JPS59190364A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS59190364A
JPS59190364A JP5450384A JP5450384A JPS59190364A JP S59190364 A JPS59190364 A JP S59190364A JP 5450384 A JP5450384 A JP 5450384A JP 5450384 A JP5450384 A JP 5450384A JP S59190364 A JPS59190364 A JP S59190364A
Authority
JP
Japan
Prior art keywords
electrode
cathode material
cathode
substrate
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5450384A
Other languages
Japanese (ja)
Inventor
Yoshio Honma
喜夫 本間
Sukeyoshi Tsunekawa
恒川 助芳
Yukiyoshi Harada
原田 征喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5450384A priority Critical patent/JPS59190364A/en
Publication of JPS59190364A publication Critical patent/JPS59190364A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase depositing speed and to distribute uniformly said speed by providing magnetic field generating means for forming >=2 annular regions enclosed by the magnetic field on the plane of the same cathode electrode. CONSTITUTION:A cathode electrode 1 and a substrate electrode 3 are disposed in a vessel 4 maintained under a specified pressure, and a cathode material is sputtered by the electric discharge plasma generated by impressing high frequency electric power on the electrode from a high frequency electric power source 2. For example, three sets of permanent magnets 24A, B, C are provided on the rear of the cathode material 21 of the electrode 1 and the annular regions 20A, B, C enclosed by the lines of magnetic force 22A, B, C generated by these magnets are provided. Then the depositing rate of the cathode material on the substrate is increased and is uniformly distributed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、一定圧力に保持した槽内にカソード電極と基
板電極とを配置して高周波電力を印加することで生じる
放電プラズマによってカソード材料をスパッタ(放出)
させるスパッタリング装置に係り、特に、プレーナマグ
ネトロン型カソード電極を備えたスパッタリング装置に
おけるカソード電極の改良に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides sputtering of cathode material using discharge plasma generated by placing a cathode electrode and a substrate electrode in a tank maintained at a constant pressure and applying high frequency power. (release)
The present invention relates to a sputtering apparatus that uses a planar magnetron type cathode electrode, and particularly relates to an improvement of a cathode electrode in a sputtering apparatus equipped with a planar magnetron type cathode electrode.

〔発明の背景〕[Background of the invention]

従来技術を第1図によって説明する。第1図(a)はス
パッタリング装置の一般構成説明用の断面図で、1はカ
ソード電極、2は高周波電源。
The prior art will be explained with reference to FIG. FIG. 1(a) is a cross-sectional view for explaining the general configuration of a sputtering apparatus, in which 1 is a cathode electrode, and 2 is a high-frequency power source.

3は基板電極、4は真空槽である。真空槽4内はスパッ
タリングの雰囲気として例えばArガスが10−3〜1
O−2T orr程度の圧力に保たれている。カソード
電極1は高周波電源2と電気的に接続されている。カソ
ード電極1と対向する位置に基板電極3が配置される。
3 is a substrate electrode, and 4 is a vacuum chamber. In the vacuum chamber 4, for example, Ar gas is used as a sputtering atmosphere of 10-3 to 1
The pressure is maintained at approximately O-2 Torr. Cathode electrode 1 is electrically connected to high frequency power source 2 . A substrate electrode 3 is arranged at a position facing the cathode electrode 1 .

基板電極3は直接接地されるか、場合によってはキャパ
シタ等を介して接地されるか、高周波電源2と直接接続
されることもある。カソード電極1の表面にはカソード
材料11が設置されている。高周波電源2からの高周波
電力をカソード電極1と接地間に印加することで、真空
槽4内のArガスがイオン化され、そのプラズマによっ
てカソード材料11がスパッタされる。スパッタされた
カソード材料11は基板電極3及び基板電極上に保持さ
れた基板5に堆積する。
The substrate electrode 3 may be directly grounded, grounded via a capacitor or the like depending on the case, or may be directly connected to the high frequency power source 2. A cathode material 11 is provided on the surface of the cathode electrode 1 . By applying high frequency power from the high frequency power supply 2 between the cathode electrode 1 and the ground, the Ar gas in the vacuum chamber 4 is ionized, and the cathode material 11 is sputtered by the plasma. Sputtered cathode material 11 is deposited on substrate electrode 3 and substrate 5 held above the substrate electrode.

以上のスパッタリング装置において、近年、ヵソード電
極1としていわゆるプレーナマグネトロン型カソード電
極が用いられることが多い。このプレーナマグネトロン
型カソード電極の概要を第1図(、b)、、(c)に示
す。第1図(b)はこの型のカソード電極1の表面に設
置されたカソード材料11の表面状態を示す斜視図であ
り、第1図(c)は第1図(b)のA−A’部部面面図
ある。
In the above sputtering apparatus, a so-called planar magnetron type cathode electrode is often used as the cathode electrode 1 in recent years. An outline of this planar magnetron type cathode electrode is shown in FIGS. 1(b) and 1(c). FIG. 1(b) is a perspective view showing the surface state of the cathode material 11 placed on the surface of this type of cathode electrode 1, and FIG. There is a partial side view.

5in2やAnもしくはAflを含む合金などから成る
カソード材料11の表面上に磁力線12によって囲まれ
た磁路10が1個形成されている。磁力線12は磁路1
0の内側から外側に向いている。カソード材料11の裏
側には磁力線12を形成するための永久磁石14が設け
られている。この永久磁石14によって磁力線12とし
て示すような磁場が発生し、磁路10が形成される。こ
のカソード電極1に高周波電力が印加されると磁1?4
10に相当する部分に高密度のArプラズマが発生する
。この高密度プラズマによって磁路10付近のカソード
材料IJは速やかにスパッタされ、第1図(a)の基板
電極3及び基板5上に堆積する。
One magnetic path 10 surrounded by lines of magnetic force 12 is formed on the surface of a cathode material 11 made of 5in2 or an alloy containing An or Afl. Magnetic field lines 12 are magnetic path 1
From the inside of 0 to the outside. A permanent magnet 14 for forming magnetic lines of force 12 is provided on the back side of the cathode material 11 . This permanent magnet 14 generates a magnetic field shown as magnetic lines of force 12, forming a magnetic path 10. When high frequency power is applied to this cathode electrode 1, the magnetic 1?4
High-density Ar plasma is generated in a portion corresponding to 10. The cathode material IJ near the magnetic path 10 is rapidly sputtered by this high-density plasma and deposited on the substrate electrode 3 and substrate 5 shown in FIG. 1(a).

しかしながら、上述した従来のプレーナマグネトロン型
カソード電極には以下に述べるような問題点がある。即
ち、カソード材料11は磁路10の付近が集中的にスパ
ッタを生じてエツチング(食刻)され、その粒子が飛び
出すために、これを基板5上に堆積させると基板5上で
の堆積速度分布の均一性が極めて悪いという点である。
However, the conventional planar magnetron type cathode electrode described above has the following problems. That is, the cathode material 11 is etched by intensive sputtering in the vicinity of the magnetic path 10, and the particles fly out, so when this material is deposited on the substrate 5, the deposition rate distribution on the substrate 5 changes. The point is that the uniformity is extremely poor.

これを、第1図(d)によりさらに具体的に説明する。This will be explained in more detail with reference to FIG. 1(d).

第1図(d)はAr圧力を約3 X 10−” T o
rr 、高周波電力密度を6ワツト/cd、カソード材
料表面上での磁場に強さを300ガウスとして実験した
場合の結果で、縦軸は基板5上でのカソード材料の堆積
速度を示し、横軸は基板5の基板電極3上での位置を示
している。第1図(a)で示したカソード電極1と基板
電極3との間隔りを1.5〜3.5anぐらいの狭い値
に選んだ場合は、基板5上の堆積速度の分布は曲線15
として示すように、カソード材料11が磁路10と対向
する部分は67 nm/minm/m法く。
Figure 1(d) shows the Ar pressure at approximately 3 x 10-” To
rr is the result of an experiment with a high frequency power density of 6 watts/cd and a magnetic field strength of 300 Gauss on the surface of the cathode material. The vertical axis shows the deposition rate of the cathode material on the substrate 5, and the horizontal axis shows the deposition rate of the cathode material on the substrate 5. indicates the position of the substrate 5 on the substrate electrode 3. When the spacing between the cathode electrode 1 and the substrate electrode 3 shown in FIG.
As shown, the area where the cathode material 11 faces the magnetic path 10 is 67 nm/min/m.

それ以外の部分は遅いという傾向を示す。間隔りを4c
m、 6an、 8anと広くするに従って堆積速度の
分布は曲線16.17.18の順に次第に均一となるが
、しかしその反面、堆積速度は40r+m/ min 
、 25nm/mj、n、 10nm/minと順に低
下する。即ち、従来のプレーナマグネ1ヘロン型カソー
ド電極を用いた場合、堆積速度を速くしようとすればそ
の分布の均一性が低下し2分布の均一性を高めようとす
れば堆積速度が著しく低下するという問題点があった。
Other parts tend to be slow. 4c spacing
m, 6an, and 8an, the deposition rate distribution becomes gradually uniform in the order of curves 16, 17, and 18, but on the other hand, the deposition rate is 40r+m/min.
, 25 nm/mj, n, and 10 nm/min. That is, when a conventional planar magnet 1 Heron type cathode electrode is used, if the deposition rate is increased, the uniformity of the distribution will decrease, and if the uniformity of the 2 distribution is increased, the deposition rate will be significantly reduced. There was a problem.

また第1図(d)に示した堆積速度の均一な領域の幅W
1は各スパッタリング装置によって定まる最適間隔を選
んでもたかだか10〜15cmにしか過ぎない。その場
合、5in2の堆積速度は20〜40nm/minであ
る。この堆積速度の均一な領域の幅W1は第1図(b)
に示した磁路10の内径幅Mとほぼ対応する。しかし、
この内径幅Mを広くすることによって堆積速度の均一な
領域の幅W□を広く、かつ堆積速度を早くすることはで
きない。何故なら、上記磁路内径幅Mを広くすると堆積
速度の分布は曲線15に示した高堆積速度の部分の間隔
が広くなり均一性が低下し、均一性を向上させるために
間隔りを広くすれば堆積速度が低下するからである。
Also, the width W of the region with a uniform deposition rate shown in FIG. 1(d)
1 is only 10 to 15 cm at most, even if the optimum spacing determined by each sputtering device is selected. In that case, the deposition rate for 5in2 is 20-40 nm/min. The width W1 of this region with a uniform deposition rate is shown in Fig. 1(b).
This approximately corresponds to the inner diameter width M of the magnetic path 10 shown in FIG. but,
By increasing the inner diameter width M, it is not possible to widen the width W□ of the region where the deposition rate is uniform and to increase the deposition rate. This is because when the inner diameter width M of the magnetic path is widened, the deposition rate distribution becomes wider in the interval between the high deposition rate parts shown in curve 15, and the uniformity decreases. This is because the deposition rate decreases.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、プレーナマグネトロン型カソード電極
を備えたスパッタリング装置における上記した問題点を
解決し、堆積速度を速くシ、シかも堆積速度の分布の均
一性をたかぬることのできるカソード電極構造を備えた
スパッタリング装置を提供するにある。
An object of the present invention is to solve the above-mentioned problems in a sputtering apparatus equipped with a planar magnetron type cathode electrode, and to provide a cathode electrode structure that can increase the deposition rate and maintain uniformity of the deposition rate distribution. An object of the present invention is to provide a sputtering apparatus equipped with a sputtering apparatus.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、上記目的を達成するために。 The features of the present invention are to achieve the above objects.

同−力ソード電極平面上に磁場によって囲まれた環状領
域を少なくとも2個形成させる磁場発生手段を備えた構
成とするにある。
The structure includes a magnetic field generating means for forming at least two annular regions surrounded by a magnetic field on the plane of the same force sword electrode.

〔発明の実施例〕[Embodiments of the invention]

以下図面により本発明を説明する。 The present invention will be explained below with reference to the drawings.

第2図は本発明の詳細な説明図で、(a)はカソード電
極表面をカソード材料側から見た斜視図、(b)はその
B−B’部部面面図(C)は実施例採用時の堆積速度と
基板位置との関係を示す曲線図であり、この第2図実施
例は、磁場によって囲まれた環状領域をカソード電極平
面上に3個形成させた場合である。第2図において、2
1はカソード材料、20A、20B、20Cはそれぞれ
磁路を示しており、各磁路は永久磁石24A、 24B
 、 24Cによって発生する磁力線22A、22B、
22Cによって囲まれている。なおりソード材料21は
物理的に複数個に分割されていても、電気的に1個のカ
ソード電極に設置されていさえすれば良い。
FIG. 2 is a detailed explanatory diagram of the present invention, in which (a) is a perspective view of the cathode electrode surface viewed from the cathode material side, and (b) is a cross-sectional view of the BB' section thereof (C) is an embodiment. FIG. 2 is a curve diagram showing the relationship between the deposition rate and the substrate position when the method is adopted, and the embodiment shown in FIG. 2 is a case where three annular regions surrounded by a magnetic field are formed on the plane of the cathode electrode. In Figure 2, 2
1 is a cathode material, 20A, 20B, and 20C are magnetic paths, and each magnetic path is a permanent magnet 24A, 24B.
, 24C generates magnetic lines of force 22A, 22B,
It is surrounded by 22C. Even if the cathode material 21 is physically divided into a plurality of pieces, it is only necessary that the cathode material 21 is electrically placed on one cathode electrode.

第2図(a)、(b)より判るように、カソード材料2
1の裏側に設けた3組の永久磁石24A、24B。
As can be seen from FIGS. 2(a) and (b), the cathode material 2
Three sets of permanent magnets 24A, 24B provided on the back side of 1.

24Cによって磁路20A 、 20’B 、 20C
が形成される。
Magnetic paths 20A, 20'B, 20C by 24C
is formed.

このカソード電極を用いて高周波放電を発生させて基板
5上にカソード材料21を堆積させると、カソード電極
1と基板電極3との間隔りが著しく狭い場合は、第2図
(c)の曲線25に示すような堆積速度の分布が得られ
る。間隔りを広く調節すると曲線27として示すように
eWW2の範囲で平坦となる分布曲線が得られる。この
W2は、3個の磁路20A 、 20B 、 20Ct
i−設けたコトニよ+)30〜40amとなり、従来の
W□が第1図(d)に示すように10〜15anであっ
たのに対し、約3倍の値になる。
When cathode material 21 is deposited on substrate 5 by generating high-frequency discharge using this cathode electrode, if the distance between cathode electrode 1 and substrate electrode 3 is extremely narrow, curve 25 in FIG. 2(c) A distribution of deposition rates as shown in is obtained. If the interval is adjusted widely, a distribution curve that is flat in the eWW2 range, as shown by curve 27, can be obtained. This W2 has three magnetic paths 20A, 20B, 20Ct
The current value is approximately 30 to 40 am, which is approximately three times the value of the conventional W□, which was 10 to 15 an as shown in FIG. 1(d).

なお、上記比較は、高周波電源2として周波数13.5
6λイ&の電源を用い、カソード電極面での電力密度を
6ワツト/dとし、真空槽4内のAr圧力を2 X 1
O−3Torr、永久磁石24A 、 24B 、 2
4Cのカソード材料面での磁場の強さを250〜400
ガウス、間隔りを6印としてカソード材料21に石英板
を使用して行なった実験により得られたものである。し
かも堆積速度は、 40nm/minと従来構造の場合
と比較して劣ることはない。上記はカソード材料2】と
して石英板を使用した場合であるが、へ息などの金属を
カソード材料21として使用した場合は、最適条件に選
ぶことによって、 200〜800nm/minの堆積
速度が得られる。
The above comparison is based on a frequency of 13.5 as the high frequency power source 2.
Using a 6λ power source, the power density at the cathode electrode surface was 6 W/d, and the Ar pressure in the vacuum chamber 4 was 2×1.
O-3 Torr, permanent magnets 24A, 24B, 2
The strength of the magnetic field at the cathode material surface of 4C is 250-400.
This was obtained through an experiment using a quartz plate as the cathode material 21 with Gauss and the spacing of 6 marks. Moreover, the deposition rate is 40 nm/min, which is not inferior to that of the conventional structure. The above is a case where a quartz plate is used as the cathode material 2], but if a metal such as silica is used as the cathode material 21, a deposition rate of 200 to 800 nm/min can be obtained by selecting the optimal conditions. .

なお、第2図(b)において、永久磁石24A。In addition, in FIG. 2(b), the permanent magnet 24A.

24B、24Cは相互に独立した状態を示しであるが。24B and 24C indicate mutually independent states.

相互に接した状態で設置しても良い。また、これらの永
久磁石がカソード材料21の表面上に作る磁場の強さは
、250〜450ガウスとして実験したが。
They may be installed in contact with each other. In addition, the strength of the magnetic field created by these permanent magnets on the surface of the cathode material 21 was set at 250 to 450 Gauss in the experiment.

磁場の強さそのものを適値に選ぶことによりさらに重要
なことは、3個の永久磁石のカソード材料表面上での磁
場の強さをできるだけ均一にすることである。3個の永
久磁石の磁場の強さを、装置に取り付ける以前の状態で
均一にしても、カソード材料の裏面に3個並べて取り付
けた状態では。
What is more important by selecting an appropriate value for the strength of the magnetic field itself is to make the strength of the magnetic field as uniform as possible on the surface of the cathode material of the three permanent magnets. Even if the strength of the magnetic field of the three permanent magnets is made uniform before they are attached to the device, when the three permanent magnets are attached side by side to the back of the cathode material.

磁場が相互に影響し合うことから、カソード材料表面上
での磁場の均一性は得られない。
Since the magnetic fields interact with each other, no uniformity of the magnetic field on the surface of the cathode material is obtained.

第2図実施例では3個の永久磁石を用いてカソード材料
表面上に3個の磁路が形成される場合について説明した
が、堆積速度分布が均一になる幅W2をより広くしたい
場合は、磁路の数を適宜増加させれば良いことは当然で
ある。その他の一般条件として、高周波電力密度は1〜
lOワツト/dの範囲に、真空槽内へのArガス封入圧
力は0.13〜13Pa (パスカル)〔圧力の国際単
位でITorrが133 P aに相当する〕の範囲に
、カソード材料表面上での磁場の強さの均一性が、±2
0%に保たれるように9選択することが適当である。
In the example shown in FIG. 2, the case where three magnetic paths are formed on the surface of the cathode material using three permanent magnets has been explained, but if it is desired to widen the width W2 at which the deposition rate distribution becomes uniform, It goes without saying that the number of magnetic paths may be increased as appropriate. Other general conditions are that the high frequency power density is 1~
The pressure of the Ar gas filled into the vacuum chamber is 0.13 to 13 Pa (pascal) [ITorr is equivalent to 133 Pa in the international unit of pressure] on the surface of the cathode material. The uniformity of the magnetic field strength is ±2
It is appropriate to select 9 so that it is kept at 0%.

〔発明の効果〕〔Effect of the invention〕

以上説明したように2本発明によれば、プレーナマグネ
トロン型カソード電極を備えたスパッタリング装置の同
−力ソード電極平面上に少なくとも2個以上の磁路を形
成させる構成としたことにより、カソード材料の基板へ
の堆積速度を速くシ。
As explained above, according to the present invention, at least two or more magnetic paths are formed on the plane of the same force sword electrode of a sputtering apparatus equipped with a planar magnetron type cathode electrode. Increases the deposition rate on the substrate.

しかも堆積速度の分布の均一性を高めることができる利
点がある。
Moreover, there is an advantage that the uniformity of the deposition rate distribution can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の説明図で(a)は全体構造の断面図
、(b)はカソード材料の斜視図、(C)は(b)のA
−A’面での断面図、(d)は特性曲線図、第2図は本
発明の詳細な説明図で(a)はカソード材料の斜視図、
(b)は(a)のB−B′面での断面図、(C)は特性
曲線図である。 符号の説明 1・・・カソード電極 2・・高周波電源 3・・・基板電極 4・・・真空槽 5・・・基板 11、21・・・カソード材料 10、2OA 、 20B 、 20G−磁路12,2
2A、22B、22G−・・磁力線14、24a 、 
24B 、 24C−永久磁石15〜1.8.25.2
7・・・特性曲線代理人弁理士 中 村 純之助 才 1 [・」 tdン ガj・ 21コヅ1( (1))
Figure 1 is an explanatory diagram of a conventional device, where (a) is a sectional view of the overall structure, (b) is a perspective view of the cathode material, and (C) is A of (b).
-A cross-sectional view on plane A', (d) is a characteristic curve diagram, FIG. 2 is a detailed explanatory diagram of the present invention, and (a) is a perspective view of the cathode material.
(b) is a sectional view taken along the plane BB' of (a), and (C) is a characteristic curve diagram. Explanation of symbols 1...Cathode electrode 2...High frequency power supply 3...Substrate electrode 4...Vacuum chamber 5...Substrate 11, 21...Cathode material 10, 2OA, 20B, 20G-Magnetic path 12 ,2
2A, 22B, 22G--magnetic field lines 14, 24a,
24B, 24C-Permanent magnet 15-1.8.25.2
7...Characteristic Curve Agent Patent Attorney Junnosuke Nakamura 1 [・” td Nga J・ 21 Kozu 1 ((1))

Claims (1)

【特許請求の範囲】[Claims] 一定圧力に保持した槽内にカソード電極と基板電極とを
配置して高周波電力を印加することで生じる放電プラズ
マによってカソード材料をスパッタさせるスパッタリン
グ装置において、同一カソード電極平面上に磁場によっ
て囲まれた環状領域を少なくとも2個形成させる磁場発
生手段を備えたことを特徴とするスパッタリング装置。
In a sputtering device that sputters cathode material by discharge plasma generated by placing a cathode electrode and a substrate electrode in a tank maintained at a constant pressure and applying high-frequency power, a ring-like structure surrounded by a magnetic field on the same cathode electrode plane is used. A sputtering apparatus comprising a magnetic field generating means for forming at least two regions.
JP5450384A 1984-03-23 1984-03-23 Sputtering device Pending JPS59190364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5450384A JPS59190364A (en) 1984-03-23 1984-03-23 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5450384A JPS59190364A (en) 1984-03-23 1984-03-23 Sputtering device

Publications (1)

Publication Number Publication Date
JPS59190364A true JPS59190364A (en) 1984-10-29

Family

ID=12972429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5450384A Pending JPS59190364A (en) 1984-03-23 1984-03-23 Sputtering device

Country Status (1)

Country Link
JP (1) JPS59190364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116774A (en) * 1983-11-30 1985-06-24 Nippon Texas Instr Kk Sputtering device
US5382344A (en) * 1991-08-02 1995-01-17 Anelva Corporation Sputtering apparatus
US5458759A (en) * 1991-08-02 1995-10-17 Anelva Corporation Magnetron sputtering cathode apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512732A (en) * 1978-07-14 1980-01-29 Anelva Corp Sputtering apparatus for making thin magnetic film
JPS5528386A (en) * 1978-08-21 1980-02-28 Vac Tec Syst Magnetron sputter apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512732A (en) * 1978-07-14 1980-01-29 Anelva Corp Sputtering apparatus for making thin magnetic film
JPS5528386A (en) * 1978-08-21 1980-02-28 Vac Tec Syst Magnetron sputter apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116774A (en) * 1983-11-30 1985-06-24 Nippon Texas Instr Kk Sputtering device
US5382344A (en) * 1991-08-02 1995-01-17 Anelva Corporation Sputtering apparatus
US5458759A (en) * 1991-08-02 1995-10-17 Anelva Corporation Magnetron sputtering cathode apparatus

Similar Documents

Publication Publication Date Title
EP0148504B2 (en) Method and apparatus for sputtering
JPH0816266B2 (en) Device for depositing material in high aspect ratio holes
KR20010042128A (en) Method and apparatus for deposition of biaxially textured coatings
JP2934711B2 (en) Sputtering equipment
JP3847866B2 (en) Sputtering equipment
JPH11500490A (en) Method and apparatus for sputtering magnetic target material
JPS59190364A (en) Sputtering device
JPS61194174A (en) Sputtering device
JPH03240944A (en) Method and device for focusing target sputtering for forming thin aluminum film
JP3944946B2 (en) Thin film forming equipment
EP0919066B1 (en) Magnetron
JPH0578831A (en) Formation of thin film and device therefor
JPH0878333A (en) Plasma apparatus for formation of film
JP2761893B2 (en) Sputtering equipment
JPS6233764A (en) Sputtering device
JPH05339726A (en) Magnetron sputtering device
JPS61204371A (en) Magnetic circuit device for cathode sputtering
JP2789251B2 (en) Sputtering equipment using dipole ring type magnetic circuit
JPH08325726A (en) Cathode
JP2621728B2 (en) Sputtering method and apparatus
JP2690909B2 (en) Magnetron sputtering apparatus and film forming method using the apparatus
JP2003096562A (en) Magnetron sputtering apparatus
JP3455616B2 (en) Etching equipment
JP2002060939A (en) Magnetron sputtering system, and thin film deposition method
JPH062128A (en) Ecr sputtering device