは真空中で予備加熱し、炭素化を行う。不活性ガスは、窒素、アルゴンあるいはアルゴンと窒素の混合ガスが好ましく用いられる。予備加熱は通常1000℃程度の温度で行う。予備加熱の段階では出発高分子フィルムの配向性が失われないように、フィルムの破壊が起きない程度の面方向の張力を加える事が有効である。
(C) Method for Producing Graphite Film The method for producing a graphite film TIM (interlayer thermal bonding member) of the present invention is not particularly limited as long as it can obtain graphite having required characteristics, but carbonization of the polymer film is not particularly limited. , It is preferable to produce by graphitization. Such carbonization and graphitization steps may be carried out continuously in a single furnace or in individual furnaces. Here, a method for carbonizing and graphitizing a polymer film will be described. The method of carbonization is not particularly limited, and for example, a polymer film as a starting material is preheated in an inert gas or in a vacuum to perform carbonization. As the inert gas, nitrogen, argon or a mixed gas of argon and nitrogen is preferably used. Preheating is usually performed at a temperature of about 1000 ° C. At the stage of preheating, it is effective to apply tension in the plane direction to the extent that the film does not break so that the orientation of the starting polymer film is not lost.

黒鉛化の方法としては特に限定されず、例えば上記の方法で炭素化されたフィルムを高温炉内にセットし黒鉛化を行なう。黒鉛化は不活性ガス中で行なうが不活性ガスとしてはアルゴンが最も適当であり、アルゴンに少量のヘリウムを加えても良い。処理温度は高ければ高いほど良質のグラファイトに転化でき、2400℃以上が好ましく、2600℃以上がより好ましく、2800℃以上が最も好ましい。 The method of graphitization is not particularly limited, and for example, the film carbonized by the above method is set in a high-temperature furnace to perform graphitization. Graphitization is performed in an inert gas, but argon is the most suitable as the inert gas, and a small amount of helium may be added to argon. The higher the treatment temperature, the higher the quality of graphite that can be converted, preferably 2400 ° C. or higher, more preferably 2600 ° C. or higher, and most preferably 2800 ° C. or higher.

上記の一般的な手法で作製されるグラファイト膜には、膜全面にわたってシワが発生する事がある。高分子膜として芳香族ポリイミドを用いて炭素化する場合、炭素化時に元の高分子膜の75〜85%程度にまで炭素化膜が収縮することが多い。また、炭素化時及び黒鉛化時の膜の収縮・膨張を自然に任せた場合には、最終的に得られるグラファイト膜の膜面方向の寸法は、元の高分子膜の寸法の85〜95%程度となることが多い。こうした自然の収縮・膨張のために、シワが発生するのである。こうしたグラファイト膜のシワは、TIMの特性に影響を与えることがあり、シワの制御されたグラファイト膜を作製する事は好ましい。適度な大きさのシワの形成方法については特に制限はないが、炭素化工程又は黒鉛化工程の少なくとも一つの工程で、適切な大きさの凹凸を有するスペーサーを、高分子膜、炭素化膜、グラファイト膜などの試料の少なくともいずれかの膜の片面と積層し、これを平滑な基板で挟んで両側から適切な圧力で加圧しつつ、炭素化温度、黒鉛化温度で処理すれば適度なシワを形成できる。しかしながら、グラファイト膜を単独でTIMとして用いる場合とは異なり、本発明のTIMは柔軟性層との多層構造となっているためにシワの大きさや均一性が熱抵抗特性に与える影響はあまり大きくない。 The graphite film produced by the above general method may have wrinkles over the entire surface of the film. When carbonizing using an aromatic polyimide as the polymer film, the carbonized film often shrinks to about 75 to 85% of the original polymer film at the time of carbonization. In addition, when the shrinkage and expansion of the film during carbonization and graphitization are left to nature, the finally obtained graphite film in the film surface direction is 85 to 95, which is the size of the original polymer film. It is often about%. Wrinkles occur due to such natural contraction and expansion. Such wrinkles of the graphite film may affect the characteristics of TIM, and it is preferable to prepare a graphite film having controlled wrinkles. The method for forming wrinkles of an appropriate size is not particularly limited, but in at least one step of the carbonization step or the graphitization step, a spacer having an uneven size of an appropriate size is formed on a polymer film, a carbonized film, or the like. Appropriate wrinkles can be obtained by laminating with at least one surface of a sample such as a graphite film, sandwiching it with a smooth substrate, and applying pressure from both sides at an appropriate pressure while treating at carbonization temperature and graphitization temperature. Can be formed. However, unlike the case where the graphite film is used alone as a TIM, the TIM of the present invention has a multi-layer structure with a flexible layer, so that the size and uniformity of wrinkles do not have a great influence on the thermal resistance characteristics. ..

スペーサーを用いたプレス処理によって自然収縮や自然膨張を制御して、適切なシワを形成するには、高分子膜、炭素化膜、又はグラファイト膜のいずれかの両面に、適切な大きさの凹凸を有するスペーサーを積層し、これを平滑なプレス板で挟んで両側から適切な圧力でプレスしつつ、炭素化温度、黒鉛化温度で処理することで、適切なシワの形成が可能となる。なお炭素化工程は高分子膜に対して実施する工程であり、黒鉛化工程は炭素化膜に対して実施する工程である。また、必要に応じて再黒鉛化工程を行なっても良い。再黒鉛化工程はグラファイト膜に対して実施する工程である。高分子膜を炭素化した後、黒鉛化する場合、炭素化及び黒鉛化の片方で前記プレス処理を行ってもよく、両方で前記プレス処理を行ってもよい。 In order to control natural shrinkage and natural expansion by pressing with a spacer to form appropriate wrinkles, unevenness of appropriate size is required on both sides of the polymer film, carbonized film, or graphite film. Appropriate wrinkles can be formed by laminating spacers having the above, sandwiching them with a smooth press plate, pressing them from both sides at an appropriate pressure, and treating them at a carbonization temperature and a graphitization temperature. The carbonization step is a step performed on the polymer film, and the graphitization step is a step performed on the carbonized film. Moreover, you may perform a regraphitization step if necessary. The regraphitization step is a step performed on the graphite film. When the polymer film is carbonized and then graphitized, the press treatment may be performed by either carbonization or graphitization, or the press treatment may be performed by both.

(D)流動性層の形成
上記の方法で作成したグラファイト膜の表面に常温で固体の流動性層を形成(被覆)する場合、複合TIMで用いられる柔軟性を有するアクリル系高分子、エポキシ系樹脂、シリコン系高分子は特に好ましい流動性層を形成するための素材である。流動性層を形成する素材は常温での加圧、あるいは加圧と加熱の両方によって変形し熱接合されるべき2つの部材の凹凸の中に入り込む。これによって部在間に存在する空気層が除かれ、優れた熱抵抗特性が実現する。ここで言う流動性とは、規定された温度・圧力で加圧した場合にその物質の厚さが1/2以下になる事を言うが、先に述べた様に常温で流動性が発現するための好ましい圧力は0.5MPa以下であり、0.4MPa以下である事はより好ましく、0.3MPa以下である事はさらに好ましく、0.2MPa以下の環境下である事は最も好ましい。流動性が発現する温度は上記圧力の環境下で、80℃以下である事は好ましく、60℃以下である事はさらに好ましく、40℃以下である事は最も好ましい。すなわち、流動性物質は20℃で固体であり、20℃環境下で0.5MPaの荷重を加えて変形し、変形後の厚さが変形前の厚さの1/2以下になる物質であることが好ましい。
(D) Formation of fluid layer When a solid fluid layer is formed (coated) on the surface of the graphite film prepared by the above method at room temperature, a flexible acrylic polymer or epoxy-based polymer used in composite TIM. Resins and silicon-based polymers are materials for forming a particularly preferable fluid layer. The material forming the fluid layer is deformed by pressurization at room temperature or both pressurization and heating, and enters the unevenness of the two members to be thermally joined. As a result, the air layer existing in the space is removed, and excellent thermal resistance characteristics are realized. The fluidity referred to here means that the thickness of the substance is halved or less when pressurized at a specified temperature and pressure, but as described above, fluidity is exhibited at room temperature. The preferable pressure for this is 0.5 MPa or less, more preferably 0.4 MPa or less, further preferably 0.3 MPa or less, and most preferably 0.2 MPa or less. The temperature at which fluidity develops is preferably 80 ° C. or lower, more preferably 60 ° C. or lower, and most preferably 40 ° C. or lower under the above pressure environment. That is, the fluid substance is a substance that is solid at 20 ° C. and is deformed by applying a load of 0.5 MPa in an environment of 20 ° C., and the thickness after deformation becomes 1/2 or less of the thickness before deformation. Is preferable.

グラファイト膜の表面に流動性層を形成する方法には特に制限はないが、例えばフィルム状にした柔軟性高分子層をラミネート方式で圧着しても良く、溶媒に溶解した高分子を塗布しても良く、あるいは、溶融した高分子を塗布しても良い。また、流動性層は事前に熱接合する2つの部材の方に形成しておき、熱接合を行う際に加圧して最終的に本発明のTIM構造としても良い。この様な方法で形成されたTIMが結果的に本発明の範囲のグラファイト膜と流動性物質から形成されている場合にはその様なTIMは本発明の範疇に含まれる。 The method of forming the fluid layer on the surface of the graphite film is not particularly limited. For example, a flexible polymer layer in the form of a film may be pressure-bonded by a laminating method, and a polymer dissolved in a solvent is applied. Alternatively, a molten polymer may be applied. Further, the fluid layer may be formed in advance on the two members to be heat-bonded, and may be pressurized at the time of heat-bonding to finally form the TIM structure of the present invention. If the TIM formed in this way is eventually formed from a graphite film and a fluid material within the scope of the present invention, such TIM is included in the scope of the present invention.

本発明のグラファイト膜と流動性物質の重量比(流動性物質/グラファイト)は0.01〜4.0の範囲である事が好ましい。(流動性物質/グラファイト)の重量比が4と言う事は、流動性層は基本的にグラファイトの両面に塗布されるので、両面に同じ量の流動性物質が塗布されたとすると、グラファイト膜の片方の面にはグラファイト膜の2倍の重量の流動性物質層が形成されている事になる。 The weight ratio of the graphite film of the present invention to the fluid substance (fluid substance / graphite) is preferably in the range of 0.01 to 4.0. The weight ratio of (fluid substance / graphite) is 4, which means that the fluid layer is basically applied to both sides of graphite, so if the same amount of fluid substance is applied to both sides, the graphite film A fluid material layer twice as heavy as the graphite film is formed on one surface.

グラファイト膜表面に形成される層は液体状の流動性物質であっても良い。流動性物質が液体である場合、鉱油、植物性油、合成油、精油食用油、動物性油、およびこれらの混合物である事は好ましい。例えば、オイルであれば鉱油、合成炭化水素油、エステル油、ポリグリコール油、シリコン油、フッ素油、キャノーラ油やこれらの混合物を好適に用いることができる。あるいは変性オイルであってもよく、例えばシリコンオイルであれば、エポキシ系変性シリコンオイル、ポリエーテル変性シリコンオイル、アミノ変性シリコンオイル、エポキシ系変性シリコンオイルを用いることができる。本発明のTIMの特徴の一つである耐熱性、高耐久特性を失わないためには、蒸気圧の低い物質であることが望ましく、本発明で言う流動性物質とはその沸点が150℃以上の物質を言う。流動性物質の沸点が200℃以上である事はより好ましく、250℃以上である事はより好ましく、300℃以上である事は最も好ましい。 The layer formed on the surface of the graphite film may be a liquid fluid substance. When the fluid is a liquid, it is preferably mineral oil, vegetable oil, synthetic oil, essential oil edible oil, animal oil, and mixtures thereof. For example, in the case of oil, mineral oil, synthetic hydrocarbon oil, ester oil, polyglycol oil, silicon oil, fluorine oil, canola oil and mixtures thereof can be preferably used. Alternatively, it may be a modified oil. For example, in the case of silicone oil, an epoxy-based modified silicone oil, a polyether-modified silicone oil, an amino-modified silicone oil, or an epoxy-based modified silicone oil can be used. In order not to lose the heat resistance and high durability characteristics which are one of the features of the TIM of the present invention, it is desirable that the substance has a low vapor pressure, and the fluid substance referred to in the present invention has a boiling point of 150 ° C. or higher. Say the substance of. The boiling point of the fluid substance is more preferably 200 ° C. or higher, more preferably 250 ° C. or higher, and most preferably 300 ° C. or higher.

(E)多層TIMの作製
先に述べた様に、熱接合されるべき2つの部材の表面粗度が大きい場合には、本発明のTIMを複数枚積層して用いる事ができる。複数枚の積層を行なうには単に本発明のTIMを積層してプレス圧着すればよく、圧着の際に温度を加える事は好ましい。また、プレス圧着の代わりに一定のギャップを設けたロール間を通してロール圧着してもよい。この時ブラファイト膜同士の接合面に形成される流動性層は最表面となる流動性層よりも薄くて良く、数μmの厚さがあれば十分であり薄いほどバルク抵抗を小さくできる。
(E) Fabrication of Multilayer TIM As described above, when the surface roughness of the two members to be heat-bonded is large, a plurality of TIMs of the present invention can be laminated and used. In order to laminate a plurality of sheets, the TIM of the present invention may be simply laminated and press-pressed, and it is preferable to apply temperature at the time of crimping. Further, instead of press crimping, roll crimping may be performed through rolls provided with a certain gap. At this time, the fluid layer formed on the bonding surface between the brafite films may be thinner than the fluid layer on the outermost surface, and a thickness of several μm is sufficient, and the thinner the film, the smaller the bulk resistance.

(F)層間熱接合方法
本発明のTIMを用いた層間熱接合方法は、TIMを熱接合する2つの部材間に設置する工程を含む。本発明のTIMを層間に狭持させることにより、熱発生源あるいは熱発生源と熱的に接合された部材から、それ以下の温度である第二の部材へ熱を伝える層間熱接合を行うことができる。グラファイト膜が熱源に近い部材と熱源から遠い部材の間に挟持されて設置され、グラファイト膜とそれぞれの部材は直接接触している。接合の方法はとしては、単に機械的な圧力で固定しても良い。機械的にビス、ネジあるいはバネ等によってか締める事は有効であり好ましい。しかしながら、本発明の特徴である低圧力下で低熱抵抗が実現できる点や熱抵抗の圧力依存性が小さい事を考慮すれば、必ずしも強くか締める必要なく、万が一か締める圧力が変化した場合でもその影響が小さいために実用的には極めて有効な層間熱接合が実現できる。
(F) Interlayer Thermal Bonding Method The interlayer thermal bonding method using the TIM of the present invention includes a step of installing the TIM between two members to be thermally bonded. By sandwiching the TIM of the present invention between layers, interlayer thermal bonding is performed to transfer heat from a heat generating source or a member thermally bonded to the heat generating source to a second member having a temperature lower than that. Can be done. The graphite film is sandwiched between a member close to the heat source and a member far from the heat source, and the graphite film and each member are in direct contact with each other. As a joining method, it may be fixed by simply mechanical pressure. It is effective and preferable to mechanically tighten with screws, screws, springs, or the like. However, considering that low thermal resistance can be realized under low pressure, which is a feature of the present invention, and that the pressure dependence of thermal resistance is small, it is not always necessary to tighten strongly, and even if the tightening pressure changes. Since the influence is small, it is possible to realize a practically extremely effective interlayer thermal bonding.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは本発明の技術的範囲に包含される。
<物性測定方法>
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples, and is carried out with appropriate modifications to the extent that it can be adapted to the gist of the above and the following. It is also possible and they are within the technical scope of the invention.
<Measurement method of physical properties>

最初に、下記実施例における物性の測定法について以下に示す。
(1)グラファイト膜の厚さ
5cm角に切り出したグラファイト膜の任意の5箇所の厚さを接触式厚さ計にて測定し、その平均値をグラファイト膜の厚さとした。
First, the method for measuring physical properties in the following examples is shown below.
(1) Thickness of Graphite Film The thickness of the graphite film cut into 5 cm squares was measured at arbitrary 5 points with a contact type thickness gauge, and the average value was taken as the thickness of the graphite film.

(2)グラファイト膜の密度
グラファイト膜の密度は乾式自動密度計アキュピックII 1340(株式会社 島津製作所製)を用いて測定した。5cm角に切り出した5枚のグラファイト膜について、1枚ずつ密度を測定し、その平均値を密度とした。
(2) Density of graphite film The density of graphite film was measured using a dry automatic densitometer Accupic II 1340 (manufactured by Shimadzu Corporation). The densities of the five graphite films cut into 5 cm squares were measured one by one, and the average value was taken as the density.

(3)グラファイト膜の熱伝導度
グラファイトフィルムの熱拡散率は、周期加熱法による熱拡散率測定装置(アルバック理工(株)社「LaserPit」装置)を用いて、25℃、真空下(10-2Pa程度)、10Hzの周波数を用いて測定した。これはレーザー加熱の点から一定距離だけ離れた点に熱電対を取り付け、その温度変化を測定する方法である。
(3) the thermal diffusivity of the thermal conductivity of the graphite film of the graphite film, using a thermal diffusivity measuring apparatus due to the periodic heating method (ULVAC-RIKO Co. "LaserPit" device), 25 ° C., under vacuum (10 - (Approximately 2 Pa), the measurement was performed using a frequency of 10 Hz. This is a method in which a thermocouple is attached at a point separated from the point of laser heating by a certain distance and the temperature change is measured.

(4)TIMの熱抵抗測定
本発明のグラファイトTIMの熱抵抗測定は、日立テクノロジーアンドサービス製精密熱抵抗測定装置を用いて行なった。本測定装置は精密な熱抵抗測定が可能な装置であって、その誤差は±0.002℃cm/Wである。試料寸法は10×10mm.加圧圧力は10〜50N(ほぼ1.0kgf/cm〜5.0kgf/cmに相当)の範囲、測定温度は60℃である。具体的には、まず界面温度が60℃になる様に加えるワット数(W)を調節し、測定は温度変化が一定になった後10回測定し、その平均値を測定値とした。
(4) Thermal resistance measurement of TIM The thermal resistance measurement of the graphite TIM of the present invention was carried out using a precision thermal resistance measuring device manufactured by Hitachi Technology and Service. This measuring device is a device capable of precise thermal resistance measurement, and the error is ± 0.002 ° C. cm 2 / W. The sample size is 10 x 10 mm 2 . Range of applied pressure is 10 to 50 N (approximately equivalent to 1.0kgf / cm 2 ~5.0kgf / cm 2 ), measurement temperature was 60 ° C.. Specifically, first, the wattage (W) to be added was adjusted so that the interface temperature became 60 ° C., and the measurement was performed 10 times after the temperature change became constant, and the average value was used as the measured value.

上記は標準的な熱抵抗値の測定方法であるが、上記熱抵抗測定装置の測定ロッド面は鏡面仕上げされたものであり、実用的な凹凸の存在する部材面とは異なっている。我々の知りたい値は図4に示すような凹凸のある界面での熱抵抗値の値である。TIMを表面粗度(凹凸)の存在する部材間に挟んでその熱抵抗を測定する。上記測定装置を用いて凹凸のある部材間の熱抵抗測定を行うために、我々は以下の様な実験を行った。 The above is a standard method for measuring a thermal resistance value, but the measurement rod surface of the thermal resistance measuring device is mirror-finished, which is different from the practical member surface having irregularities. The value we want to know is the value of the thermal resistance value at the uneven interface as shown in FIG. The TIM is sandwiched between members having surface roughness (unevenness) and its thermal resistance is measured. In order to measure the thermal resistance between the uneven members using the above measuring device, we conducted the following experiments.

異なる表面粗度の部材を用いた場合の熱抵抗値の測定法を図5に示す。5aは上記、日立テクノロジーアンドサービス製精密熱抵抗測定装置の熱抵抗測定用ロッドである。5bはシリコングリースであり、5cは片方の面にある大きさの凹凸を有する銅箔であり、この銅箔は熱抵抗測定用ロッド5aとシリコングリース5bを用いて接合されている。5dは本発明のグラファイトTIM試料(層間熱接合部材)である。最初に、グラファイトTIMを挟まない状況で表面粗度の異なる銅箔を用いて荷重を変化させながら熱抵抗特性を測定する。この時の測定値をxとする。測定条件は上記の通りである。次に、本発明のグラファイトTIMを図5の様に挟んでそれぞれの場合の熱抵抗値を測定する。この時の測定値をyとする。しかしながら、この方法で測定された熱抵抗値には5a−5b間、5b−5c間の熱抵抗値(それぞれ2ヶ所)が含まれた値であり、測定したい5c−5d−5c間の熱抵抗値のみを示す値ではない。5c−5d−5c間の熱抵抗値を知るためには、測定値から5a−5b間、5b−5c間の熱抵抗値を見積もり、その値を差し引く必要がある。そのために、図6に示した方法で6a−6b間、6b−6c間の熱抵抗値を測定した。この時の値をzとする。なお、6aは熱抵抗測定用ロッド、6bはシリコングリース、6cは鏡面銅箔である。この方法で測定された値を図5の方法で測定された熱抵抗値から差し引いて(すなわちy−zの値を求めるべき熱抵抗値とした。x−zの値、y−zの値を比較する事で本発明のグラファイトTIMの効果を見積もる事が出来る。この様な方法は幾つかの仮定を含むものであり、直接TIMその熱抵抗値を測定するものではないが原理的に正しい評価方法であって、TIMの実用上の特性を評価するには十分な評価方法であると考えている。 FIG. 5 shows a method for measuring the thermal resistance value when members having different surface roughness are used. Reference numeral 5a is a rod for measuring thermal resistance of the precision thermal resistance measuring device manufactured by Hitachi Technology and Service. Reference numeral 5b is silicon grease, and 5c is a copper foil having irregularities of a size on one side. The copper foil is bonded to the thermal resistance measuring rod 5a by using the silicon grease 5b. Reference numeral 5d is a graphite TIM sample (interlayer thermal bonding member) of the present invention. First, the thermal resistance characteristics are measured while changing the load using copper foils having different surface roughness without sandwiching the graphite TIM. Let x be the measured value at this time. The measurement conditions are as described above. Next, the graphite TIM of the present invention is sandwiched as shown in FIG. 5, and the thermal resistance value in each case is measured. Let y be the measured value at this time. However, the thermal resistance value measured by this method includes the thermal resistance values between 5a-5b and 5b-5c (two places each), and the thermal resistance between 5c-5d-5c to be measured is included. It is not a value that indicates only the value. In order to know the thermal resistance value between 5c-5d-5c, it is necessary to estimate the thermal resistance value between 5a-5b and 5b-5c from the measured value and subtract the value. Therefore, the thermal resistance values between 6a-6b and 6b-6c were measured by the method shown in FIG. The value at this time is z. Note that 6a is a rod for measuring thermal resistance, 6b is silicon grease, and 6c is a mirror-surfaced copper foil. The value measured by this method was subtracted from the thermal resistance value measured by the method of FIG. 5 (that is, the value of yz was taken as the thermal resistance value to be obtained. The value of xx and the value of yz The effect of the graphite TIM of the present invention can be estimated by comparison. Such a method includes some assumptions and does not directly measure the thermal resistance value of the TIM, but is a correct evaluation in principle. It is a method and is considered to be a sufficient evaluation method for evaluating the practical characteristics of TIM.

(5)部材の算術平均粗さRaと十点平均粗さRz
必要に応じて熱接合される部材の表面粗さ(算術平均粗さ)Ra、十点平均粗さRzを測定した。測定は、JIS B 0601に基づき、表面粗さ測定機Surfcom DX((株)東京精密製)を使用し、常温雰囲気下で値を測定した。
(5) Arithmetic mean roughness Ra and ten-point average roughness Rz of the member
If necessary, the surface roughness (arithmetic mean roughness) Ra and the ten-point average roughness Rz of the heat-bonded members were measured. The measurement was based on JIS B 0601, and the value was measured in a normal temperature atmosphere using a surface roughness measuring machine Surfcom DX (manufactured by Tokyo Seimitsu Co., Ltd.).

(6)実施例、比較例に用いたグラファイト膜の作製
以下に、実施例、比較例に用いた厚さ、および最高処理温度(HTT)の異なる7種類のグラファイト膜の作製方法について記載する。
(6) Preparation of Graphite Films Used in Examples and Comparative Examples The following describes seven types of graphite films having different thicknesses and maximum treatment temperatures (HTT) used in Examples and Comparative Examples.

ピロメリット酸二無水物、4,4’−ジアミノジフェニルエーテル、及び、p−フェニレンジアミン(モル比で4/3/1)から調製したポリアミド酸の18重量%のDMF溶液100gに、無水酢酸20gとイソキノリン10gからなる硬化剤を混合、攪拌し、遠心分離による脱泡の後、アルミ箔上に流延塗布した。攪拌から脱泡までは0℃に冷却しながら行った。このアルミ箔とポリアミド酸溶液の積層体を120℃で150秒間加熱し、自己支持性を有するゲルフィルムを得た。このゲルフィルムをアルミ箔から剥がし、フレームに固定した。このゲルフィルムを300℃、400℃、500℃で各30秒間加熱して100〜200℃の平均線熱膨張係数1.6×10−5cm/cm/℃、複屈折率0.14で、厚さの異なるポリイミドフィルムを製造した。 Acetic anhydride 20 g in 100 g of a 18 wt% DMF solution of polyamic acid prepared from pyromellitic dianhydride, 4,4'-diaminodiphenyl ether, and p-phenylenediamine (4/3/1 in molar ratio). A curing agent consisting of 10 g of isoquinoline was mixed, stirred, defoamed by centrifugation, and then cast and coated on an aluminum foil. The process from stirring to defoaming was performed while cooling to 0 ° C. The laminate of the aluminum foil and the polyamic acid solution was heated at 120 ° C. for 150 seconds to obtain a self-supporting gel film. This gel film was peeled off from the aluminum foil and fixed to the frame. This gel film was heated at 300 ° C., 400 ° C., and 500 ° C. for 30 seconds each to have an average linear thermal expansion coefficient of 1.6 × 10-5 cm / cm / ° C. and a birefringence of 0.14 at 100 to 200 ° C. Polyimide films with different thicknesses were manufactured.

得られたポリイミドフィルムを、電気炉を用いて窒素ガス中、10℃/分の速度で1000℃まで昇温し、1000℃で1時間保って予備処理した。次に、得られた炭素化フィルムを表面粗度Ra値が5μmのグラファイト繊維フェルトからなるスペーサーに挟み、さらに、これを表面研磨したグラファイトブロックの間に配置し、グラファイトヒーター炉にセットした。20℃/分の昇温速度でHTTまで昇温、HTTで10分間保持し、その後40℃/分の速度で降温した。黒鉛化処理はアルゴン雰囲気でおこなった。この時、サンプルには100gf/cmとなる様に荷重を加えた。 The obtained polyimide film was heated to 1000 ° C. in nitrogen gas at a rate of 10 ° C./min using an electric furnace, and kept at 1000 ° C. for 1 hour for pretreatment. Next, the obtained carbonized film was sandwiched between spacers made of graphite fiber felt having a surface roughness Ra value of 5 μm, which was further placed between surface-polished graphite blocks and set in a graphite heater furnace. The temperature was raised to HTT at a rate of temperature rise of 20 ° C./min, held at HTT for 10 minutes, and then lowered at a rate of 40 ° C./min. The graphitization treatment was performed in an argon atmosphere. At this time, a load was applied to the sample so as to be 100 gf / cm 2 .

得られた7種類のグラファイト膜のHTT、厚さ、フィルム面方向の熱伝導率、密度はそれぞれ以下の通りであった。
(A−1)HTT:2900℃、厚さ48μm、フィルム面方向熱伝導率:1500W/mK、密度2.0g/cm
(B−1)HTT:2900℃、厚さ:35μm、フィルム面方向熱伝導率:1650W/mK、密度2.1g/cm
(C−1)HTT:2900℃、厚さ:24μm、フィルム面方向熱伝導率:1700W/mK、密度2.1g/cm
(C−2)HTT:2700℃、厚さ:25μm、フィルム面方向熱伝導率:1400W/mK、密度1.9g/cm
(C−3)HTT:2500℃、厚さ:25μm、フィルム面方向熱伝導率:1000W/mK、密度1.8g/cm
(D−1)HTT:2900℃、厚さ:19μm、フィルム面方向熱伝導率:1760W/mK、密度2.14g/cm
(E−1)HTT:2900℃、厚さ、16μm、フィルム面方向熱伝導率:1780W/mK、密度2.15g/cm
The HTT, thickness, thermal conductivity in the film surface direction, and density of the obtained seven types of graphite films were as follows.
(A-1) HTT: 2900 ° C., thickness 48 μm, thermal conductivity in the film surface direction: 1500 W / mK, density 2.0 g / cm 3
(B-1) HTT: 2900 ° C., thickness: 35 μm, thermal conductivity in the film surface direction: 1650 W / mK, density 2.1 g / cm 3
(C-1) HTT: 2900 ° C., thickness: 24 μm, thermal conductivity in the film surface direction: 1700 W / mK, density 2.1 g / cm 3
(C-2) HTT: 2700 ° C., thickness: 25 μm, thermal conductivity in the film surface direction: 1400 W / mK, density 1.9 g / cm 3
(C-3) HTT: 2500 ° C., thickness: 25 μm, thermal conductivity in the film surface direction: 1000 W / mK, density 1.8 g / cm 3
(D-1) HTT: 2900 ° C., thickness: 19 μm, thermal conductivity in the film surface direction: 1760 W / mK, density 2.14 g / cm 3
(E-1) HTT: 2900 ° C., thickness, 16 μm, thermal conductivity in the film surface direction: 1780 W / mK, density 2.15 g / cm 3

[実施例1〜7]
上記、7種類のグラファイト膜の両面に柔軟性アクリル高分子層を形成した。重量測定の結果、形成された柔軟性アクリル高分子の厚さはすべての試料でおよそ5μm(両面合わせて)であると見積もられた。TIMとした時の熱抵抗特性およびその圧力依存性を測定し、その結果を表1に示した。
[Examples 1 to 7]
Flexible acrylic polymer layers were formed on both sides of the above seven types of graphite films. As a result of weight measurement, the thickness of the formed flexible acrylic polymer was estimated to be about 5 μm (both sides combined) in all samples. The thermal resistance characteristics and the pressure dependence thereof when TIM was used were measured, and the results are shown in Table 1.

この結果から、上記TIMはいずれも優れた熱抵抗特性、および熱抵抗特性の圧力依存性を示す事が分かった。得られた特性は、いずれも0.2MPaで加圧した場合の熱抵抗値が2.0℃cm/W以下であり、0.1MPaで加圧時の熱抵抗値(R0.1P)と0.5MPaで加圧時との熱抵抗値(R0.5P)の比(R0.1P/R0.5P)を2以内とする事が出来る事が分かった。 From this result, it was found that all of the above TIMs exhibited excellent thermal resistance characteristics and pressure dependence of the thermal resistance characteristics. The obtained characteristics are such that the thermal resistance value when pressurized at 0.2 MPa is 2.0 ° C. cm 2 / W or less, and the thermal resistance value when pressurized at 0.1 MPa (R 0.1P ). It was found that the ratio (R 0.1P / R 0.5P ) of the thermal resistance value (R 0.5P ) to that at the time of pressurization at 0.5 MPa can be set to 2 or less.

[実施例8〜12]
上記D−1グラファイト膜の両面に柔軟性アクリル高分子厚さ(重量)を変えて形成し、TIMとした時の特性を表2に示す。この結果から(柔軟性高分子/グラファイト)の重量比が0.01〜4.0の範囲であれば、0.2MPaで加圧した場合の熱抵抗値を2.0℃cm/W以下、0.1MPaで加圧時の熱抵抗値(R0.1P)と0.5MPaで加圧時との熱抵抗値(R0.5P)の比(R0.1P/R0.5P)を2以内に出来る事が分かった。
[Examples 8 to 12]
Table 2 shows the characteristics when the flexible acrylic polymer is formed on both sides of the D-1 graphite film by changing the thickness (weight) and used as TIM. From this result, if the weight ratio of (flexible polymer / graphite) is in the range of 0.01 to 4.0, the thermal resistance value when pressurized at 0.2 MPa is 2.0 ° C. cm 2 / W or less. , The ratio of the thermal resistance value (R 0.1P ) when pressurized at 0.1 MPa and the thermal resistance value (R 0.5P ) when pressurized at 0.5 MPa (R 0.1P / R 0.5P ) It turned out that it can be done within 2.

[実施例13〜17]
複数枚の上記グラファイト膜を積層して5種類の試料(F〜J)を作製し、TIMとして使用した場合の熱抵抗特性を測定した。用いた柔軟性層はアクリル系高分子である。作製した試料名前、試料構造、測定された熱抵抗値、その圧力依存性(R0.1P/R0.5P)値を表3に示した。ただし表中試料構造の項に記載したAは柔軟性アクリル系高分子を意味し、Gは用いたグラファイトの種類、()内はμmで表した厚さを表している。この結果から、積層した時のTIMの総厚さが400μm以下であれば、0.2MPaで加圧した場合の熱抵抗値を2.0℃cm/W以下、0.1MPaで加圧時の熱抵抗値(R0.1P)と0.5MPaで加圧時との熱抵抗値(R0.5P)の比(R0.1P/R0.5P)を2以内にする事が出来る事が分かった。
[Examples 13 to 17]
Five types of samples (F to J) were prepared by laminating a plurality of the above graphite films, and the thermal resistance characteristics when used as TIM were measured. The flexible layer used is an acrylic polymer. Table 3 shows the name of the prepared sample, the sample structure, the measured thermal resistance value, and the pressure dependence (R 0.1P / R 0.5P ) value thereof. However, A described in the section of sample structure in the table means a flexible acrylic polymer, G represents the type of graphite used, and () indicates the thickness represented by μm. From this result, if the total thickness of the TIMs when laminated is 400 μm or less, the thermal resistance value when pressurized at 0.2 MPa is 2.0 ° C cm 2 / W or less, when pressurized at 0.1 MPa. the thermal resistance (R 0.1P) and heat resistance of the pressurization at 0.5 MPa (R 0.5P) ratio (R 0.1P / R 0.5P) a can be to within two I found out.

[実施例18〜24]
上記試料の内、A−1、G、Iの3種類のTIMを用いて、比較的表面粗度大きい銅箔をもちいて熱抵抗特性を測定した。図4〜図6に基本原理を示した実験方法で測定を行いその結果を表4に示した。この結果から本発明によって、0.2MPaの圧力下で2.0℃cm/W以下の熱抵抗を実現できる部材の表面粗度の範囲は、少なくとも一方の部材の表面はRa値で10μm以下、Rz値で30μm以下の範囲であると推測できた。
[Examples 18 to 24]
Among the above samples, three types of TIMs, A-1, G, and I, were used to measure the thermal resistance characteristics using a copper foil having a relatively large surface roughness. The measurement was carried out by the experimental method shown in FIGS. 4 to 6 and the results are shown in Table 4. From this result, according to the present invention, the range of surface roughness of a member capable of achieving a thermal resistance of 2.0 ° C. cm 2 / W or less under a pressure of 0.2 MPa is 10 μm or less in Ra value on the surface of at least one member. , It was estimated that the Rz value was in the range of 30 μm or less.

[実施例25][比較例1]
比較のため、燐片状グラファイトと柔軟性アクリル系樹脂(実施例3で使用した樹脂と同じもの)を用い、(アクリル樹脂/グラファイト)の重量比が0.2となる様な複合型TIM(試料名X、厚さ:約30μm)を作製した。この複合型TIMとほぼ同じ組成である試料C−1を用い両者の耐久性を比較した。実験はまずC−1およびXの上下を銅箔(両面ともほぼ鏡面、厚さ50μm)で挟み、C−1とXの熱抵抗値(0.2MPaの圧力下)をした。この時熱抵抗測定用のロッドと銅箔の間は薄いシリコングリースで接合した。次に銅箔/TIM/銅箔からなる試料を150℃(空気中)の炉に入れ6時間加熱した。加熱後熱抵抗値を測定し、加熱前の熱抵抗値と比較してその変化を調べた。その結果を表5に示す。C−1の熱抵抗値の増加は+1.0%であったが、複合型TIMであるXの場合は+11.3%の熱抵抗値の上昇が見られた。この事から本発明のTIMは従来の複合型TIMよりも耐熱性の点で向上していると判断した。
[Example 25] [Comparative example 1]
For comparison, a composite TIM (acrylic resin / graphite) having a weight ratio of 0.2 using flake graphite and a flexible acrylic resin (the same as the resin used in Example 3). Sample name X, thickness: about 30 μm) was prepared. The durability of both samples was compared using sample C-1, which has almost the same composition as this composite TIM. In the experiment, first, the upper and lower sides of C-1 and X were sandwiched between copper foils (both sides were approximately mirror surfaces, thickness 50 μm), and the thermal resistance values of C-1 and X (under a pressure of 0.2 MPa) were determined. At this time, the rod for measuring the thermal resistance and the copper foil were joined with a thin silicon grease. Next, a sample composed of copper foil / TIM / copper foil was placed in a furnace at 150 ° C. (in air) and heated for 6 hours. The thermal resistance value after heating was measured, and the change was investigated by comparing with the thermal resistance value before heating. The results are shown in Table 5. The increase in the thermal resistance value of C-1 was + 1.0%, but in the case of X, which is a composite TIM, an increase in the thermal resistance value was observed by + 11.3%. From this, it was judged that the TIM of the present invention is improved in heat resistance as compared with the conventional composite TIM.

[実施例26〜29]
グラファイト膜(C−1)をキャノーラ油に浸漬し、表面をガーゼで拭き取り、拭き取りの程度を変えることで重量比を変えた。実施例26〜28はキャノーラ油/グラファイト(C)の重量比が約0.2、実施例29では約1.0である。これらを用いて表面粗度の異なる3種類の銅箔を用いて熱抵抗特性を測定した。測定結果を表6に示す。この結果から、キャノーラ油の様な常温で液体の流動性物質を用いても凹凸を有する部材間に用いる事が可能で、その様な部材間で2.0℃cm/W以下の優れた熱抵抗特性が実現できる事が分かった。
[Examples 26 to 29]
The graphite film (C-1) was immersed in canola oil, the surface was wiped with gauze, and the weight ratio was changed by changing the degree of wiping. In Examples 26 to 28, the weight ratio of canola oil / graphite (C) is about 0.2, and in Example 29, it is about 1.0. Using these, the thermal resistance characteristics were measured using three types of copper foils having different surface roughness. The measurement results are shown in Table 6. From this result, it is possible to use a fluid substance that is liquid at room temperature, such as canola oil, between members with irregularities, and it is excellent at 2.0 ° C. cm 2 / W or less between such members. It was found that the thermal resistance characteristics can be realized.

3a 柔軟性物質
3b グラファイト膜
4a 第一の部材
4b 層間熱接合部材
4c 第二の部材
5a 熱抵抗測定用ロッド
5b シリコングリース
5c 片方の面にある大きさの凹凸を有する銅箔
5d 層間熱接合部材
6a 熱抵抗測定用ロッド
6b シリコングリース
6c 鏡面銅箔
3a Flexible material 3b Graphite film 4a First member 4b Interlayer heat bonding member 4c Second member 5a Thermal resistance measurement rod 5b Silicon grease 5c Copper foil 5d Interlayer heat bonding member with irregularities on one side 6a Thermal resistance measurement rod 6b Silicon grease 6c Mirror surface copper foil

Claims (11)

2つの部材の層間で熱を伝達する層間熱接合部であって、
該層間接合部は、該2つの部材の間に挟持された層間熱接合部材を含み、
該層間熱接合部材はグラファイト膜と該グラファイト膜の表面を被覆する流動性物質を含み、
該流動性物質層は、流動性物質の層であり、
前記グラファイト膜は厚さが15μm超かつ50μm以下であり、
前記グラファイト膜の密度は1.40g/cm3〜2.26g/cm3であり、
前記グラファイト膜の面方向の熱伝導率が500W/mK〜2000W/mKであり、
前記グラファイト膜の重量(B)と前記流動性物質の重量(A)の比(A/B)が0.01〜4.0であり、さらに、
該2つの部材の少なくとも一方の部材の表面は、凹部及び凸部を有し、算術平均粗さRa値が0.1μm〜10μmであり、かつ、十点平均粗さRz値が1.0μm〜30μmであり、またさらに、
該凸部は前記グラファイト膜の内部にくい込み熱的接点を形成し、かつ、該凹部には前記流動性物質が入り込み該凹部を満たしている、
層間熱接合部。
In layers of the two members a interlayer heat bonded portion for transferring heat,
The interlayer bonding portion includes an interlayer thermal bonding member sandwiched between the two members.
The interlayer thermal bonding member includes a graphite film and a fluid material layer covering the surface of the graphite film.
The fluid material layer is a layer of fluid material and
The graphite film has a thickness of more than 15 μm and less than 50 μm.
Density of the graphite film was 1.40g / cm 3 ~2.26g / cm 3 ,
The thermal conductivity of the graphite film in the plane direction is 500 W / mK to 2000 W / mK.
The ratio of the weight of the graphite film (B) to the weight of the flowable material (A) (A / B) is Ri der 0.01 to 4.0, further,
The surface of at least one of the two members has a concave portion and a convex portion, the arithmetic average roughness Ra value is 0.1 μm to 10 μm, and the ten-point average roughness Rz value is 1.0 μm to It is 30 μm, and further
The convex portion forms a recessed thermal contact inside the graphite film, and the fluid substance enters the concave portion to fill the concave portion.
Interlayer thermal joint .
前記流動性物質は20℃で固体であり、20℃環境下で0.5MPaの荷重を加えて変形し、変形後の厚さが変形前の厚さの1/2以下になる物質である請求項1に記載の層間熱接合部。 Claimed that the fluid substance is a solid at 20 ° C. and is deformed by applying a load of 0.5 MPa in an environment of 20 ° C. so that the thickness after deformation becomes 1/2 or less of the thickness before deformation. Item 2. The interlayer thermal junction according to item 1 . 前記流動性物質が20℃で液体であり、該流動性物質の沸点が150℃以上である請求項1に記載の層間熱接合部。 The interlayer thermal junction according to claim 1, wherein the fluid substance is liquid at 20 ° C. and the boiling point of the fluid substance is 150 ° C. or higher . 前記流動性物質がアクリル系高分子、エポキシ系樹脂またはシリコン系高分子から選択された少なくとも1種類を含む請求項1または2に記載の層間熱接合部。 The interlayer thermal junction according to claim 1 or 2, wherein the fluid substance contains at least one selected from an acrylic polymer, an epoxy resin, or a silicon polymer . 請求項1〜4のいずれかに記載の層間熱接合部を構成する、層間熱接合部材。 An interlayer thermal bonding member constituting the interlayer thermal bonding portion according to any one of claims 1 to 4 . 請求項5に記載の層間熱接合部材であって、
前記層間熱接合部材を複数枚積層して、総厚さが400μm以下とした、層間熱接合部材。
The interlayer thermal bonding member according to claim 5.
An interlayer thermal bonding member having a total thickness of 400 μm or less by laminating a plurality of the interlayer thermal bonding members.
請求項5、又は6に記載の層間熱接合部材を用いた層間熱接合方法であって
0.2MPaの荷重を加えたときの熱抵抗値が2.0℃cm2/W以下であり、
0.1MPaの荷重を加えたときの熱抵抗値(R0.1P)と0.5MPaの荷重を加えたときの熱抵抗値(R0.5P)の比(R0.1P/R0.5P)が1.0〜2.0である層間熱接合方法。
The interlayer thermal bonding method using the interlayer thermal bonding member according to claim 5 or 6, wherein the thermal resistance value when a load of 0.2 MPa is applied is 2.0 ° C. cm 2 / W or less.
The ratio (R0.1P / R0.5P) of the thermal resistance value (R0.1P) when a load of 0.1 MPa is applied and the thermal resistance value (R0.5P) when a load of 0.5 MPa is applied is 1. A method of interlaminar thermal bonding , which is 0 to 2.0.
請求項5、又は6に記載の層間熱接合部材の製造方法であって、
高分子膜を炭素化して炭素化膜を得る炭素化工程および炭素化膜を黒鉛化してグラファイト膜を得る黒鉛化工程を有する層間熱接合部材の製造方法。
The method for manufacturing an interlayer thermal bonding member according to claim 5 or 6.
A method for manufacturing an interlayer thermal bonding member , which comprises a carbonization step of carbonizing a polymer film to obtain a carbonized film and a graphitization step of graphitizing the carbonized film to obtain a graphite film.
前記高分子膜は縮合系芳香族高分子を含み、前記黒鉛化工程の温度は2400℃以上である請求項8に記載の層間熱接合部材の製造方法。 The polymer film comprises a condensed aromatic polymer, the temperature of the graphitization process is 2400 ° C. or more, the manufacturing method of the interlayer heat bonded member according to claim 8. 前記炭素化工程および黒鉛化工程の少なくとも1つの工程で、前記高分子膜、前記炭素化膜または前記グラファイト膜の少なくともいずれかの膜はスペーサーで狭持され、該スペーサーと加圧され熱処理される請求項8または9に記載の層間熱接合部材の製造方法。 In at least one of the carbonization step and the graphitization step, the polymer film, the carbonized film, or at least one of the graphite films is sandwiched by a spacer, and is pressurized with the spacer and heat-treated. The method for manufacturing an interlayer thermal bonding member according to claim 8 or 9. 前記スペーサーの算術平均粗さRaは0.1μm〜20μmである請求項10に記載の層間熱接合部材の製造方法。 Arithmetic average roughness Ra of the spacer is 0.1Myuemu~20myuemu, manufacturing method of the interlayer heat bonded member according to claim 10.
JP2017017695A 2017-02-02 2017-02-02 Interlayer bonding part, interlayer thermal bonding member, interlayer thermal bonding method, and method for manufacturing interlayer thermal bonding member Active JP6800034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017017695A JP6800034B2 (en) 2017-02-02 2017-02-02 Interlayer bonding part, interlayer thermal bonding member, interlayer thermal bonding method, and method for manufacturing interlayer thermal bonding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017017695A JP6800034B2 (en) 2017-02-02 2017-02-02 Interlayer bonding part, interlayer thermal bonding member, interlayer thermal bonding method, and method for manufacturing interlayer thermal bonding member

Publications (2)

Publication Number Publication Date
JP2018123034A JP2018123034A (en) 2018-08-09
JP6800034B2 true JP6800034B2 (en) 2020-12-16

Family

ID=63109312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017017695A Active JP6800034B2 (en) 2017-02-02 2017-02-02 Interlayer bonding part, interlayer thermal bonding member, interlayer thermal bonding method, and method for manufacturing interlayer thermal bonding member

Country Status (1)

Country Link
JP (1) JP6800034B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143189A1 (en) * 2017-02-02 2018-08-09 株式会社カネカ Thermal interface material, interface thermal coupling method, and production method for thermal interface material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4380226B2 (en) * 2003-06-06 2009-12-09 パナソニック株式会社 Thermally conductive sheet and heat dissipation structure using the same
JP2006100659A (en) * 2004-09-30 2006-04-13 Kaneka Corp Thermally conductive film
JP6043188B2 (en) * 2013-01-08 2016-12-14 株式会社カネカ Interlayer thermal connection member and interlayer thermal connection method
JP6178981B2 (en) * 2013-09-05 2017-08-16 パナソニックIpマネジメント株式会社 Cooling system
JP6429108B2 (en) * 2013-10-16 2018-11-28 株式会社アライドマテリアル Semiconductor element mounting substrate and semiconductor element device using the same
JP6311279B2 (en) * 2013-11-11 2018-04-18 大日本印刷株式会社 Heat dissipation member, manufacturing method thereof, and structure using heat dissipation member
JP6594639B2 (en) * 2015-02-12 2019-10-23 株式会社カネカ High thermal conductive heat dissipation substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018123034A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP7181093B2 (en) Interlayer Thermal Bonding Member, Interlayer Thermal Bonding Method, and Method for Manufacturing Interlayer Thermal Bonding Member
JP6043188B2 (en) Interlayer thermal connection member and interlayer thermal connection method
JP6517146B2 (en) Graphite laminate
JP6435507B2 (en) COMPOSITE SHEET, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE USING COMPOSITE SHEET
JP4659827B2 (en) Method for producing graphite film
JP5329135B2 (en) Graphite composite film
JP2010003981A (en) Heat-conducting sheet with graphite oriented in thickness direction
JPWO2011007510A1 (en) Graphite sheet and heat transfer structure using the same
JP2009295921A (en) Heat-conducting sheet where graphite is oriented in thickness direction
JP5586210B2 (en) Graphite film and graphite composite film
JP5830082B2 (en) Method for producing graphite film and graphite composite film
JP5624647B2 (en) Method for producing graphite composite film
JP6379176B2 (en) Highly oriented graphite
JP6108389B2 (en) Interlayer thermal connection member and interlayer thermal connection method
JP7022706B2 (en) Layered thermal bonding member, interlayer thermal bonding method, manufacturing method of interlayer thermal bonding member
JP6800034B2 (en) Interlayer bonding part, interlayer thermal bonding member, interlayer thermal bonding method, and method for manufacturing interlayer thermal bonding member
JP6552935B2 (en) Interlayer thermal bonding material and cooling system for power semiconductors
KR20170009729A (en) Graphite plate and method for manufacturing thereof
JP6847686B2 (en) Interlayer heat bonding method, cooling system
WO2021049218A1 (en) Surface layer porous graphite sheet
JP7075899B2 (en) Layered thermal bonding member, interlayer thermal bonding method, manufacturing method of interlayer thermal bonding member
JP6313547B2 (en) Interlayer thermal connection member, method for manufacturing interlayer thermal connection member, and interlayer thermal connection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201124

R150 Certificate of patent or registration of utility model

Ref document number: 6800034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250