JPS59188612A - Condensing device of feeble light - Google Patents

Condensing device of feeble light

Info

Publication number
JPS59188612A
JPS59188612A JP58062097A JP6209783A JPS59188612A JP S59188612 A JPS59188612 A JP S59188612A JP 58062097 A JP58062097 A JP 58062097A JP 6209783 A JP6209783 A JP 6209783A JP S59188612 A JPS59188612 A JP S59188612A
Authority
JP
Japan
Prior art keywords
concave mirror
sample
light
optical axis
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58062097A
Other languages
Japanese (ja)
Inventor
Gensuke Kiyohara
元輔 清原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58062097A priority Critical patent/JPS59188612A/en
Publication of JPS59188612A publication Critical patent/JPS59188612A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To obtain a sufficient energy quantity required for an observation by placing a sample to which a light is projected, on the front position of a concave mirror on an optical axis line, and providing an optical sensor on a focal position of a reflected light of the concave mirror for receiving a scattered light emitted by the sample. CONSTITUTION:A reflector surface 4 of a troidal concave mirror 3 is a troidal surface, and this concave mirror 3 is inclined and set against an optical axis of a laser light B of a prescribed wavelength oscillated by a laser light source 6 provided on the back, and a laser light is irradiated through a condensing optical lens system L3 in a through-hole 5 of the center of the concave mirror 3. A sample T is installed at a position on an optical axis line of the laser light B, irradiated by the laser light B, and emits scattered lights (shown by a one point chain line in the figure) of various wavelengths. This scattered light is projected to the mirror surface 4, reflected at an almost right angle against the optical axis, and converged to an optical sensor 2 such as a photomultichip, etc. placed at a focal position of the troidal mirror surface 4.

Description

【発明の詳細な説明】 本発明は、試料の発する微弱な散乱光を集光する装置に
関するものであって、無収差による正反射の情報を多量
且つ確冥に得ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for condensing weak scattered light emitted by a sample, and an object of the present invention is to obtain a large amount of information on specular reflection without aberration with certainty.

りIIえはレーザー光を所定の物体に照射すると。The second method is when a laser beam is irradiated onto a certain object.

その物体はその物1生に従って所定の種々の波長の散乱
光を発する。従って物性が判明していない物体に一足の
レーザー光を照射しり散乱光の波長を観察することによ
ってその情報を得ることが可能なのである。
The object emits scattered light of various predetermined wavelengths depending on the object's life. Therefore, it is possible to obtain information by irradiating an object with unknown physical properties with a beam of laser light and observing the wavelength of the scattered light.

しかしながら、上記散乱光な極めて微弱であり1この微
弱光を集光する手段として、従来は第1図に示−し・た
よりな方法を採っていた。
However, the above-mentioned scattered light is extremely weak, and conventionally, as a means for condensing this weak light, a reliable method shown in FIG. 1 has been adopted.

ff1Jち、P1r定のし、ンズL1を透過して八−7
ミラー1に照射されたレーザー光Bは、直角に反射され
て、物性を知ろうとする試料Tに照射される。
ff1J, P1r constant, passes through lens L1, 8-7
The laser beam B irradiated onto the mirror 1 is reflected at right angles and irradiated onto the sample T whose physical properties are to be determined.

このレーザー光Bを受けた試料Tは所定の色の散乱光を
発し、この散乱光に前記ハーフミラ−1を透過し、レン
ズ・L2によって集光されてフォトマルチップ等の光セ
ンサ−2に照射され、散乱光の波長を観整して試料Tの
物性を判断するのである。
The sample T receiving this laser beam B emits scattered light of a predetermined color, which is transmitted through the half mirror 1, focused by the lens L2, and irradiated onto the optical sensor 2 such as a photomultichip. The physical properties of the sample T are determined by observing the wavelength of the scattered light.

しかしながら、試料Tの発する散乱光は穐々の波長が入
り混っておす、シかも都r少であるので。
However, the scattered light emitted by the sample T is likely to be mixed with various wavelengths.

物性判断に際してはできる限り多くのエネルギー量を得
ることが望ましい。
When determining physical properties, it is desirable to obtain as much energy as possible.

そこで例えば散乱光を収束して元センサー2に対するエ
ネルギー量を高めるべくレンズL、が配置される訳であ
るが、レンズLLKよる場合には、前述した如く散乱光
内に種々の波長が含まれているので、どうしても色収差
が発生してしまって、全ての散乱光を集めるのはむずが
しく、正確な情報を得ることができ、1い刀1故VC,
それぞれ試料Tの性質によってレンズL、e軸方向に移
動させる調整9となってコストが嵩み、レンズの移動操
作1位置合せ等に於て手間が力4)ハ特に上記集光は真
空内で行なわれることが多いので規模2手間は更に増大
し、観察に必要な十分のエネルギー量を得ることができ
かい等、多くの欠1.(、不都合が存した。
Therefore, for example, a lens L is arranged to converge the scattered light and increase the amount of energy to the original sensor 2, but when using the lens LLK, as mentioned above, various wavelengths are included in the scattered light. Therefore, chromatic aberration inevitably occurs, and it is difficult to collect all the scattered light, so it is difficult to obtain accurate information.
Depending on the properties of the sample T, adjustment 9 is required to move the lens in the L and e axis directions, which increases the cost and requires time and effort in the lens movement operation 1 and alignment. Since this is often done, the scale and effort further increase, and there are many drawbacks, such as the inability to obtain sufficient energy for observation. (There were some inconveniences.

本発明は上述した従来の欠点、不都合全解消するべく開
発された微弱光集光装置であって、凹面鏡の一部に穿設
され′fc透孔[嵌め込まれた集光光学レンズ系を透過
したレーザー光を、凹面鏡の前方に配置した試料に照射
し、試料が発する散乱光を凹面鏡で受けて更にその反射
鏡の焦点位置に配置した元センサーに照射する構成とし
/こものである。
The present invention is a weak light condensing device developed to eliminate all of the above-mentioned drawbacks and inconveniences of the conventional art. The laser beam is irradiated onto a sample placed in front of a concave mirror, and the scattered light emitted by the sample is received by the concave mirror and further irradiated onto the original sensor placed at the focal point of the reflecting mirror.

以下不発明の一実施例を第2図に従って説明する。An embodiment of the invention will be described below with reference to FIG.

図中符号3はトロイダル凹面鏡であって2反射鏡面4に
トロイダル面となっており、この凹面鏡3に背後に設定
されたレーザー光源6によって発振される所定の波長の
レーザー光Bの元軸に対して所定の傾斜姿勢を保持して
設置されており、更にこの凹面鏡3のほぼ中心であって
前記レーザー光Bの元軸線上には所定口径の透孔5が穿
設され。
Reference numeral 3 in the figure is a toroidal concave mirror, and the second reflecting mirror surface 4 is a toroidal surface. The concave mirror 3 is provided with a through hole 5 having a predetermined diameter approximately at the center thereof and on the original axis of the laser beam B.

この透孔5内に集光光学レンズ系り、がレーザー光Bの
光軸と一致させて嵌め込み固定されているっまた凹面鏡
3の鏡面4に対向した前方であって。
A condensing optical lens system is fitted and fixed in the through hole 5 in alignment with the optical axis of the laser beam B, and is located in front of the concave mirror 3 facing the mirror surface 4.

透孔5及び集光光学レンズ系り、を通過するレーザ。The laser passes through the through hole 5 and the condensing optical lens system.

−光Bの光軸線上位置[に、試料Tが設置されておジ、
従ってレーザー光Bは試料Tに照射されて試料Tに種々
の波長の散乱光(図面で一点鎖線で示す)ff、発する
- Specimen T is installed at the position on the optical axis of light B.
Therefore, the laser beam B is irradiated onto the sample T, and the sample T emits scattered light of various wavelengths (indicated by a dashed line in the drawing)ff.

この散乱光は試料Tに対向する鏡面4に投射されるが、
凹面鏡3はレーザー光Bの光軸に対して傾斜姿勢となっ
ている為に、鏡面4. K投射さ11fC散乱元は図示
実施例でに前記光軸に対しほぼ直角に反射され、トロイ
ダル凹面鏡 されるフォトマルチップ等の光センサ−2に収束される
ことになる。
This scattered light is projected onto the mirror surface 4 facing the sample T.
Since the concave mirror 3 is inclined with respect to the optical axis of the laser beam B, the mirror surface 4. In the illustrated embodiment, the K projected 11fC scattering source is reflected almost perpendicularly to the optical axis and is focused on an optical sensor 2 such as a photomulti-chip formed of a toroidal concave mirror.

図示実施例では上記焦点位置に元センサー2のみ配置し
ているが、実際には集光された散乱光はスリットにより
入射光量が制mlされ9分光器にかけられて波長別に分
けられ、更に元センサー2MCより光の強度で所定の測
定を行うものである。
In the illustrated embodiment, only the original sensor 2 is disposed at the focal position, but in reality, the incident light amount of the collected scattered light is controlled by a slit, and it is passed through nine spectrometers to be separated into wavelengths, and then the original sensor A predetermined measurement is performed using the intensity of light from 2MC.

本発明の禍威及び作用6.L以上説明したようになって
いる。
Harmful effects and effects of the present invention 6. It is as explained above.

従ってトロイダル凹面鏡3を傾斜姿勢にすることによっ
て、レーザー光Bの元軸に位置する試料Tの散乱光を受
けた鏡面4に焦点位置に正確に且つ無収差で正反射させ
ることができ、該焦点位置に光センサ−2を設置するこ
とにより散乱光の情報を確実に得ることができる。
Therefore, by tilting the toroidal concave mirror 3, the scattered light of the sample T located at the original axis of the laser beam B can be specularly reflected on the mirror surface 4 to the focal position accurately and without aberration. Information on scattered light can be reliably obtained by installing the optical sensor 2 at the position.

しかも試料Tの発する散乱光は、その殆どが鏡面4を照
射し、且つ照射された散乱光の全ては光センサ−2に反
射されるので、微弱な散乱光のエネルギーを集約して光
センサ−2に送ることかでき、試料Tの物性観察に極め
て有効なものとなる。
Moreover, most of the scattered light emitted by the sample T irradiates the mirror surface 4, and all of the irradiated scattered light is reflected by the optical sensor 2, so the energy of the weak scattered light is concentrated and the optical sensor 2, which is extremely effective for observing the physical properties of sample T.

よって本発明の微弱光の集光装置によれば、レーザー光
を照射することによって発せられる試料の微弱な散乱光
を、可能な限りのエネルギー量をもって正確に無収差で
情報として得ることができるので、試料の物性観察が正
確且つ確実となり。
Therefore, according to the weak light condensing device of the present invention, the weak scattered light of the sample emitted by laser beam irradiation can be obtained as information accurately and without aberration with the maximum amount of energy possible. , the physical properties of the sample can be observed accurately and reliably.

構成が簡単であってコストを低廉に押えることができ、
操作の手間が省ける等、多くの優れた作用効果イi・奏
する。
The configuration is simple and costs can be kept low.
It has many excellent functions and effects, such as saving time and effort in operation.

【図面の簡単な説明】 第1図は従来の装置の一例を示す説明図である。 第2図は本発明の一実施例を示す説明図である。 符号の説明 2・・・光センサ−,3・・・凹面鏡、4・・・トロイ
ダル面、T・・・試料。 出願人(発明者)  清 原 元 輔 代理人(弁理士)  荒 井 俊 之ルユ。 1
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing an example of a conventional device. FIG. 2 is an explanatory diagram showing one embodiment of the present invention. Explanation of symbols 2... Optical sensor, 3... Concave mirror, 4... Toroidal surface, T... Sample. Applicant (inventor) Motosuke Kiyohara Agent (patent attorney) Toshiyuki Arai. 1

Claims (1)

【特許請求の範囲】[Claims] 背後から発射される光線の光軸に対して所定の傾剰佼勢
となつ念凹面鏡の前記光信1.腺Jlに透孔を穿設する
と共に、該透孔内に集光光学レンズ系を嵌め込み、前記
光軸線上の前記凹面鏡の前方位置に前記光線が投射され
る試料を配置し、更に該試料の発する散乱光を受ける凹
面鏡の反射元の焦点位置に、光センサーを配して成る微
弱光の集光装置。
1. The above-mentioned optical signal of a concave mirror having a predetermined tilt angle with respect to the optical axis of the light beam emitted from behind. A through hole is bored in the gland Jl, a condensing optical lens system is fitted into the through hole, a sample onto which the light beam is projected is placed at a position in front of the concave mirror on the optical axis, and a A weak light concentrator consisting of an optical sensor placed at the focal point of the reflection source of a concave mirror that receives the emitted scattered light.
JP58062097A 1983-04-11 1983-04-11 Condensing device of feeble light Pending JPS59188612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58062097A JPS59188612A (en) 1983-04-11 1983-04-11 Condensing device of feeble light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58062097A JPS59188612A (en) 1983-04-11 1983-04-11 Condensing device of feeble light

Publications (1)

Publication Number Publication Date
JPS59188612A true JPS59188612A (en) 1984-10-26

Family

ID=13190203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58062097A Pending JPS59188612A (en) 1983-04-11 1983-04-11 Condensing device of feeble light

Country Status (1)

Country Link
JP (1) JPS59188612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644901A1 (en) * 1989-03-24 1990-09-28 Commissariat Energie Atomique Device, capable of miniaturisation, for focusing a laser beam coming from an optical fibre

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644901A1 (en) * 1989-03-24 1990-09-28 Commissariat Energie Atomique Device, capable of miniaturisation, for focusing a laser beam coming from an optical fibre

Similar Documents

Publication Publication Date Title
AU753282B2 (en) Apparatus for measuring characteristics of optical angle
JPH05107035A (en) Sensitivity improvement type optical measuring device
KR100425412B1 (en) A device for measuring the photometric and colorimetric characteristics of an object
JP2000230901A (en) Optical unit
JP2001281097A (en) Method and apparatus for measuring scattered light
JPS59188612A (en) Condensing device of feeble light
JP3871415B2 (en) Spectral transmittance measuring device
JPH09287931A (en) Distance measuring method and distance sensor
JPH09229883A (en) Dark field type photothermal transduction spectrometer
JP2010091428A (en) Scanning optical system
WO1991014935A1 (en) A method and an apparatus for cleaning control
JPH11108615A (en) Surface position detecting method and equipment for mirror surface material and translucent material
JP2000035363A (en) Detecting apparatus for optical characteristic
WO1995002179B1 (en) Misalignment detection apparatus for transmissometer with underfilled reflector
JP3106521B2 (en) Optical inspection equipment for transparent substrates
JP2838441B2 (en) Optoelectronics recording device
JP3040131B2 (en) Spherical surface scratch inspection device
JP3638261B2 (en) Smoke density measuring device
JP2776823B2 (en) Optical detector
JP2002323404A (en) Surface inspection device
JPS63145929A (en) Infrared temperature measuring apparatus
JPS60235027A (en) Narrow wavelength band light emitting and receiving apparatus
JPS61294334A (en) Particle analyzer
JP3137148B2 (en) Microscopic diffuse reflection measurement device
JP2002005813A (en) Grain diameter distribution measuring device