JPS59190332A - Production of galvanized steel plate for ultradeep drawing having extremely good secondary processability - Google Patents

Production of galvanized steel plate for ultradeep drawing having extremely good secondary processability

Info

Publication number
JPS59190332A
JPS59190332A JP6460483A JP6460483A JPS59190332A JP S59190332 A JPS59190332 A JP S59190332A JP 6460483 A JP6460483 A JP 6460483A JP 6460483 A JP6460483 A JP 6460483A JP S59190332 A JPS59190332 A JP S59190332A
Authority
JP
Japan
Prior art keywords
added
temperature
hot
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6460483A
Other languages
Japanese (ja)
Inventor
Yoshikuni Tokunaga
徳永 良邦
Masato Yamada
正人 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6460483A priority Critical patent/JPS59190332A/en
Priority to US06/539,678 priority patent/US4504326A/en
Priority to EP83110039A priority patent/EP0108268B1/en
Publication of JPS59190332A publication Critical patent/JPS59190332A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a galvanized steel plate for ultradeep drawing having extremely good secondary processability by galvanizing a steel plate contg. C, Si, Mn, P, Al, N, B, Ti, Nb, etc. in specific compsn. and compsn. relation. CONSTITUTION:A steel which consists of <=0.005% C, <=0.8% Si, <=1.0% Mn, <=0.1% P, 0.01-0.1% Al, <=0.005% N, and other unavoidable impurities, is further added with B, Ti and Nb in combination and contains the components satisfying the conditions 48/14(N%-0.003%)<=Ti%<=48/12C%+48/14N%, Nb%> 2C%, 0.003% <=Nb%<=0.04, Ti%+Nb%<0.06% is subjected to hot rolling at <=1,300 deg.C heating temp. for hot rolling then to descaling and cold rolling followed by continuous annealing at the temp. of the crystallization temp. or above and the Ac3 point or below and is further subjected to galvanizing, by which the galvanized steel plate having excellent deep drawability and the performance to suppress the generation of cracking by secondary processing in spite of severe deep drawing is obtd.

Description

【発明の詳細な説明】 本発明は極めて優れた二次加工性を有する超深絞シ用溶
融亜鉛めっき鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a hot-dip galvanized steel sheet for ultra-deep drawing which has extremely excellent secondary workability.

従来、連続焼鈍用の深絞シ性鋼板として、炭窒化物形成
元素を添加した極低炭素鋼が開発されているが、かかる
鋼板は苛酷な深絞)加工後に二次加工を受けると脆性的
に破壊する傾向を有しておシ、特にP、81.Mn等を
添加して高強度鋼板を製造する場合には、p、siは鋼
板を脆化させる性質が強いため、上記二次加工脆性は極
めて発生し易くなる BはCと同梯に結晶粒界を強化する働きがあるとされる
が、本発明者等は実際に調査検討した結果、B添加によ
る鋼板材質への影響は鋼種、製造条件によって様々に異
なるという以下の新規知見を得、これに基づき本発明を
完成したものである。
Conventionally, ultra-low carbon steels with added carbonitride-forming elements have been developed as deep-drawn steel sheets for continuous annealing, but such steel sheets become brittle when subjected to secondary processing after severe deep drawing. It has a tendency to destroy, especially P, 81. When manufacturing high-strength steel sheets by adding Mn, etc., P and Si have a strong property of embrittling the steel sheet, so the secondary work embrittlement described above is extremely likely to occur. B has crystal grains at the same level as C. However, as a result of actual research and study, the present inventors obtained the following new knowledge that the effect of B addition on steel sheet material varies depending on the steel type and manufacturing conditions. The present invention was completed based on the above.

Ti添加極低炭素鋼にBを添加した場合には、二次加工
性は改善される傾向を示すが、その改善効果は比較的小
さく、またB未添加材と比較して深絞シ性(r値)、延
性(Et )の劣化が極めて大きいものがある。Ti添
加鋼ではTiが鍋中のO,N。
When B is added to Ti-added ultra-low carbon steel, the secondary workability tends to be improved, but the improvement effect is relatively small, and the deep drawability ( r value) and ductility (Et) are extremely large. In Ti-added steel, Ti is O and N in the pot.

S、Cとの析出物形成傾向が極めて強いために粒界が極
めて清浄でおシ粒界強度は非常に弱い。Bを添加した場
合にも、脆弱な粒界の性質は残存するため、二次加工性
の改善効果は比較的小さいのである。
Since it has a very strong tendency to form precipitates with S and C, the grain boundaries are extremely clean and the grain boundary strength is very weak. Even when B is added, the brittle grain boundary properties remain, so the effect of improving secondary workability is relatively small.

Nb添加極低炭素鋼にBを添加した場合には、添加する
B量が微量の場合には二次加工性の改善効果は小さく、
逆に二次加工性全改善する効果が現れる程度にB添加量
全増加した場合には、前記Tl単独添加鋼と同様r値、
Etの劣化が極めて大きい。
When B is added to Nb-added ultra-low carbon steel, the effect of improving secondary workability is small if the amount of B added is small;
On the other hand, when the total amount of B added increases to the extent that the effect of completely improving secondary workability appears, the r value and
The deterioration of Et is extremely large.

かかる現象の原因は、Nb添加ホの場合には、窒化物形
成傾向がNb 、 ALと比較してBの方が大きいため
に、添加したBはBNヲ形成し、二次加工性を改善する
効果を有する固溶Bの状態で存在するものが少ないため
に微量のB添加時には効果が小さいものである。
The reason for this phenomenon is that in the case of Nb addition, B has a greater tendency to form nitrides than Nb and AL, so the added B forms BN and improves secondary workability. Since only a small amount of solid solution B exists in the form of effective B, the effect is small when a small amount of B is added.

固溶Bとして存在するB全確保するためにけNとBNを
形成する量以上のB量を添加する必要がある。
In order to ensure all the B present as solid solution B, it is necessary to add an amount of B that is greater than the amount that forms BN and N.

しヵ・しなからBNはr値、Et−tz劣化させる傾向
が強いために材質劣化が大きく深絞り用鋼板として好ま
しくない。更に、BNとなるB量は鋼中N量によって決
まるために、実機製造時のN含有量の変動全考慮すれば
、添加B量は安全性を考えて多くする必要がある。固溶
Bとして存在する場合においてもBは材質を劣化させる
傾向があることから、B添加量を多くする必要のあるN
b添加鋼では材質劣化、材質変動が罹めて大きい欠点を
有するのである。
Since BN has a strong tendency to deteriorate the r value and Et-tz, the material quality deteriorates significantly and is not preferred as a steel plate for deep drawing. Furthermore, since the amount of B that becomes BN is determined by the amount of N in the steel, the amount of B added needs to be increased in consideration of safety, taking into account all the fluctuations in the N content during actual manufacturing. Even when B exists as a solid solution, B tends to deteriorate the material, so it is necessary to increase the amount of B added.
B-added steel has major drawbacks such as material deterioration and material fluctuation.

本発明者等はB添加に起因する上記の問題点以外に、従
来の極低炭素系深絞p用鋼板は以下の欠点があるとの新
規知見金得た。
The present inventors have obtained new knowledge that, in addition to the above-mentioned problems caused by the addition of B, conventional ultra-low carbon deep-drawn steel sheets for p-use have the following drawbacks.

T1単独添加鋼は、Ti添加量をCとNの当量以下にし
た場合には、炭化物(Tic )が微細に析出するため
に延性、降伏強度、深絞シ性、時効性等の材質が著しく
劣化する傾向がある。従って深絞シ性に侵れた材質?得
るには、Ti添加量をCとNの当量以上にする必要があ
シ、この場合には固溶Cが鋼板中にほとんど存在せず二
次加工性は極めて劣化し、更にTi添加量が多く々るた
めに塗装下地処理として施されるリン酸塩処理性の劣化
が太きい。
In steel with the sole addition of T1, when the amount of Ti added is less than the equivalent amount of C and N, carbides (Tic) are finely precipitated, resulting in significant deterioration in material properties such as ductility, yield strength, deep drawability, and aging resistance. It tends to deteriorate. Therefore, is the material affected by deep drawing properties? In order to obtain Ti, it is necessary to make the amount of Ti added equal to or more than the equivalent amount of C and N. In this case, there is almost no solid solution C in the steel sheet, resulting in extremely poor secondary workability, and furthermore, if the amount of Ti added is Because of this, the phosphate treatment performed as a base treatment for painting deteriorates significantly.

Nb添加鋼では、熱延巻取温度、焼鈍温度、・焼鈍後の
冷却速度に対する制限である。Nb添加鋼では熱延で高
温巻取(巻取温度≧700℃)全必罰とする。通常の巻
取温度では完全再結晶温度が非常に高くなって連続焼鈍
炉の可能温度範囲(通常は約850℃以下)士は未再結
晶部が残っていたシ、またNb %の多少によって材質
の変動が大きい。これはA/J 、 NbCの生成に関
係しており、これら析出物が熱延板中にて十分な大きさ
を持った析出物になっていないために再結晶を抑制する
ためと考えられる。高温巻取を行なった場合には、熱延
コイルのコイル長手方向端部を除いては約800〜85
0℃の焼鈍温度で高いr値の鋼板が得られることは種々
報告されている通シである。これはAtN 、 NbC
の生成に関係し、高温巻取では熱延板中にこれら析出物
が、大きな寸法の析出物として生成するためでちる。し
かし高温巻取を行なうということはスケールが厚くなシ
酸洗能率を極端に落とすだけでなく、コイル端部は冷却
速度が速いために通常の巻取温度と同じ程度の材質とな
り、十分な材質が得られないので歩留シの低下はNb添
加鋼では特に大きいものがある。第2は冷却後の焼鈍V
・度と焼鈍後の冷却速度の問題である。たとえば特開昭
55−141526号、及び特開昭55−141555
号公報にある如く、高温(約900℃以上)で焼鈍する
とAtN 、 NbCが再溶解するために固溶C,Nが
出来て、焼鈍後徐冷をしなければ遅時効性にはならない
。従って操業性、経済性の面から問題となる。
For Nb-added steel, there are restrictions on hot rolling coiling temperature, annealing temperature, and cooling rate after annealing. For Nb-added steel, high-temperature coiling (coiling temperature ≧700°C) during hot rolling is mandatory. At normal coiling temperatures, the complete recrystallization temperature becomes very high, and in the continuous annealing furnace's possible temperature range (usually about 850°C or lower), some unrecrystallized parts remain. There are large fluctuations. This is related to the formation of A/J and NbC, and is thought to be because these precipitates do not have a sufficient size in the hot rolled sheet, thereby suppressing recrystallization. When high-temperature winding is performed, the temperature of the hot-rolled coil is about 800 to 85, excluding the longitudinal ends of the coil.
Various reports have shown that a steel plate with a high r value can be obtained at an annealing temperature of 0°C. This is AtN, NbC
This is related to the formation of large-sized precipitates in the hot-rolled sheet during high-temperature coiling. However, high-temperature winding not only drastically reduces pickling efficiency due to thick scales, but also because the cooling rate at the ends of the coil is fast, the material remains at the same temperature as the normal winding temperature. Since this is not possible, the reduction in yield is particularly large in Nb-added steel. The second is annealing V after cooling
・It is a matter of temperature and cooling rate after annealing. For example, JP-A-55-141526 and JP-A-55-141555.
As stated in the publication, when annealing at a high temperature (approximately 900° C. or higher), solid solution C and N are formed because AtN and NbC are redissolved, and slow aging cannot be achieved unless slow cooling is performed after annealing. Therefore, it becomes a problem from the viewpoint of operability and economy.

本発明は、これら従来のTi添加鋼及びNb添加鋼の持
つ欠点をなくした極めて耽れた二次加工性含有する超深
絞シ用溶融亜鉛めっき鋼板の製造に関するものである。
The present invention relates to the production of a hot-dip galvanized steel sheet for ultra-deep drawing, which eliminates the drawbacks of these conventional Ti-added steels and Nb-added steels and has excellent secondary workability.

即ち、本発明は優れた深絞シ性と苛酷な深絞如加工全受
は念場合にも二次加工割れの発生しにくい性能を有し、
熱延巻取条件に鈍感な溶融亜鉛めっき鋼板の製造方法の
提供上目的として行なわれたものでアリ、その妥旨とす
るところは下記のとおシである。
In other words, the present invention has excellent deep drawing properties and the ability to withstand severe deep drawing processes without causing secondary processing cracks even in the unlikely event of occurrence.
This was done for the purpose of providing a method for manufacturing hot-dip galvanized steel sheets that is insensitive to hot-rolling and winding conditions, and the rationale behind this is as follows.

(g  c : 0.005%以下、Si:0.8%以
下、Mn:1.0%以下、p:oyt%収下、ht:o
、 01〜0.1%、N:0.005%以下及び他の不
可4的不純物がら成シ、かつB 、 Ti 、 Nb 
f複合添加するととを必須榮件とし、Bは30 ppm
以下の範囲内で添加し、48           4
8 TtはTT [: N(%)−0,00a % :)≦
Tt(1≦TTcじ) + T7 N(%)の条件を満
たす範囲内で含有し、NbはNb(%)> 2 c(z
J)でかつ0.003%≦Nb(0,04%を満たす範
囲内の含有量でかつTl +Nb(%)<o、o 6チ
を満たす成分の鋼を加熱温度1300℃以下の条件で熱
間圧延し、次いで、脱スケール処理、冷間圧延後、連続
式溶融亜鉛めっ呑ラインにて再結晶温度以上A c s
点以下の温度で連続焼鈍し、次に溶融亜鉛めっきを施す
ことを特徴とする極めて優れた二次加工性を有する超深
絞シ用溶融亜鉛めっき鋼板の製造方法。
(g c: 0.005% or less, Si: 0.8% or less, Mn: 1.0% or less, p: oyt% yield, ht: o
, 01 to 0.1%, N: 0.005% or less and other impurities, and B, Ti, Nb
When F complex is added, B is 30 ppm.
Add within the following range, 48 4
8 Tt is TT [: N (%) - 0,00a %:)≦
It is contained within the range that satisfies the condition of Tt (1≦TTc) + T7 N (%), and Nb is contained within the range that satisfies the condition of Nb (%) > 2 c (z
J) and has a content within the range that satisfies 0.003%≦Nb (0.04%) and a composition that satisfies Tl + Nb (%) < o, o 6. After rolling, followed by descaling treatment and cold rolling, A cs
1. A method for producing a hot-dip galvanized steel sheet for ultra-deep drawing, which has extremely excellent secondary workability, characterized by continuous annealing at a temperature below 100 mL, and then hot-dip galvanizing.

(2)熱間圧延後600℃以上800℃以下の巻取温度
で巻き取シ、次いで冷間圧延を行ない、連続式溶融亜鉛
めっきラインにて再結晶温度以上Ac5変態点以下の温
度で焼なまし処理を行なった後、700℃から500℃
までの温度域全り℃/sec以上150℃/sec以下
の冷却速度で冷却し、次に溶融亜鉛めっきを施す特許請
求の範囲第1項記載の方法。
(2) After hot rolling, the coiling temperature is 600°C or higher and 800°C or lower, followed by cold rolling and annealing at a temperature higher than the recrystallization temperature and lower than the Ac5 transformation point in a continuous hot-dip galvanizing line. 700℃ to 500℃ after treatment
The method according to claim 1, wherein cooling is performed at a cooling rate of 150° C./sec or higher over the entire temperature range up to 150° C./sec, and then hot-dip galvanizing is performed.

本発明の基本原理全以下に述べる。本発明は鋼板中に存
在する固溶Bおよび固溶Cの粒界濃化によシ粒界強度を
著しく高め、極めて優れた二次加工性全付与することを
発明の根本思想とする。さらに、鋼中に添加したBを固
溶Bとして上記効果を発揮せしめるために、Ti ’(
i7複合添加する。複合添加するTiの効果は鋼中のN
 ’!r TiNとして析出固定することによシ、添加
したBがBN’i形成するの全妨げ、固溶Bとなすもの
である。従って、添加B量は微量で有効であシ、B添加
による延性(Et)、深絞シ性(r値)の劣化を抑制で
きる。更に、複合添加するNbの効果は、鋼中のCの一
部INbcとして析出固定し、固溶C量を実質的に非時
効となる如く低減することを目的とするものである。
The basic principles of the invention are fully described below. The fundamental idea of the present invention is to significantly increase the grain boundary strength by concentrating solid solution B and solid solution C present in the steel sheet at the grain boundaries, thereby providing extremely excellent secondary workability. Furthermore, in order to exhibit the above effects by converting the B added into the steel into a solid solution B, Ti'(
Add i7 complex. The effect of composite addition of Ti is that of N in steel.
'! r By precipitating and fixing as TiN, the added B completely prevents the formation of BN'i and forms solid solution B. Therefore, the amount of B added is effective even in small amounts, and the deterioration of ductility (Et) and deep drawability (r value) due to B addition can be suppressed. Furthermore, the effect of the combined addition of Nb is to precipitate and fix a portion of the C in the steel as INbc, thereby reducing the amount of solid solute C so as to substantially prevent aging.

本発明による鋼板が従来のT1単独添加鋼、Nb単独添
加鋼と比較して優れた深絞シ性と二次加工性を共に兼備
しているのは微量のB 、 Tit Nb’r複合添加
することによるものである。即ち、複合添加した微量の
Tiによって鋼中のNはTiNとして既に熱延加熱炉中
で析出固定されている。TiNは窒化物として極めて安
定であるので熱延、冷延、再結晶焼鈍の各工程において
何ら変化するものではなく、従って熱延の巻取温度や連
続焼鈍温度やその後の冷却速度によってその析出形態は
変わらない。
The reason why the steel sheet according to the present invention has superior deep drawing properties and secondary workability compared to conventional steels with only T1 added and steels with only Nb added is because of the combined addition of a small amount of B, Ti, and Nb'r. This is due to a number of reasons. In other words, N in the steel is already precipitated and fixed as TiN in the hot rolling furnace due to the small amount of Ti added in a composite manner. Since TiN is extremely stable as a nitride, it does not change at all during the hot rolling, cold rolling, and recrystallization annealing processes. Therefore, its precipitation form varies depending on the hot rolling coiling temperature, continuous annealing temperature, and subsequent cooling rate. remains unchanged.

鋼中に添加したBは窒化物形成傾向がTiに比べて小さ
いため、固溶Bとして存在し、微量の添加量で粒界強度
を高める効果を有するのである。これに対して、Nb単
独添加鋼にBを添加した場合、窒化物形成傾向はNb 
、 Atに比べてBの方が大きいため、添加したBはB
Nを形成する。従ってB添加量が少ない場合は二次加工
性全改善する効果を有する固溶Bが存在しない(BはB
Nとして存在)ために、二次加工性改善効果はない。固
溶Bとして存在するB全確保するにはNとBNヲ形成す
る量以上のBi添加する必要があるが、BN及び固溶B
はr値、Eti劣化させる傾向が強いために、B添加量
を多くすることは材質劣化を招き深絞り用鋼板として好
ましくない。また、Ti単独添加鋼にBt添加した場合
は、公知の如く、B未添加材と比較してr値、Elの劣
化が極めて大きい。更に、Tiは鋼中のO,N、S、C
との析出物形成傾向が極めて強いために粒界が極めて清
浄で粒界強度は非常に弱い。従ってBを添加して脆弱な
粒界の性質を改善するためにはB添加量を多くする必要
があるが、これは材質の観点から好ましくない。これに
対して本発明に従って添加されるTiはN i TiN
として析出固定するための役割をなすものでsb、上記
Ti単独添加鋼にみられる欠点を引き起こすものではな
い。
Since B added to steel has a smaller tendency to form nitrides than Ti, it exists as solid solution B, and has the effect of increasing grain boundary strength with a small amount of addition. On the other hand, when B is added to Nb-only steel, the tendency of nitride formation is
, Since B is larger than At, the added B is
Form N. Therefore, when the amount of B added is small, there is no solid solution B that has the effect of completely improving secondary processability (B is
(Existence as N), there is no effect on improving secondary workability. In order to secure all the B present as solid solution B, it is necessary to add more than the amount of Bi that forms N and BN.
Since B has a strong tendency to deteriorate the r value and Eti, increasing the amount of B added causes material deterioration and is not preferable as a steel sheet for deep drawing. Furthermore, when Bt is added to a steel with only Ti added, as is known, the r value and El deteriorate significantly compared to a material without B addition. Furthermore, Ti is O, N, S, C in steel.
Since the tendency to form precipitates is extremely strong, the grain boundaries are extremely clean and the grain boundary strength is very weak. Therefore, in order to improve the properties of brittle grain boundaries by adding B, it is necessary to increase the amount of B added, but this is not preferable from the viewpoint of material quality. On the other hand, Ti added according to the present invention is N i TiN
It plays the role of precipitating and fixing as sb, and does not cause the drawbacks seen in the above-mentioned Ti-only steel.

添加B量を種々の添加量で変化させた本発明による鋼と
上記Tj、Nb単独添加鋼の材質を繰シ返し比較調査し
た結果においても本発明による鋼板は延性、深絞シ性が
最も優れており、二次加工性の点からも、明確な優位性
を示した。
The results of repeated comparative studies of the materials of the steel according to the present invention in which the amount of B added was varied in various amounts and the above-mentioned steel with only Tj and Nb added showed that the steel sheet according to the present invention had the best ductility and deep drawability. It also showed clear superiority in terms of secondary processability.

本発明による@はB+ Tjと共にNbが複合添加され
るものであるが、Ti 、 Nbの共存によp (Ti
、Nb)Cの如き複合析出物が熱間圧延時の仕上前(即
ちオーステナイト温度域)から形成されて析出を始める
ために巻取温度が低目でもかなシ良好な材質を得ること
ができる。
@ according to the present invention is one in which Nb is added in combination with B + Tj, but due to the coexistence of Ti and Nb, p (Ti
, Nb)C, etc. are formed and begin to precipitate before finishing during hot rolling (i.e., in the austenite temperature range), so a material with good quality can be obtained even at a low coiling temperature.

本発明に従って得られた鋼板が従来のNb単独添加鋼と
比較して優れた材質特性を有するのは、■NをTiNと
して析出固定することにょシ微量B添加によシ安定して
二次加工性を著しく向上できる点■NをTjNとして熱
延加熱炉中で既に析出させてNに起因する巻取温度の材
質への変動要因をなくした点■Ti、Nbの複合添加に
ょシ(Tl 、Nb) Cの如き複合析出物を仕上前か
ら形成して巻取温度が低目でもかなシ良好な材質を得る
ことができる点にある。
The reason why the steel sheet obtained according to the present invention has superior material properties compared to the conventional steel with only Nb added is that it is possible to stabilize the secondary processing by adding a small amount of B to the precipitation and fixation of N as TiN. ■ The fact that N is already precipitated in the hot rolling heating furnace as TjN, eliminating the factor of variation in the coiling temperature caused by N. ■ The combined addition of Ti and Nb (Tl, Nb) The advantage of this method is that composite precipitates such as Nb) and C can be formed before finishing, and a material with good flexibility can be obtained even at a low winding temperature.

次に本発明による鋼の成分範囲について述べる。Next, the composition range of the steel according to the present invention will be described.

まずB添加量についてtit 30 ppm以下の範囲
内で添加する必要がある。本発明による鋼におけるBの
添加は二次加工性の向上効果にあシ、その効果は固溶状
態で存在するBによるものである。本発明による鋼では
Tiの複合添加によpNをTiNとして析出せしめてい
るため、添加したBは固溶Bとなシ添加量は微量で十分
に有効である。B添加量が増加するとr値、 Etが若
干劣化する傾向にあシ超深絞シ用鋼板という本発明によ
る鋼の特性から上限を30 ppmとする。最も望まし
くは2 ppm以上25 ppm以下の添加量である。
First, it is necessary to add B in an amount of tit 30 ppm or less. The addition of B to the steel according to the present invention has the effect of improving secondary workability, and this effect is due to B existing in a solid solution state. In the steel according to the present invention, pN is precipitated as TiN by the combined addition of Ti, so that the added B becomes solid solution B, and even a small amount is sufficiently effective. As the amount of B added increases, the r value and Et tend to deteriorate slightly.From the characteristics of the steel according to the present invention, which is a steel plate for ultra-deep drawing, the upper limit is set at 30 ppm. The most desirable addition amount is 2 ppm or more and 25 ppm or less.

TiはNを固定してその害をなくすために添加す8 るものであ弘−HCN(@−o、o O3es 〕以上
の添加を必要とする。即ちTi添加量の下限は、計算上
Tlで析出固定できないN量が30 ppm以下である
。通常のアルミキルド鋼では30 ppmのNは悪影響
を及ばず量であるがTiを複合添加すると、TINを析
出核としてAtNが析出した(Ti、At)N の複合
析出物が形成され、極めて高温から安定析出物となるた
め、実質上全N量をTiNとして析出させたのと同様の
効果を有するとの知見を得た。上記効果を十分顕著なら
しめるには0.002%以上のTI添加が望ましい。ま
たCとNの和の当量を超えて添加するとTi添加鋼と同
様の性質が強くなシ、二次加工割れが48    48 発生し易くなるため、上限をπC(%狂l 4 N(支
))未満とする。延性、降伏強度および経済的観点から
は8 Ti添加量はTicを生成しない14N(チ)以下で0
.025係以下が最も好ましい。
Ti is added to fix N and eliminate its harmful effects, and it is necessary to add more than HCN (@-o, o O3es).In other words, the lower limit of the amount of Ti added is calculated as Tl. The amount of N that cannot be precipitated and fixed is 30 ppm or less.In ordinary aluminum killed steel, 30 ppm of N has no adverse effect, but when Ti is added in combination, AtN precipitates using TIN as precipitation nuclei (Ti, At ) Since a composite precipitate of N is formed and becomes a stable precipitate even at extremely high temperatures, it was found that it has the same effect as precipitating substantially all of the N as TiN. For smoothing, it is desirable to add 0.002% or more of Ti.Additionally, if it is added in an amount exceeding the equivalent of the sum of C and N, the properties similar to those of Ti-added steel will be strong, and secondary processing cracks will easily occur. Therefore, the upper limit is set to less than πC (% deviation l 4 N (support)).From the viewpoint of ductility, yield strength, and economics, the amount of Ti added is 0 at 14 N (ti) or less, which does not generate Tic.
.. 025 or less is most preferable.

Nbの添加量は、複合析出物を形成するためには2C←
)以上の添加を必要とし、かつ0.0031未満ではそ
の効果は小さく、またNb添加量が0.04%以上の場
合はNbCの組成に近い析出物になシ、Nb単独添加鋼
の持つ欠点が如実に現れることになシ望壕しくない。最
も好ましくはNb< 0.025%の添加量で束る。
The amount of Nb added is 2C← in order to form a composite precipitate.
), and if it is less than 0.0031, the effect is small, and if the amount of Nb added is 0.04% or more, there will be no precipitates with a composition close to that of NbC, which is a disadvantage of steel with only Nb added. It doesn't seem like it's going to show up clearly. Most preferably, it is bundled with an added amount of Nb<0.025%.

なお冷延鋼板は、塗装下地処理としてリン酸塩処理(?
ンデ処理)を施されるが、いわゆるボンデ性に゛も優れ
たものである必要がある。しかし、極低炭素鋼では、N
b+Tiを添加するとボンデ性が大きく劣化する性質が
ある。特に溶接部をグラインダー手入れして新生面の露
出した場所についても良好な化成処理性を保障するにf
d Tl 、Nb添加量をTi(%)+Nb(@< 0
.06%に制限することが必要である。最も望ましくは
Tj(%)+Nb優)(0,05チの範囲である。
Cold-rolled steel sheets are treated with phosphate (?) as a base treatment for painting.
However, it must also have excellent bonding properties. However, in ultra-low carbon steel, N
Addition of b+Ti has the property of significantly degrading bonding properties. In particular, it is necessary to clean the welded part with a grinder to ensure good chemical conversion properties even in areas where new surfaces are exposed.
d Tl, Nb addition amount as Ti (%) + Nb (@< 0
.. It is necessary to limit it to 0.6%. The most desirable range is Tj (%) + Nb (excellent) (0.05 chi).

次にB 、 Ti 、 Nb以外の元素の範囲について
記す。Cは量が多いと必然的にCを固定するだめのNb
量が多くなシ、製造コストが高くなシ、また複合析出物
の生成量が増えるため、析出強化要素が犬きくな多材質
の低下を招く。このためo、o o s%以下とする。
Next, the range of elements other than B, Ti, and Nb will be described. When the amount of C is large, Nb inevitably fixes C.
The amount is large, the manufacturing cost is high, and the amount of composite precipitates produced increases, leading to a decrease in multi-material properties where precipitation strengthening factors are too strong. Therefore, it is set to o, o s% or less.

Siは高強度鋼板にする場合添加することがあるが、脆
性を助長する元素であり、がっ化成処理性を阻害する元
素でもあシ、0.8チ以下にすべきである。Mnも高強
度化するに際して、使用することができる。しかしr値
を劣化させる性質があること、合金鉄のコストが高いこ
とから1. Oq6以下にする。Pは最も強化能の大き
な元素であシ、高強度化する場合添加されるが、多量に
含まれると粒界偏析量が多くなって脆化、即ち二次加工
割れをひき起こすので上限はO,1%とする。
Si may be added when making a high-strength steel sheet, but it is an element that promotes brittleness and inhibits chemical conversion treatment, so the content should be 0.8 or less. Mn can also be used to increase the strength. However, because it has the property of deteriorating the r value and the cost of ferroalloy is high, 1. Keep it below Oq6. P is the element with the greatest strengthening ability and is added to increase strength, but if it is included in a large amount, the amount of grain boundary segregation increases and causes embrittlement, that is, secondary work cracking, so the upper limit is O. , 1%.

Nは、(TI 、At)Nとして実質的に全N量が固定
されるが、N含有量が多いと、Tl添加量も多く必要に
なるので0.005%以下とする。C,Nを50 pp
m以下の極低量範囲に制限することによシ、析出物量が
減少し延性が良好で降伏強度が低くなり、T f 、N
b添加量が増加した場合の悪影響は軽減される傾向を示
す。
Substantially the total amount of N is fixed as (TI 2 , At)N, but if the N content is large, a large amount of Tl is required to be added, so it is set to 0.005% or less. 50 pp of C and N
By limiting the amount to an extremely low amount of less than m, the amount of precipitates is reduced, the ductility is good, the yield strength is low, and T f , N
When the amount of b added increases, the negative effects tend to be alleviated.

次に製造条件について述べる。Next, the manufacturing conditions will be described.

本発明による鋼はNをTiによって析出固定することに
よシ無害化しておシ、またTI 、Nbの徐合添加にょ
V> (Ti、Nb)C複合析出物を高温から析出はせ
ているが、熱延加熱温度を1300℃以下とすることに
よシ、これら析出物あるいは析出核が加熱炉中で十分存
在することになる。この結果、特許請求の範囲に示す微
量のTi添加量で実質上全N量を(Ti、AL)Nとし
て析出させることが可能となりたものであシ、また、(
TI、Nb)C複合析出物が仕上前の高温域から析出し
始めることになる。従って、低目の巻取温度でも、熱延
板の状態で析出物がかなシ凝集し、巻取温度に鈍感な材
質挙動を示すとの新規知見を得たのである。加熱温度を
1300℃以下に制限することによシ、析出物の凝集匠
がよくなシ、その悪影響が低下することから、Ti添加
量、Nb添加量の上限も若干緩和される。また、材質特
VCr値が向上することから二次加工性に対しても好影
響を与え、B添加効果は顕著に現われ2ppm以上の添
加量で十分有効である。
In the steel according to the present invention, N is rendered harmless by precipitating and fixing it with Ti, and due to the gradual addition of Ti and Nb, (Ti, Nb)C composite precipitates are precipitated at high temperatures. However, by setting the hot rolling heating temperature to 1300° C. or lower, these precipitates or precipitation nuclei are sufficiently present in the heating furnace. As a result, it has become possible to precipitate substantially the entire amount of N as (Ti, AL)N with the small amount of Ti added as shown in the claims, and (
TI, Nb)C composite precipitates begin to precipitate in the high temperature range before finishing. Therefore, we have obtained the new knowledge that even at a low coiling temperature, the precipitates are slightly aggregated in the hot rolled sheet state, and the material behavior is insensitive to the coiling temperature. By limiting the heating temperature to 1,300° C. or less, the agglomeration of precipitates is improved and the adverse effects thereof are reduced, so the upper limits of the amounts of Ti and Nb added are also slightly relaxed. In addition, since the material characteristic VCr value is improved, it has a positive effect on secondary workability, and the effect of B addition is remarkable and is sufficiently effective when added in an amount of 2 ppm or more.

析出物の粗大凝集を促進することは化成処理性に対して
も好影響を及ぼし、Ti+ Nb添加量総和の上限を緩
和する。即ち(Ti、Nb)C、(Ti、At)N等の
析出物はF e s Cに比べて酸に溶解しに−くいた
め、リン酸塩結晶が析出しにくく、化成処理性に悪影響
を及ぼすものであるが、凝集させることで、かか   
□る析出物密度が減少し、化成処理性が改善嘔れるので
ある。
Promoting the coarse aggregation of precipitates also has a positive effect on chemical conversion treatment properties, relaxing the upper limit of the total amount of Ti+Nb added. In other words, precipitates such as (Ti, Nb) C and (Ti, At) N are less soluble in acids than Fe s C, so phosphate crystals are difficult to precipitate, which adversely affects chemical conversion treatment properties. However, by agglomerating it, it can be
□The precipitate density decreases, and chemical conversion treatment properties improve.

本発明では他の熱間圧延条件は特に規定する必要はない
。ただし熱延仕上温度が低下するに伴いr値、 Etが
低下する傾向があることから850℃以上の仕上温度が
好ましい。巻取温度に関しても前記理由により特に規定
する必要はないが、めっき層の密着性と二次加工性を良
くするために600℃以上800℃以下の巻取温度とす
るのが好ましい。
In the present invention, there is no need to particularly specify other hot rolling conditions. However, since the r value and Et tend to decrease as the hot rolling finishing temperature decreases, a finishing temperature of 850° C. or higher is preferred. Although there is no need to specify the winding temperature for the above reasons, the winding temperature is preferably 600° C. or higher and 800° C. or lower in order to improve the adhesion and secondary processability of the plating layer.

冷間圧延条件についても特に規定する必要はない。冷延
率を増加するに伴い深絞シ性は向上する傾向があシ、二
次加工脆性割れは鋼板のr値が高い程発生し難いことか
ら、本発明による鋼の特性を更に優位づけるためには5
0%以上の冷延率が最も好ましい。本発明による鋼Vi
Ti 、Nb添加量が微量でよいため再結晶温度は低い
が、冷延率を増加することは更に再結晶温度を低下させ
焼鈍温度を下げることに対しても有効である。
There is no need to particularly specify the cold rolling conditions. Deep drawing resistance tends to improve as the cold rolling rate increases, and secondary work brittle cracking is less likely to occur as the r value of the steel sheet increases. 5 for
A cold rolling ratio of 0% or more is most preferred. Steel Vi according to the invention
Although the recrystallization temperature is low because only a small amount of Ti and Nb is added, increasing the cold rolling rate is effective in further lowering the recrystallization temperature and lowering the annealing temperature.

焼鈍条件については再結晶温度以上Acy、点以下の温
度で連続焼鈍することとする。箱型焼鈍は冷却速度が極
めて遅いため、冷却中にPの粒界への拡散が起こ9望ま
しくない・ 本発明に従い溶融亜鉛めっき鋼板を製造する場合、既述
の如く熱間圧延後600℃以上800℃以下の巻取温度
で巻き取シ、焼なまし処理後の冷却過程で700℃から
500℃までの温度域を2℃/sec以上150℃/B
ee以下の冷却速度で冷却するのが好ましい。TI、B
は焼なまし処理及びその後の冷却過程で表面濃化し、溶
融亜鉛めっきを行なうと、(Tt、B、zn)合金相を
形成する。この合金層は脆弱であるだめにプレス成形時
にめっき層が脆性的に剥離する現象を起こす原因となる
。600℃以上800℃以下の巻取温度で巻き取ること
によυ、熱延板においてT1.Bが表面濃化し、その濃
化層が脱スケール工程で除去されるため、焼鈍工程での
T i+ Hの表面濃化が抑制され良好な密着性が得ら
れるものである。かかる巻取温度を採ることによ、9B
は熱延板中で既に粒界へ濃化することから二次加工性に
対しても有利である。600℃未満の巻取温度ではTL
Bの表面濃化が十分に起こらず、逆罠800℃を超える
場合は酸化膜厚さが極めて厚くなシ、脱スケール工程で
局部的に除去できない部分が残シ易くめっき密着性が劣
化しまた、焼なまし処理後の冷却過程での700℃から
500℃までの冷却速度が150℃/ 1H1eを超え
るとめっき時の鋼板形状が劣化しめっき層密着性が劣シ
、Bの粒界濃化が起こシにくいため一次加工性改善効果
が小さい。逆に2℃/see未満ではPの粒界偏析のた
めに二次加工割れの発生が起こシ易くなると共に経済効
率的でなく不適当である。
Regarding the annealing conditions, continuous annealing is performed at a temperature above the recrystallization temperature and below Acy point. Since the cooling rate of box type annealing is extremely slow, diffusion of P into the grain boundaries occurs during cooling, which is undesirable9. When producing hot-dip galvanized steel sheets according to the present invention, as mentioned above, the temperature is 600°C or higher after hot rolling. Winding is performed at a winding temperature of 800°C or less, and the temperature range from 700°C to 500°C is 2°C/sec or more and 150°C/B during the cooling process after annealing.
It is preferable to cool at a cooling rate of ee or less. T.I., B.
is concentrated on the surface during the annealing treatment and subsequent cooling process, and forms a (Tt, B, zn) alloy phase when hot-dip galvanizing is performed. This alloy layer is brittle and causes a phenomenon in which the plating layer brittlely peels off during press molding. By winding at a winding temperature of 600°C or more and 800°C or less, the hot rolled sheet has T1. Since B is concentrated on the surface and the concentrated layer is removed in the descaling step, surface concentration of T i+ H in the annealing step is suppressed and good adhesion is obtained. By adopting such a winding temperature, 9B
It is also advantageous for secondary workability because it already concentrates at the grain boundaries in the hot-rolled sheet. TL at winding temperature below 600℃
If the surface concentration of B does not occur sufficiently and the reverse trap temperature exceeds 800°C, the oxide film will be extremely thick, and parts that cannot be removed locally during the descaling process will easily remain, resulting in poor plating adhesion. If the cooling rate from 700°C to 500°C in the cooling process after annealing exceeds 150°C/1H1e, the shape of the steel sheet during plating will deteriorate, the adhesion of the plating layer will be poor, and B will become concentrated at grain boundaries. Since this is difficult to occur, the effect of improving primary workability is small. On the other hand, if it is less than 2° C./see, secondary processing cracks are likely to occur due to grain boundary segregation of P, and it is not economically efficient and inappropriate.

本発明の技術思想は連続焼鈍で製造する冷延鋼板、溶融
アルミめっき銅板、スズめっき鋼板、クロムめっき鋼板
をはじめとする表面処理鋼板−更に再結晶温度が低いこ
とから極薄鋼板の製造にも適用可能である。
The technical concept of the present invention is applicable to the production of surface-treated steel sheets such as cold-rolled steel sheets, hot-dip aluminized copper sheets, tin-plated steel sheets, and chrome-plated steel sheets manufactured by continuous annealing, as well as ultra-thin steel sheets due to the low recrystallization temperature. Applicable.

以下、本発明の実施例について述べる。Examples of the present invention will be described below.

実施例1 第1表に示す成分の鋼スラブを溶製し、第1表に示す熱
延条件によシ熱間圧延をした。仕上温度はいずれも89
0〜910℃である。熱延板厚さは3.8mmであシ、
酸洗後0.8 aに冷間圧延した後、連続式溶融亜鉛メ
ツキラインにて片面溶融亜鉛メッキ鋼板を製造した。焼
鈍サイクルは約10℃/8 e eで780〜820℃
まで加熱して、該温度範囲に40秒保持した後、室温ま
で平均冷速50〜1.00℃/[IeCで冷却した。第
1図は焼鈍サイクルを示す。
Example 1 Steel slabs having the components shown in Table 1 were melted and hot rolled under the hot rolling conditions shown in Table 1. The finishing temperature is 89 in both cases.
The temperature is 0 to 910°C. The hot rolled plate thickness is 3.8mm.
After pickling and cold rolling to a thickness of 0.8 a, a single-sided hot-dip galvanized steel sheet was produced on a continuous hot-dip galvanizing line. Annealing cycle is 780-820℃ at approximately 10℃/8e
After heating to 40 seconds and maintaining the temperature range for 40 seconds, it was cooled to room temperature at an average cooling rate of 50 to 1.00° C./[IeC. FIG. 1 shows an annealing cycle.

スキンパスi0.8%かけた後材質試験に供してその結
果を化成処理性、二次加工割れ試験の結果と共に第2表
に示す。巻取温糺の高い一部の材料については熱延コイ
ル長手方向中心部(上段)、長手方向端部(下段)相当
位置の材質を示した。
After applying 0.8% skin pass i, the material was subjected to a material test and the results are shown in Table 2 together with the results of the chemical conversion treatment and secondary processing cracking tests. For some materials with high winding resistance, the materials at positions corresponding to the longitudinal center (upper row) and longitudinal ends (lower row) of the hot-rolled coil are shown.

**)、***)化成処理方法および評価(1)  供
試材は**)Kついてはスキンパス壜まのFe面側を用
いた。***) VCついてはグラインダー手入れして
新生面を露出させた場合について行なった。
**), ****) Chemical conversion treatment method and evaluation (1) As for the sample material **) For K, the Fe side of the Skinpass bottle was used. ***) VC was performed when the grinder was cleaned and the new surface was exposed.

(2)処理液はフォスフオフイライト(Zn2F8(P
O4)2)系浸漬処理型柔剤で日本にインド製GrSD
−2000を使用した。これをAT16〜18.zn+
1ooo±200ppm + Fe  50〜loOp
pmK調整したものに試料を120秒浸漬して行なった
(2) The treatment liquid is phosphofluorite (Zn2F8(P)
O4) 2) GrSD made in India in Japan with soaking treatment type softener
-2000 was used. This is AT16-18. zn+
1ooo±200ppm + Fe 50~loOp
The test was carried out by immersing the sample in a pmK-adjusted solution for 120 seconds.

(3)評価は走査型電子顕做鈍にょ91000倍の写真
でリン酸塩結晶の密度、サイズを判定することによシ行
なった。(○:良好、△ニ一部に不良部有シ、×:不良
) 本発明による銅(供試鋼Al−5ンはいずれも良好な結
果を示している。供試鋼A6はTi、Nb添加舒が多い
(Tj((へ)十Nb((6)>0.06%)ために化
成処理性が劣る。扁7は熱延加熱温度が高いために、T
jの複合添加効果が小さく AIと比較して材質、二次
加工性が劣る。A8はBを添加していないために二次加
工割れが発生し易く、逆にA9はB添加量が多過ぎてY
P、Et、r値が良くない。A 10 i’i Ti添
加量が多いためKSTl添加鋼に近い性質となシ、二次
加工性、化成処理性が劣る。Al lはNb量が少ない
ため固溶Cが多くなシ、時効性が大きく材質も劣る。A
12はNb量が多すぎてNb添加鋼に近い材質となシフ
00℃以下の巻取温度では良好な材質が得られない。A
I 3〜15FiTiを添加しない材料で、この場合H
BはNとBNを形成するためにBによる二次加工性改善
効果がない(A13)。
(3) Evaluation was carried out by determining the density and size of phosphate crystals using a scanning electron microscopy photograph at a magnification of 91,000 times. (○: good, △: defective in some parts, ×: poor) Copper according to the present invention (sample steel Al-5) all showed good results. Test steel A6 showed Ti, Nb Chemical conversion treatment properties are poor due to the large amount of added steel (Tj ((6)>0.06%).
The composite addition effect of j is small, and the material quality and secondary workability are inferior compared to AI. Since A8 does not contain B, secondary processing cracks are likely to occur, and on the other hand, A9 has too much B added, resulting in Y
P, Et, r values are not good. A 10 i'i Since the amount of Ti added is large, the properties are similar to those of KSTl-added steel, and the secondary workability and chemical conversion treatment properties are inferior. Since Al has a small amount of Nb, it has a large amount of solid solution C, and has a high aging property and is inferior in material quality. A
No. 12 contains too much Nb and has a material similar to Nb-added steel, and a good material cannot be obtained at a winding temperature of less than 00°C. A
I 3-15FiTi is not added, in this case H
Since B forms BN with N, B has no effect of improving secondary workability (A13).

また巻取温度の低い場合(A 14 ) K材質劣化が
大きい。Al 5の如くB添加量を増やすと二次加工性
は改善されるが、材質が劣る。A l 6 、 l 7
はT1添加鋼にNbを添加せずにBだけを添加した場合
であるが、この場合はB添加による。材質劣化が大きく
、二次加工性自体の改善効果が小さく、更に化成処理性
が劣る。
Further, when the winding temperature is low (A 14 ), the K material deteriorates significantly. If the amount of B added is increased as in Al 5, the secondary workability is improved, but the material quality is inferior. A l 6, l 7
is the case where only B was added without adding Nb to the T1-added steel; in this case, B was added. Material deterioration is large, the effect of improving secondary workability itself is small, and chemical conversion treatment properties are also poor.

実施例2 第1表に示すA2,4の成分の鋼スラブを用いて加熱温
度1200℃、仕上温度900℃で、巻取温度は第5表
に示す条件にて熱間圧延を行ない、3.2間圧のコイル
とした。酸洗、冷間圧延を行なって0.8 、のコイル
とした後、第2図に示すサイクルで合金化溶融亜鉛めっ
き鋼板を製造した。
Example 2 A steel slab having components A2 and 4 shown in Table 1 was hot rolled at a heating temperature of 1200°C, a finishing temperature of 900°C, and a coiling temperature shown in Table 5.3. It was a coil with two pressures. After pickling and cold rolling to obtain a coil of 0.8 mm, an alloyed hot-dip galvanized steel sheet was manufactured using the cycle shown in FIG.

700℃から500℃までの平均冷却速度は第5表に示
す。かかる条件によって得られた溶融亜鉛めっき鋼板の
めっき層密着性と二次加工性を第5表に示す。引張特性
値は、第2表、第4表の結果とほとんど一致した値を示
したため割愛した。
The average cooling rate from 700°C to 500°C is shown in Table 5. Table 5 shows the plating layer adhesion and secondary workability of the hot-dip galvanized steel sheets obtained under these conditions. The tensile property values were omitted because they showed almost the same values as the results in Tables 2 and 4.

第3表 注)*)試験法及び評価は実施例2と同じ。Table 3 Note) *) Test method and evaluation are the same as in Example 2.

**)金属材料曲げ試験(JIS Z2248)IT折
シ曲げ、曲げ円面をテープで剥離し、テープに付着した
めっき層の量で密着性を評価した。
**) Metal material bending test (JIS Z2248) IT bending, the bent circular surface was peeled off with a tape, and the adhesion was evaluated by the amount of the plating layer attached to the tape.

巻取温度が600℃未満の場合は、熱延板の状態でTi
 、Bの表面濃化が起こらないために密着性が劣る。8
00℃を超える巻取温度の場合ll−を酸洗時に局部的
にスケールの残存部があるため密着性が劣ったものであ
る。また、700〜500℃迄の冷却速度が2℃/se
C未満の場合は冷却中にPの粒界濃化が起こシ易いため
二次加工性が劣pTI、Hの表面濃化のために密着性も
劣化する傾向を示す。逆に150℃/Bec以上の場合
はBが粒界濃化しにくいため、二次加工性改善効果は小
さく、板形状も良好なものでないため密着性が劣る。
When the coiling temperature is less than 600°C, Ti
, B does not concentrate on the surface, resulting in poor adhesion. 8
When the coiling temperature exceeds 00°C, adhesion is poor because there are localized scale residues during pickling of ll-. In addition, the cooling rate from 700 to 500°C is 2°C/se.
If it is less than C, grain boundary concentration of P tends to occur during cooling, resulting in poor secondary workability, and surface concentration of pTI and H tends to deteriorate adhesion. On the other hand, when the temperature is 150° C./Bec or higher, B is difficult to concentrate at grain boundaries, so the effect of improving secondary workability is small, and the plate shape is not good, resulting in poor adhesion.

従って、良好なめっき層密着性と優れた二次加工性を有
した溶融亜鉛めっき鋼板を得るには巻取温度を600℃
以上800℃以下、焼なまし処理後の冷却速度を2℃/
see以上150℃/ B e C以下にする必要があ
る。
Therefore, in order to obtain a hot-dip galvanized steel sheet with good coating layer adhesion and excellent secondary workability, the coiling temperature should be set at 600°C.
Above 800℃, the cooling rate after annealing is 2℃/
It is necessary to keep the temperature above 150℃/B e C.

実施例3 第4表に示す成分の鋼スラブを用いて加熱温度1180
℃、仕上温度890℃、巻取温度680℃にて熱間圧延
し、3.81mnのコイルとした。酸洗、冷間圧延を行
なって0.8flのコイルとした後、第2図に示すサイ
クルで再結晶焼鈍2合金化溶融亜鉛メッキ処理を行ない
スキンパスを0.8係かけた後材質試験に供した。その
結果を第5表に示す。
Example 3 A steel slab with the composition shown in Table 4 was heated at a heating temperature of 1180℃.
It was hot rolled at a finishing temperature of 890°C and a winding temperature of 680°C to form a coil of 3.81 mm. After pickling and cold rolling to make a 0.8fl coil, it was subjected to recrystallization annealing, two-alloying hot-dip galvanizing, and a skin pass of 0.8 in the cycle shown in Figure 2, and then subjected to material testing. did. The results are shown in Table 5.

従来、高r値を有する高強度鋼板はTS−40に9f/
m1l12級が限界であった。これは更に強度を付与す
るためKはP 、 Si等の強化元素を添加する必要が
あるが、これらの元素は著しく脆化を促進するために二
次加工割れを起こし易いことが阻害要因であった。Bを
添加して二次加工性を改善することを試みれば材質が著
しく劣化するとの欠点も同時に有していたものである。
Conventionally, high-strength steel sheets with high r-values are TS-40 with 9f/
The limit was m1l12 class. This requires the addition of reinforcing elements such as P and Si to K in order to give it further strength, but this is hindered by the fact that these elements significantly promote embrittlement and are likely to cause secondary processing cracks. Ta. It also had the disadvantage that if an attempt was made to improve the secondary workability by adding B, the material would deteriorate significantly.

第5表に示す如く、従来のTi、Nb単独添加鋼にBを
添加すると、材質が著しく劣化すると共に微量のBでは
二次加工性改善効果も非常に小さい。本発明鋼は微量の
B添加量で二次加工性は著しく優れたものとなシ、材質
の観点でも、B添加、P。
As shown in Table 5, when B is added to the conventional steel with only Ti and Nb added, the material quality deteriorates significantly, and the effect of improving secondary workability is very small with a small amount of B. The steel of the present invention has extremely excellent secondary workability even with a small amount of B added, and from the viewpoint of material quality, B addition and P.

Si、Mn添加の悪影響がない。従って本発明鋼は強度
の高い高強度鋼板や、二次加工性を起こし易い厚手鋼板
の製造に関しても極めて有利なものである。また、めっ
き密着性も極めて良好である0
There is no adverse effect of adding Si or Mn. Therefore, the steel of the present invention is extremely advantageous in the production of high-strength steel plates and thick steel plates that are susceptible to secondary workability. In addition, the plating adhesion is extremely good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明実施例における熱処理サイ
クルを示す説明図である。 第1 図 第2図
FIGS. 1 and 2 are explanatory diagrams showing a heat treatment cycle in an embodiment of the present invention. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 (i)  c : 0.005%以下、St: o、s
%以下、Mn:1.0%以下、P : o、i%以下、
At: o、 0.1〜0.1%、N:0.005%以
下及び他の不可避的不純物から成シ、かつB 、 Tt
 、 Nbを複合添加することを必須条件とし、Bは3
0 ppm以下の範囲内で添加し、+48N(イ)の条
件を満たす範囲内で含有し、Nbは4 Nb(→) 2 C(%)で、かつ0.003チ≦Nb
(イ)<0.04%を滴たす範囲内の含有量で、かつT
i(%1l)−1−Nb(イ)< 0.06%を満たす
成分の鋼を熱延加熱温度1300℃以下の条件で熱間圧
延し、次いで脱スケール処理、冷間圧延後連続式溶融亜
鉛めっきラインにて再結晶温度以上A’c 3点以下の
温度で連続焼鈍し、次に溶融亜鉛めっきを施すことを特
徴とする極めて優れた二次加工性を有する超深絞シ用溶
融亜鉛めっき鋼板の製造方法。 (2)熱間圧延後600℃以上800℃以下の巻取温度
で巻き取シ、次いで冷間圧延を行ない、連続式溶融亜鉛
めっきラインにて再結晶温度以上AC6変態点以下の温
度で焼なまし処理を行なった後、700℃から500℃
までの温度域を2℃/86C以上150℃/ BeC以
下の冷却速度で冷却し、次に溶融亜鉛めっきを施す特許
請求の範囲第1項記載の方法。
[Claims] (i) c: 0.005% or less, St: o, s
% or less, Mn: 1.0% or less, P: o, i% or less,
At: o, 0.1 to 0.1%, N: 0.005% or less and other unavoidable impurities, and B, Tt
, the essential condition is to add Nb in combination, and B is 3
Added within a range of 0 ppm or less, contained within a range that satisfies the condition of +48N (A), Nb is 4 Nb (→) 2 C (%), and 0.003 Ch≦Nb
(a) The content is within the range of dropping <0.04%, and T
Steel with components satisfying i(%1l)-1-Nb(a)<0.06% is hot-rolled at a hot-rolling heating temperature of 1300°C or less, then subjected to descaling treatment, and continuous melting after cold rolling. Molten zinc for ultra-deep drawing, which has extremely excellent secondary workability and is characterized by continuous annealing at a temperature above the recrystallization temperature and below A'c 3 on a galvanizing line, and then hot-dip galvanizing. Method of manufacturing plated steel sheets. (2) After hot rolling, the coiling temperature is 600°C or higher and 800°C or lower, followed by cold rolling, and annealing at a temperature higher than the recrystallization temperature and lower than the AC6 transformation point in a continuous hot-dip galvanizing line. 700℃ to 500℃ after treatment
2. The method according to claim 1, wherein the temperature range is 2° C./86° C. or more and 150° C./BeC or less at a cooling rate, and then hot-dip galvanizing is performed.
JP6460483A 1982-10-08 1983-04-14 Production of galvanized steel plate for ultradeep drawing having extremely good secondary processability Pending JPS59190332A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6460483A JPS59190332A (en) 1983-04-14 1983-04-14 Production of galvanized steel plate for ultradeep drawing having extremely good secondary processability
US06/539,678 US4504326A (en) 1982-10-08 1983-10-06 Method for the production of cold rolled steel sheet having super deep drawability
EP83110039A EP0108268B1 (en) 1982-10-08 1983-10-07 Method for the production of cold rolled steel sheet having super deep drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6460483A JPS59190332A (en) 1983-04-14 1983-04-14 Production of galvanized steel plate for ultradeep drawing having extremely good secondary processability

Publications (1)

Publication Number Publication Date
JPS59190332A true JPS59190332A (en) 1984-10-29

Family

ID=13263020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6460483A Pending JPS59190332A (en) 1982-10-08 1983-04-14 Production of galvanized steel plate for ultradeep drawing having extremely good secondary processability

Country Status (1)

Country Link
JP (1) JPS59190332A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167788A (en) * 1984-09-10 1986-04-07 Japan Storage Battery Co Ltd Production of joined body of ion exchange resin film and electrode
JPS6167790A (en) * 1984-09-11 1986-04-07 Japan Storage Battery Co Ltd Production of joined body of ion exchange resin film and electrode
JPS61113724A (en) * 1984-11-08 1986-05-31 Nippon Steel Corp Manufacture of cold rolled steel sheet extremely superior in press formability
JPH01309942A (en) * 1988-06-08 1989-12-14 Kobe Steel Ltd Cold rolled steel plate for ultra deep drawing having excellent longitudinal cracking resistance and hot dip galvanized sheet steel
US4889566A (en) * 1987-06-18 1989-12-26 Kawasaki Steel Corporation Method for producing cold rolled steel sheets having improved spot weldability
JPH0211745A (en) * 1988-06-29 1990-01-16 Kawasaki Steel Corp Manufacture of steel plate coated with fused alloyed zinc by galuanization excellent in spot weldability
JPH0480349A (en) * 1990-07-19 1992-03-13 Nippon Steel Corp High strength galvannealed steel sheet having baking hardenability and excellent in powdering resistance and its manufacture
JPH04154937A (en) * 1990-10-16 1992-05-27 Nippon Steel Corp High strength galvannealed steel sheet
WO2011052269A1 (en) 2009-10-26 2011-05-05 新日本製鐵株式会社 Alloyed hot-dip galvanized steel sheet and manufacturing method therefor
US9040168B2 (en) 2009-10-26 2015-05-26 Nippon Steel & Sumitomo Metal Corporation Galvannealed steel sheet having excellent formability and exfoliation resistance after adhesion and production method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167788A (en) * 1984-09-10 1986-04-07 Japan Storage Battery Co Ltd Production of joined body of ion exchange resin film and electrode
JPS6167790A (en) * 1984-09-11 1986-04-07 Japan Storage Battery Co Ltd Production of joined body of ion exchange resin film and electrode
JPH027400B2 (en) * 1984-09-11 1990-02-16 Japan Storage Battery Co Ltd
JPH055887B2 (en) * 1984-11-08 1993-01-25 Nippon Steel Corp
JPS61113724A (en) * 1984-11-08 1986-05-31 Nippon Steel Corp Manufacture of cold rolled steel sheet extremely superior in press formability
US4889566A (en) * 1987-06-18 1989-12-26 Kawasaki Steel Corporation Method for producing cold rolled steel sheets having improved spot weldability
US5089068A (en) * 1987-06-18 1992-02-18 Kawasaki Steel Corporation Cold rolled steel sheets having improved spot weldability
JPH01309942A (en) * 1988-06-08 1989-12-14 Kobe Steel Ltd Cold rolled steel plate for ultra deep drawing having excellent longitudinal cracking resistance and hot dip galvanized sheet steel
JPH0211745A (en) * 1988-06-29 1990-01-16 Kawasaki Steel Corp Manufacture of steel plate coated with fused alloyed zinc by galuanization excellent in spot weldability
JPH0480349A (en) * 1990-07-19 1992-03-13 Nippon Steel Corp High strength galvannealed steel sheet having baking hardenability and excellent in powdering resistance and its manufacture
JPH04154937A (en) * 1990-10-16 1992-05-27 Nippon Steel Corp High strength galvannealed steel sheet
WO2011052269A1 (en) 2009-10-26 2011-05-05 新日本製鐵株式会社 Alloyed hot-dip galvanized steel sheet and manufacturing method therefor
JP5146607B2 (en) * 2009-10-26 2013-02-20 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
US9040168B2 (en) 2009-10-26 2015-05-26 Nippon Steel & Sumitomo Metal Corporation Galvannealed steel sheet having excellent formability and exfoliation resistance after adhesion and production method thereof
US9133536B2 (en) 2009-10-26 2015-09-15 Nippon Steel & Sumitomo Metal Corporation Galvannealed steel sheet and producing method thereof
US9903022B2 (en) 2009-10-26 2018-02-27 Nippon Steel 7 Sumitomo Metal Corporation Production method of galvannealed steel sheet having excellent formability and exfoliation resistance after adhesion

Similar Documents

Publication Publication Date Title
JPS5974232A (en) Production of bake hardenable galvanized steel sheet for ultradeep drawing having extremely outstanding secondary processability
CN100529116C (en) Alloyed-molten-zinc-plated steel sheet with excellent processability and high strength and process for producing the same
JPH045732B2 (en)
JPS59193221A (en) Rreparation of cold rolled steel plate used in ultra-deep drawing having extremely excellent secondary processability
JPS6132375B2 (en)
JPS59190332A (en) Production of galvanized steel plate for ultradeep drawing having extremely good secondary processability
JPS6145689B2 (en)
JP4781577B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP2787366B2 (en) Manufacturing method of hot-dip galvanized high-tensile cold-rolled steel sheet
JPS5974231A (en) Production of ultradeep drawing galvanized steel sheet
JP2565038B2 (en) Method for producing high-strength galvannealed steel sheet with excellent strength-ductility balance and film properties
JPS6156245A (en) Manufacture of molten galvanized steel sheet for deep drawing
CN114207172A (en) High-strength steel sheet, high-strength member, and method for producing same
JP4299451B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP3577930B2 (en) High-strength, high-ductility hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JPS582248B2 (en) Manufacturing method for hot-dip galvanized steel sheet with excellent workability
JPS59197526A (en) Preparation of deep drawing cold rolled steel plate having excellent quality uniformity
JP2001011538A (en) Production of high tension hot dip galvanized steel sheet
JPS6048571B2 (en) Manufacturing method of alloyed galvanized steel sheet for deep drawing
JP3602263B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent deep drawability
JPH09256065A (en) Production of ferritic stainless steel thin sheet excellent in surface property
JPS6152218B2 (en)
JPH07102344A (en) Continuously annealed cold rolled steel sheet well balanced between deep drawability and resistance to deep drawing brittleness
JP2505038B2 (en) Manufacturing method of hot-dip galvanized steel sheet for processing
JP2549539B2 (en) Method for producing hot dip galvanized steel sheet for ultra deep drawing