JPH01268126A - Wafer processing device - Google Patents

Wafer processing device

Info

Publication number
JPH01268126A
JPH01268126A JP9567088A JP9567088A JPH01268126A JP H01268126 A JPH01268126 A JP H01268126A JP 9567088 A JP9567088 A JP 9567088A JP 9567088 A JP9567088 A JP 9567088A JP H01268126 A JPH01268126 A JP H01268126A
Authority
JP
Japan
Prior art keywords
wafer
temperature
cooling element
thermoelectric cooling
metal container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9567088A
Other languages
Japanese (ja)
Inventor
Naoyoshi Fujiwara
藤原 直義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9567088A priority Critical patent/JPH01268126A/en
Publication of JPH01268126A publication Critical patent/JPH01268126A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize forcible cooling or temperature rise of a wafer, to adjust temperature accurately in a wide range, and to manufacture a wafer processing device which has an improved process capacity by interposing a thermoelectric cooling element having Peltier effect between a wafer base and a wafer. CONSTITUTION:A wafer requires to be cooled from a room temperature to -50 to -100 deg.C; when a temperature of a wafer base 9 is extremely low, thermal distortion may occur to damage a pattern if the wafer is put directly on the wafer base 9. To prevent this trouble, a metal container 22 which is cooled by refrigerant 29 is set to a desired temperature and one surface of a thermoelectric cooling element 21 is set at the temperature of the metal container 22. A surface whereon the wafer 8 is mounted is heated nearly to a room temperature by supplying current of the thermoelectric cooling element 21 from bipolar direct current source 26. After the wafer 8 is mounted on the thermoelectric cooling element 21, reversed polarity current is allowed to flow to cool the wafer while detecting a temperature of the thermoelectric cooling element surface to prevent heat distortion on the wafer 8. Temperature control can be made accurately in this way without damaging a wafer.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は微細加工並びに成膜加工処理能力を向上したウ
ェハ(半導体基板)加工装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a wafer (semiconductor substrate) processing apparatus that has improved microfabrication and film formation processing capabilities.

(従来の技術) 従来の高周波プラズマ、あるいはエレクトロンサイクロ
1〜ロンレゾナンス(以下ECRとする)プラズマを用
いたドライプロセスにおいて、ウェハ(半導体基板)の
過熱によるレジスト等の損傷を防止するため、ウェハ台
を水冷却してウェハを冷却するのが普通であった。
(Prior art) In a dry process using conventional high-frequency plasma or electron cycloresonance (hereinafter referred to as ECR) plasma, the wafer stand is It was common practice to cool the wafer by water cooling it.

最近、微細加工、あるいは成膜加工等においてウェハを
より低温にすることにより異方性エツチング、あるいは
成膜平坦化に太いに優れた特性を示すことが発表された
。(電波新聞昭和62年8月27日発行参照) これは、ウェハを低温化(例えば−50〜−100℃程
度)するためには液体窒素(以下LN2とする)を用い
て、ウェハ台を冷却し、間接的にウェハを冷却している
Recently, it has been announced that by lowering the temperature of the wafer during microfabrication or film formation processing, it exhibits significantly superior characteristics in anisotropic etching or film formation flattening. (Refer to the Dempa Shimbun issue of August 27, 1986) This means that liquid nitrogen (hereinafter referred to as LN2) is used to cool the wafer stand in order to lower the temperature of the wafer (for example, to about -50 to -100 degrees Celsius). This indirectly cools the wafer.

第3図に従来のECRプラズマのエツチング装置例を示
す。
FIG. 3 shows an example of a conventional ECR plasma etching apparatus.

ECR放電させるためマグネトロン(1)、導波管(2
)で構成されるマイクロ波電力供給部と、反応容器(3
)、放電管(4)、磁場コイル(5)で構成させるプラ
ズマ発生部と、反応容器(3)を高真空にする排気ポン
プ(6)、反応ガスを導入するガス導入系(7)、で構
成される反応部と、ウェハ(8)を適切な位置に置くた
めのウェハ台(9)、及び適切な温度に制御するために
冷媒(10)、ヒータ(+、1.)、ヒータ用電源(1
2)を備えかつウェハ(i)に適切なバイアス電圧が加
わる様にするトI的から、絶縁物(13)によりウェハ
台(9)を反応容器(3)と絶縁し、高周波電源(14
)をウェハ台(9)に接続する。覆い(15)はウェハ
台(9)が直接プラズマと接しない様にするためウェハ
台(9)を覆う形で取付けられる。
A magnetron (1) and a waveguide (2) are used for ECR discharge.
) and a reaction vessel (3).
), a plasma generation section consisting of a discharge tube (4), a magnetic field coil (5), an exhaust pump (6) that makes the reaction vessel (3) a high vacuum, and a gas introduction system (7) that introduces the reaction gas. A reaction section consisting of a wafer stand (9) for placing the wafer (8) in an appropriate position, a coolant (10), a heater (+, 1.), and a power source for the heater to control the temperature to an appropriate temperature. (1
2) and to apply an appropriate bias voltage to the wafer (i), the wafer stage (9) is insulated from the reaction vessel (3) by an insulator (13), and a high frequency power source (14
) to the wafer stand (9). The cover (15) is attached to cover the wafer stand (9) to prevent the wafer stand (9) from coming into direct contact with plasma.

以上の構成におけるウェハ加工装置においてウェハ(8
)を適切な温度にするために、従来は冷媒(10)でウ
ェハ台(9)を十分冷却し、温度制御はヒータ(11)
で行っていた。
In the wafer processing apparatus with the above configuration, the wafer (8
), conventionally the wafer stand (9) was sufficiently cooled with a refrigerant (10), and the temperature was controlled using a heater (11).
I went there.

(発明が解決しようとする課題) 従来の冷媒(10)とヒータ(11)でウェハ(8)を
温度制御する場合、温度制御の応答が遅く、温度設定精
度もあまり高く取れない。又冷媒の種類にもよるが、処
理中ウェハ(8)が過熱し除熱をさらに行う必要がある
場合、強制冷却を行い、ウェハ(8)を一定温度にする
作用が必要であるが、従来の手段ではウェハ台(9)の
熱伝導で決まる冷却特性しか得られず、連込冷却ができ
ない。又、処理前のウェハ(8)を常温から低温にする
ため、急冷によリウエハ(8)が熱歪して、回路パター
ンが損傷を受けることもある。
(Problems to be Solved by the Invention) When controlling the temperature of the wafer (8) using the conventional coolant (10) and heater (11), the response of the temperature control is slow and the temperature setting accuracy cannot be set very high. Although it depends on the type of coolant, if the wafer (8) becomes overheated during processing and further heat removal is required, forced cooling is required to keep the wafer (8) at a constant temperature. With this method, only the cooling characteristics determined by the heat conduction of the wafer table (9) can be obtained, and continuous cooling cannot be achieved. Further, since the wafer (8) before processing is brought from room temperature to a low temperature, the rewafer (8) may be thermally distorted due to rapid cooling, and the circuit pattern may be damaged.

本発明はウェハを強制的に冷却あるいは昇温し、温度調
整を精度よく、かつ、広範囲に行うことが出来、処理能
力を向上したウェハ加工装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a wafer processing apparatus that can forcibly cool or raise the temperature of a wafer, adjust the temperature accurately and over a wide range, and has improved processing capacity.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために、本発明においては、反応容
器内にてウェハ台上にウェハを載置し、エレクトロンサ
イクロトロンレゾナンスプラズマを応用してウェハを加
工する装置において、ウェハ台とウェハとの間にペルチ
ェ効果を持つ熱″屯冷却素子を介在させる。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an apparatus for processing a wafer by placing a wafer on a wafer stage in a reaction vessel and applying electron cyclotron resonance plasma. In this method, a thermal cooling element having a Peltier effect is interposed between the wafer stand and the wafer.

(作 用) 次に第2図(a)に示す原理図と、第2図(1))に示
す動作特性図を参照して、熱゛耐冷却素子を介在させた
作用について説明する。
(Function) Next, with reference to the principle diagram shown in FIG. 2(a) and the operating characteristic diagram shown in FIG. 2(1)), the action of interposing the heat/cooling resistant element will be explained.

まずペルチェ効果について説明する。第2図(a)にお
いて金属板(16)にN形半導体素子(17)及びP形
半導体素子(18)を取りつけ、それぞれの半導体素子
(17)、 (1g)の片端に金属板端子(]9)を取
りつけ電流導入端子とする。
First, the Peltier effect will be explained. In Fig. 2(a), an N-type semiconductor element (17) and a P-type semiconductor element (18) are attached to a metal plate (16), and a metal plate terminal (] is attached to one end of each semiconductor element (17), (1g). Attach 9) and use it as a current introduction terminal.

金属板端子(19)に直流電源(20)を接続し、電流
jを流すと電流の方向によって、金属板(16)は冷却
又は発熱し、他方金属板端子(19)は発熱又は冷却と
相反する温度特性を示す。第2図(b)は時間tに対す
る温度特性の一例を示したもので、jは電流でTは金属
板(16)の温度を示す。この特性は金属端子板(19
)を何等かの方法で温度を一定に保った場合のものであ
るが、(b’)図から分かる様に冷媒により金属端子板
(19)を一定温度に保った場合、金属板(16)は冷
媒温度より低い値にすることも可能となる。従って、こ
のペルチェ効果を□有する熱電冷却素子(21)をウェ
ハ(8)とウェハ台(9)の間に介在させることにより
、ウェハ(8)の温度調整を精度よく、広範囲に行うこ
とが出来る。
When a DC power source (20) is connected to the metal plate terminal (19) and a current j is applied, the metal plate (16) will cool or generate heat depending on the direction of the current, while the metal plate terminal (19) will generate heat or cool. temperature characteristics. FIG. 2(b) shows an example of temperature characteristics with respect to time t, where j is the current and T is the temperature of the metal plate (16). This characteristic is based on the metal terminal plate (19
) is maintained at a constant temperature by some method, but as can be seen from figure (b'), when the metal terminal plate (19) is kept at a constant temperature with a refrigerant, the metal terminal plate (16) can also be set to a value lower than the refrigerant temperature. Therefore, by interposing the thermoelectric cooling element (21) having this Peltier effect between the wafer (8) and the wafer stand (9), the temperature of the wafer (8) can be precisely controlled over a wide range. .

(実施例) 以下、本発明の一実施例について、第1図を参−4= 照して説明する。なお、第1図において第3図に示した
従来例と同一部分には同一符号を付して説明を省略する
(Embodiment) An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, the same parts as those of the conventional example shown in FIG. 3 are designated by the same reference numerals, and the explanation thereof will be omitted.

ウェハ台と冷却用冷媒容器とを兼ねる金属容器(22)
の頂部に熱電冷却素子(21)を取り付ける。金属容器
(22)の周囲は熱的、電気的絶縁を目的とした絶縁円
筒(23)で覆い熱電冷却素子のリード線(24)は絶
縁円筒(23)内を通し、反応容器(3)に取付けた電
流導入端子(25)を介して容器外に導びく。
Metal container (22) that serves as a wafer stand and a cooling refrigerant container
A thermoelectric cooling element (21) is attached to the top of the. The metal container (22) is surrounded by an insulating cylinder (23) for thermal and electrical insulation, and the lead wire (24) of the thermoelectric cooling element is passed through the insulating cylinder (23) and connected to the reaction container (3). It is led out of the container via the attached current introduction terminal (25).

金属容器(22) 、絶縁円筒(23)で構成されたウ
ェハ台(9)には熱電冷却素子(21)を介してウェハ
(8)が載置され、反応容器(3)に密封された形で取
り付けられている。
A wafer (8) is placed on a wafer stand (9) consisting of a metal container (22) and an insulating cylinder (23) via a thermoelectric cooling element (21), and is sealed in a reaction container (3). It is attached with.

電流導入端子(25)を介したリード線(24)は両極
性の直流電源(26)に接続される。これは普通の直流
電源を切換スイッチで電流反転してもよい。
The lead wire (24) via the current introduction terminal (25) is connected to a bipolar DC power source (26). This can be done by reversing the current of an ordinary DC power supply using a changeover switch.

金属容器(22)は中空とし、冷却バイブ(27) 、
絶縁パイプ(28)により冷媒(29)を流す構造とす
る。
The metal container (22) is hollow and contains a cooling vibrator (27),
The structure is such that a refrigerant (29) flows through an insulated pipe (28).

中空部に冷媒(29)が満され空隙の発生をなくするた
め、冷媒の帰路は中空頂部と冷媒との接する而より上部
から得る構造とする。冷媒は図示しないポンプにより強
制的に循環させる。
In order to fill the hollow part with the refrigerant (29) and eliminate the generation of voids, the return path of the refrigerant is obtained from the upper part where the hollow top part contacts the refrigerant. The refrigerant is forcibly circulated by a pump (not shown).

他の構成は第3図の同−符号部と同じとする。The other configurations are the same as those shown in FIG. 3 with the same reference numerals.

次に本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

ウェハ(8)は常温か1つ−50〜−100’Cまて冷
却する必要があるが、ウェハ台(9)か非常に低温化さ
れている場合、直接ウェハ台(9)に置くと、接着面の
凍結による熱伝達の低下、あるいは急冷にょる熱歪が発
生してパターンが損傷を受ける可能性がある。これを防
止するために冷媒(29) (水、低温ガス、液体窒素
等)で冷却されている金属容器(22)を概略の所望温
度に設定し、熱電冷却素子(21)の片面を金属容器(
22)の温度に固定する。ウェハ(8)の来る面ば熱電
冷却素子(21)の″直流を両極直流電源(26)から
供給し、常温に近い値まで発熱させる。
The wafer (8) needs to be cooled from room temperature to -50 to -100'C, but if the wafer stand (9) is very low temperature, if you place it directly on the wafer stand (9), The pattern may be damaged due to reduced heat transfer due to freezing of the adhesive surface or thermal distortion caused by rapid cooling. To prevent this, the metal container (22) cooled with a refrigerant (29) (water, low-temperature gas, liquid nitrogen, etc.) is set to an approximate desired temperature, and one side of the thermoelectric cooling element (21) is placed in the metal container. (
Fix the temperature at 22). Direct current is supplied from the bipolar DC power source (26) to the thermoelectric cooling element (21) on the surface where the wafer (8) is located, and heat is generated to a value close to room temperature.

ウェハ(8)を熱電冷却素子(21)に乗せた後、直流
電流を零にし、その後冷却モートの逆極性の′直流を流
し、ウェハ(8)に熱歪の発生しない様にウェハ(8)
に接する熱電冷却素子面の温度を検出しながらフィード
バックコントロールにより冷却する。
After placing the wafer (8) on the thermoelectric cooling element (21), the DC current is reduced to zero, and then a DC current of opposite polarity is passed through the cooling mode to prevent the wafer (8) from suffering thermal distortion.
Cooling is performed using feedback control while detecting the temperature of the surface of the thermoelectric cooling element in contact with.

この場合金属容器(22)の温度は熱電冷却素子(21
)の除熱を行うための補助的手段で温度制御は熱電冷却
素子の電流を変化させて行う。熱電冷却素子(21)は
ウェハ(8)を強制的に冷却、昇温等が可能であるため
、精度よく温度制御が可能となる。
In this case, the temperature of the metal container (22) is controlled by the thermoelectric cooling element (21).
) is an auxiliary means for removing heat, and temperature control is performed by changing the current of the thermoelectric cooling element. Since the thermoelectric cooling element (21) can forcibly cool down the wafer (8), raise the temperature, etc., it is possible to control the temperature with high accuracy.

本装置により処理中のウェハ(8)の除熱も十分行う事
が出来る。処理後、ウェハ(8)を取り出す場合、昇温
モードに電流を切り換えて、温度制御を行シ′)ながら
常温に戻すことが出来る。従ってウェハ(8)を大気に
取り出す場合は常温となっているため低温に見られる結
露等の問題はなく速やかに取り出すことが出来る。
This apparatus can also sufficiently remove heat from the wafer (8) during processing. When the wafer (8) is taken out after processing, the current can be switched to the temperature raising mode and the temperature can be returned to normal temperature while controlling the temperature. Therefore, when the wafer (8) is taken out to the atmosphere, since it is at room temperature, there are no problems such as dew condensation that occur at low temperatures, and the wafer (8) can be taken out quickly.

金属容器(22)が低温になっている状態で、反応容器
(3)が大気開放になった場合結露して反応容器を汚損
することがある。またプラズマ中にさらされた場合表面
がスパッタリング等で反応容器(3)を汚損することも
考えられるのでこれを防止するため、断熱、絶縁の意味
で絶縁円筒(23)でカバを行わせている。絶縁円筒(
23)は特に円筒である必要なく上記の目的を達せられ
る複数の絶縁物(反応ガスにおかされない物)で構成し
ても良い。
If the reaction container (3) is opened to the atmosphere while the metal container (22) is at a low temperature, dew may condense and stain the reaction container. Furthermore, if exposed to plasma, the reaction vessel (3) may be contaminated by sputtering on the surface, so to prevent this, it is covered with an insulating cylinder (23) for heat insulation. . Insulating cylinder (
23) does not need to be particularly cylindrical, and may be composed of a plurality of insulators (materials that are not affected by the reaction gas) that can achieve the above purpose.

以」二、示す様に本実施例は広範囲な温度を精度良く制
御することが出来る。
As shown below, this embodiment can control a wide range of temperatures with high precision.

従って、本実施例の効果は低温ウェハの結露。Therefore, the effect of this embodiment is to prevent dew condensation on low-temperature wafers.

熱歪、載11径面の凍結等を防止し、温度制御範囲を常
温から低温まで強制的に行う事が出来、ウェハにダメー
ジを与えることなく精度良く温度制御が可能となり処理
能力も向上する。
Thermal distortion, freezing of the radial surface of the mounting 11, etc. can be prevented, and the temperature control range can be forced from room temperature to low temperature, making it possible to accurately control temperature without damaging the wafer, and improving processing capacity.

なお、熱電冷却素子の制御温度範囲ならば、ウェハの熱
容量が小さい場合、ウェハ台(9)を単に金属ブロック
とし、これに熱′セ冷却素子を組合せたもののみでも良
く構造簡単に出来る。
In addition, within the control temperature range of the thermoelectric cooling element, if the heat capacity of the wafer is small, the wafer stand (9) can be simply made of a metal block, and the structure can be simplified by simply combining this with a thermoelectric cooling element.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、ヒータで温度制
御するよりも、昇温から冷却まで熱゛耐冷却素子で行う
ことが出来、ウェハの結露、熱歪。
As explained above, according to the present invention, rather than controlling the temperature with a heater, it is possible to use a heat-resistant cooling element to perform everything from temperature raising to cooling, thereby preventing dew condensation and thermal distortion of the wafer.

載置面の凍結等を防止し、強制的に精度良く、かつ、広
範囲な温度制御が出来るウェハ加工装置が得られる。
It is possible to obtain a wafer processing apparatus that prevents the mounting surface from freezing, etc., and can forcibly control temperature with high accuracy and over a wide range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のウェハ加工装置の一実施例を示す縦断
面図、第2図(a)は第1図の熱電冷却素子の原理を説
明するための原理図、第2図(b)は第2図(a)の動
作特性線図、第3図は従来例を示す縦断面図である。 3・・・反応容器    8・・・ウェハ9・ウェハ台
   21・・熱電冷却素子代理人 弁理士 大 胡 
典 夫
FIG. 1 is a longitudinal sectional view showing an embodiment of the wafer processing apparatus of the present invention, FIG. 2(a) is a principle diagram for explaining the principle of the thermoelectric cooling element of FIG. 1, and FIG. 2(b) 2(a) is an operating characteristic diagram, and FIG. 3 is a longitudinal sectional view showing a conventional example. 3... Reaction container 8... Wafer 9/Wafer stand 21... Thermoelectric cooling element agent Patent attorney Ogo
Norio

Claims (1)

【特許請求の範囲】[Claims]  反応容器内にてウェハ台上にウェハを載置し、エレク
トロンサイクロトロンレゾナンスプラズマを応用してウ
ェハを加工する装置において、ウェハ台とウェハとの間
にペルチエ効果を持つ熱電冷却素子を介在させたことを
特徴とするウェハ加工装置。
A thermoelectric cooling element having a Peltier effect is interposed between the wafer stage and the wafer in a device that processes the wafer by placing the wafer on a wafer stage in a reaction vessel and applying electron cyclotron resonance plasma. Wafer processing equipment featuring:
JP9567088A 1988-04-20 1988-04-20 Wafer processing device Pending JPH01268126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9567088A JPH01268126A (en) 1988-04-20 1988-04-20 Wafer processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9567088A JPH01268126A (en) 1988-04-20 1988-04-20 Wafer processing device

Publications (1)

Publication Number Publication Date
JPH01268126A true JPH01268126A (en) 1989-10-25

Family

ID=14143934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9567088A Pending JPH01268126A (en) 1988-04-20 1988-04-20 Wafer processing device

Country Status (1)

Country Link
JP (1) JPH01268126A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176655A (en) * 1994-12-26 1996-07-09 Hiroshi Shimada Vacuum heat treating device
US5990005A (en) * 1997-02-10 1999-11-23 Nec Corporation Method of burying a contact hole with a metal for forming multilevel interconnections
JP2008516462A (en) * 2004-10-13 2008-05-15 ラム リサーチ コーポレーション Heat transfer system for improving semiconductor processing uniformity.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176655A (en) * 1994-12-26 1996-07-09 Hiroshi Shimada Vacuum heat treating device
US5990005A (en) * 1997-02-10 1999-11-23 Nec Corporation Method of burying a contact hole with a metal for forming multilevel interconnections
JP2008516462A (en) * 2004-10-13 2008-05-15 ラム リサーチ コーポレーション Heat transfer system for improving semiconductor processing uniformity.

Similar Documents

Publication Publication Date Title
JP2939355B2 (en) Plasma processing equipment
KR0164618B1 (en) Plasma process method using an electrostatic chuck
KR910002451B1 (en) Vacucem treatment device
US5078851A (en) Low-temperature plasma processor
US4384918A (en) Method and apparatus for dry etching and electrostatic chucking device used therein
JP2001077040A (en) Device and method for manufacturing semiconductor device
JP3297771B2 (en) Semiconductor manufacturing equipment
JPH10223621A (en) Vacuum treating apparatus
JP2005520337A (en) Improved substrate holder for plasma processing
JP3017631B2 (en) Control method of low-temperature processing equipment
JP3150027B2 (en) Plasma generator and plasma processing apparatus using this plasma generator
JPH07147311A (en) Transfer arm
JPH06244143A (en) Treating device
JPH01268126A (en) Wafer processing device
JPH10116887A (en) Method and apparatus for cooling workpiece
JP3167493B2 (en) Pressure control device
JP3144969B2 (en) Plasma etching method
JPH10303185A (en) Etching apparatus and etching method
JP3165515B2 (en) Processing equipment
JPH08167595A (en) Plasma treatment device
JPH03190125A (en) Dry etching device
JPH01308027A (en) Wafer processor
JP2630118B2 (en) Vacuum processing method and device
JP2692162B2 (en) Dry etching equipment
JPH0653207A (en) Plasma treatment apparatus