JP2002005813A - Grain diameter distribution measuring device - Google Patents

Grain diameter distribution measuring device

Info

Publication number
JP2002005813A
JP2002005813A JP2000190472A JP2000190472A JP2002005813A JP 2002005813 A JP2002005813 A JP 2002005813A JP 2000190472 A JP2000190472 A JP 2000190472A JP 2000190472 A JP2000190472 A JP 2000190472A JP 2002005813 A JP2002005813 A JP 2002005813A
Authority
JP
Japan
Prior art keywords
light
sample
scattered
measured
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000190472A
Other languages
Japanese (ja)
Other versions
JP3790411B2 (en
Inventor
Tetsuji Yamaguchi
哲司 山口
Hiroyuki Kitamura
裕之 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2000190472A priority Critical patent/JP3790411B2/en
Publication of JP2002005813A publication Critical patent/JP2002005813A/en
Application granted granted Critical
Publication of JP3790411B2 publication Critical patent/JP3790411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain diameter distribution measuring device, capable of easily adjusting light intensity without generating an optical noise which adversely affects measurements. SOLUTION: In the grain diameter distribution measuring device for converting scattering light 4, generated by irradiating a sample to be measured 2 with laser light 3 into an electrical detection signal to compute the grain diameter distribution of particles contained in the sample to be measured 2 on the basis of the detection signal, with the center of a diaphragm 30 for reducing the quantity of scattered light 4 is made to coincide with an optical axis L of an optical system 1, the diaphragm 30 is set at a location, so that the scattered light 4 and/or laser light 3 is a light 3f which is parallel with respect to the optical axis L. The diaphragm 30 in a minimum open state is formed larger than the incident beam diameter of the laser light 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、測定対象試料に
レーザ光を照射して、生じる散乱光を検出器へ導く光学
系に絞りを設けた、新規な粒径分布測定装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel particle size distribution measuring apparatus in which a sample to be measured is irradiated with laser light and an optical system for guiding generated scattered light to a detector is provided with a stop.

【0002】[0002]

【従来の技術】レーザ光による動的光散乱を利用した粒
径分布測定装置において、液体中に分散した粒子にレー
ザ光を照射し、粒子により散乱された光から粒径分布を
算出するにあたり、光路中に減光フィルタ(単にフィル
タという)を挿入することで、高濃度の測定対象試料に
照射するためレーザ入射光の光強度を低下させたり、あ
るいは、検出器への散乱光が強すぎる光強度を有する場
合にこの光強度を低下させたりすることが従来から行わ
れている。例えば測定対象試料の濃度が高いときや、測
定対象試料に含まれる粒子の粒子径が大きいときには検
出器に集光される散乱光の光強度が強くなるため、その
光強度を弱くするためにフィルタを光路中に挿入してい
る。
2. Description of the Related Art In a particle size distribution measuring apparatus utilizing dynamic light scattering by a laser beam, particles dispersed in a liquid are irradiated with a laser beam, and the particle size distribution is calculated from the light scattered by the particles. By inserting a neutral density filter (referred to simply as a filter) in the optical path, the light intensity of the laser incident light may be reduced to irradiate the sample with a high concentration of measurement, or the light scattered to the detector may be too strong. It has been conventionally performed to reduce the light intensity when the light intensity is high. For example, when the concentration of the sample to be measured is high, or when the particle size of the particles contained in the sample to be measured is large, the light intensity of the scattered light condensed on the detector increases, so the filter is used to reduce the light intensity. Is inserted in the optical path.

【0003】[0003]

【発明が解決しようとする課題】一方、測定対象試料の
濃度が低いときや、粒子の粒子径が小さいとき、例え
ば、高分子などのようにたとえレーザ入射光をパワーア
ップしても散乱光の光強度が弱い測定対象試料において
は、光路からフィルタを取り外す必要がある。そのた
め、フィルタ取り外し操作によるフィルタ汚れやキズに
起因して光ノイズが発生する可能性がある。
On the other hand, when the concentration of the sample to be measured is low, or when the particle diameter of the particles is small, for example, even if the power of the laser incident light is increased, as in the case of a polymer, etc. For a sample to be measured having low light intensity, it is necessary to remove the filter from the optical path. For this reason, optical noise may be generated due to filter dirt or scratches caused by the filter removing operation.

【0004】また、フィルタが光路中に有る場合と無い
場合でフィルタ材料の光屈折による光路長が変化するこ
とから、焦点位置ズレを起こす場合がある。
[0004] Further, since the optical path length changes due to the light refraction of the filter material depending on whether the filter is in the optical path or not, the focal position may be shifted.

【0005】更に、フィルタ表面によるレーザ戻り光で
レーザ発振を不安定にしたり、散乱光により光ノイズを
増加させるおそれがある。
Furthermore, laser oscillation may be unstable due to laser return light from the filter surface, or optical noise may increase due to scattered light.

【0006】この発明は、上述の事柄に留意してなされ
たもので、その目的は、測定に悪影響を及ぼす光ノイズ
などを発生させることなく光強度を容易に調節できる粒
径分布測定装置を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned circumstances, and has as its object to provide a particle size distribution measuring apparatus capable of easily adjusting light intensity without generating optical noise or the like which adversely affects measurement. It is to be.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、この発明は、測定対象試料にレーザ光を照射して、
生じる散乱光を電気的な検出信号に変換し、この検出信
号に基づいて前記測定対象試料に含まれる粒子の粒径分
布を算出する粒径分布測定装置において、前記散乱光の
光量を減少させる絞りを、その中心を光学系の光軸に一
致させた状態で、前記光軸に対して前記散乱光および/
または前記レーザ光が平行光である位置に設置してあ
り、前記絞りを、最小開口状態で前記レーザ光の入射光
束径より大きく形成してある。
In order to achieve the above object, the present invention irradiates a sample to be measured with laser light,
In a particle size distribution measuring device that converts generated scattered light into an electrical detection signal and calculates a particle size distribution of particles contained in the measurement target sample based on the detected signal, a diaphragm that reduces the amount of the scattered light With the center thereof coincident with the optical axis of the optical system, and the scattered light and / or
Alternatively, the laser light is installed at a position where the laser light is parallel light, and the aperture is formed to be larger than the incident light beam diameter of the laser light in a minimum aperture state.

【0008】[0008]

【発明の実施の形態】以下、この発明の実施の形態を図
面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1、図2は、セルユニット部において測
定対象試料からの散乱光が平行光である位置に、散乱光
の光量を減少させる虹彩絞りを設置してあるこの発明の
第1の実施形態を示す。
FIGS. 1 and 2 show a first embodiment of the present invention in which an iris diaphragm for reducing the amount of scattered light is installed at a position where scattered light from a sample to be measured is parallel light in the cell unit. The form is shown.

【0010】図1、図2において、1は、測定対象試料
2に一定周波数のレーザ光3を照射して、生じる測定対
象試料2からの散乱光4を検出器5へ導く光学系であ
る。この光学系は、レーザ光源としての例えば半導体レ
ーザ6から出射されるレーザ光3をセル7へ導く入射光
光学系8と、測定対象試料2からの後方散乱光4を検出
器5へ導く出射光光学系9とより構成される。
In FIG. 1 and FIG. 2, reference numeral 1 denotes an optical system which irradiates a laser beam 3 of a constant frequency to a measurement target sample 2 and guides scattered light 4 from the measurement target sample 2 to a detector 5. The optical system includes an incident light optical system 8 that guides a laser beam 3 emitted from, for example, a semiconductor laser 6 as a laser light source to a cell 7, and an outgoing light that guides backscattered light 4 from a sample 2 to be measured to a detector 5. It comprises an optical system 9.

【0011】10は、セル7が取り出し可能に設置され
るセルユニット部である。セル7は、セルホルダ11に
保持されている。また、測定対象試料2としては、高濃
度の原液試料、酸・アルカリ溶媒への分散液や有機溶媒
への分散液などさまざまな試料を挙げることができる。
そのため、セル7はガラス製のものを採用している。そ
して、セル7内において液体中に分散した微小粒子のブ
ラウン運動速度は温度によって敏感に変化する場合があ
るので、測定対象試料2の温度管理は重要であり、その
ため、セルユニット部10は温度制御機能を備えて安定
した高精度な測定が行えるように構成されている。
Reference numeral 10 denotes a cell unit portion from which the cell 7 is installed so as to be taken out. The cell 7 is held by a cell holder 11. Examples of the sample 2 to be measured include various samples such as a stock solution having a high concentration, a dispersion in an acid / alkali solvent, and a dispersion in an organic solvent.
Therefore, the cell 7 is made of glass. Since the Brownian velocity of the fine particles dispersed in the liquid in the cell 7 may be sensitively changed depending on the temperature, it is important to control the temperature of the sample 2 to be measured. It is configured to provide stable and highly accurate measurement with functions.

【0012】12は、プリアンプおよびAD変換器より
なる信号変換手段、13は、CPU、14は、CPU1
3で演算された粒径分布を表示する表示部14aを備え
たパソコンである。
Reference numeral 12 denotes signal conversion means comprising a preamplifier and an AD converter, 13 denotes a CPU, and 14 denotes a CPU 1
This is a personal computer provided with a display unit 14a for displaying the particle size distribution calculated in Step 3.

【0013】また、15は、レーザ光3が通過可能な大
きさを有する穴16を備えた穴あきミラーで、入射光光
学系8の光軸Lが穴16の中心を通るよう、かつ、光軸
Lに対して鋭角θの角度をなして設置されている。この
穴あきミラー15は、少なくとも検出器5側にミラー面
15aを有する。18は、コリメートレンズ19で平行
光とされたレーザ光3aが、穴あきミラー15の穴16
を通って導かれるピンホールである。この場合、ピンホ
ール18にはレンズ20にて集光される。21は、ピン
ホール18から出て広がったレーザ光3bを再び平行光
3cとするレンズである。22は、セルユニット部10
内に設置された集光レンズで、平行光3cをセル7中の
測定対象試料2に集光させる機能を有する。なお、穴あ
きミラー15の穴16は、平行光3c,3aの径の大き
さよりも僅かに大きく形成されており、穴16の通過前
後でレーザ光3の全光量が変わらない構成を採ってい
る。3dは、その集光されたレーザ光である。また、集
光レンズは、液体中に分散した粒子からの散乱光3e
〔図2(A)、図2(B)参照〕をレンズ全体(レンズ
径D)で受光し、入射平行光3cの径Fよりも大きな径
Gを有する散乱光としての散乱平行光3fとする機能も
有する。この散乱平行光3fは、穴あきミラー15ま
で、入射時と同じ光路を戻る。すなわち、散乱平行光3
fは、レンズ21にてピンホール18に集光され、続い
て、ピンホール18から出て広がった散乱光3gはレン
ズ20で再び散乱平行光3hとされ、この散乱平行光3
hは穴あきミラー15のミラー面15aで検出器5の方
向(R方向)へ反射され、この反射された散乱平行光3
iは検出器用集光レンズ23で検出器5に集光される。
そして、検出器5で検出された散乱平行光3iを電気信
号として信号変換手段12で変換し、この変換されたデ
ータはCPU13で演算処理される。
Reference numeral 15 denotes a perforated mirror provided with a hole 16 having a size through which the laser light 3 can pass, and the optical axis L of the incident light optical system 8 passes through the center of the hole 16 and is provided with a light source. It is installed at an acute angle θ with respect to the axis L. This perforated mirror 15 has a mirror surface 15a at least on the detector 5 side. Reference numeral 18 denotes a laser beam 3a which has been converted into parallel light by a collimating lens
It is a pinhole guided through. In this case, the light is focused on the pinhole 18 by the lens 20. Reference numeral 21 denotes a lens that converts the laser light 3b that has spread out of the pinhole 18 into parallel light 3c again. 22 is the cell unit section 10
The converging lens installed in the inside has a function of condensing the parallel light 3c on the sample 2 to be measured in the cell 7. The hole 16 of the perforated mirror 15 is formed to be slightly larger than the diameter of the parallel lights 3c and 3a, so that the total amount of the laser light 3 does not change before and after passing through the hole 16. . 3d is the condensed laser light. Further, the condensing lens is provided with scattered light 3e from particles dispersed in the liquid.
[See FIGS. 2A and 2B] are received by the entire lens (lens diameter D), and are scattered parallel light 3f as scattered light having a diameter G larger than the diameter F of the incident parallel light 3c. It also has functions. The scattered parallel light 3f returns to the perforated mirror 15 along the same optical path as that at the time of incidence. That is, the scattered parallel light 3
f is condensed on the pinhole 18 by the lens 21, and then the scattered light 3 g that has spread out from the pinhole 18 is converted again into the scattered parallel light 3 h by the lens 20, and this scattered parallel light 3
h is reflected by the mirror surface 15a of the perforated mirror 15 in the direction (R direction) of the detector 5, and the reflected scattered parallel light 3
i is focused on the detector 5 by the detector focusing lens 23.
Then, the scattered parallel light 3i detected by the detector 5 is converted as an electric signal by the signal conversion means 12, and the converted data is processed by the CPU 13.

【0014】以下、この発明の特徴的構成について説明
する。
Hereinafter, a characteristic configuration of the present invention will be described.

【0015】30は、測定対象試料2からの散乱光4を
検出器5へ導く出射光光学系9に設けた虹彩絞りであ
り、詳しくは、セルユニット部10における散乱平行光
3fの光路に虹彩絞り30の中心と光軸Lを一致させて
設置されている。虹彩絞り30は、散乱平行光3fの光
量を減少させる機能を有する。
Reference numeral 30 denotes an iris diaphragm provided in the emission light optical system 9 for guiding the scattered light 4 from the sample 2 to be measured to the detector 5. The center of the diaphragm 30 and the optical axis L are set to be coincident with each other. The iris diaphragm 30 has a function of reducing the amount of the scattered parallel light 3f.

【0016】前記虹彩絞り30は、可変開口31を中央
に有する。この可変開口31は、略同心円状に開閉する
よう構成されているが、可変開口31を最も小さくした
状態でも、つまり、図2(C)に示すような最小開口状
態でも、可変開口31が中心まで全閉することのないよ
うに、数mm径の最小開口31aを維持できる構成とな
っている。この最小開口31aの大きさは、図2(C)
に示すように、半導体レーザ6からの前記入射平行光3
cの光束径よりは大に設定されており、虹彩絞り30の
前後で前記入射平行光3cの全光量が維持できるよう虹
彩絞り30は機能する。
The iris diaphragm 30 has a variable aperture 31 at the center. The variable opening 31 is configured to open and close substantially concentrically. However, even in the state where the variable opening 31 is minimized, that is, in the minimum opening state as shown in FIG. The structure is such that the minimum opening 31a having a diameter of several mm can be maintained so as not to be fully closed. The size of the minimum opening 31a is as shown in FIG.
As shown in FIG.
The iris diaphragm 30 is set to be larger than the luminous flux diameter of the iris diaphragm 30 so that the total amount of the incident parallel light 3c can be maintained before and after the iris diaphragm 30.

【0017】なお、図2(C)において、二点鎖線で示
した可変開口31は、可変開口部31を最も大きく開け
たときの最大開口状態を示す。この最大開口31bを図
2(A)にも示す。一方、図2(B)は、可変開口部3
1を絞った状態を示し、これにより、散乱平行光3fの
光束径を小さくした分だけ全光量が減らされていること
が分かる。
In FIG. 2C, the variable opening 31 indicated by a two-dot chain line indicates the maximum opening state when the variable opening 31 is opened to the maximum. This maximum opening 31b is also shown in FIG. On the other hand, FIG.
This shows a state in which 1 is reduced, whereby it can be seen that the total amount of light is reduced by the amount by which the beam diameter of the scattered parallel light 3f is reduced.

【0018】33は、レバー34の手動操作で所定の大
きさを有する可変開口部31を形成するために設けた複
数の変位部材で、各変位部材33がそれぞれヒンジ(図
示せず)によって連動可能に枢支されており、レバー3
4の手動操作で複数の変位部材33が可変開口部31を
同時に開閉するよう変位する。なお、前記虹彩絞り30
を手動操作できるのは、光学系1ではなく測定対象試料
2が入れ替え可能に構成されているセルユニット部10
内に前記虹彩絞り30を設置しているからである。
Reference numeral 33 denotes a plurality of displacement members provided for forming the variable opening 31 having a predetermined size by manual operation of the lever 34. Each of the displacement members 33 can be interlocked by a hinge (not shown). Pivoted on the lever 3
By the manual operation of 4, the plurality of displacement members 33 are displaced so as to simultaneously open and close the variable openings 31. The iris diaphragm 30
Can be manually operated because the cell unit 10 in which the sample 2 to be measured can be replaced instead of the optical system 1
This is because the iris diaphragm 30 is installed in the inside.

【0019】而して、測定対象試料2を低濃度のものか
ら高濃度のものに入れ替える場合において、図2(B)
に示すように測定対象試料2の濃度が高すぎるときは、
測定対象試料2からの散乱光である前記散乱平行光3f
が強すぎる光強度を有することから、図2(A)に示す
ような測定対象試料2が低濃度の場合における全開状態
の可変開口31を絞って図2(B)に示す状態にして測
定する。
FIG. 2B shows a case where the sample 2 to be measured is changed from a sample having a low concentration to a sample having a high concentration.
When the concentration of the sample 2 to be measured is too high as shown in
The scattered parallel light 3f, which is scattered light from the sample 2 to be measured
Has an excessively high light intensity, the variable aperture 31 in the fully opened state when the sample 2 to be measured as shown in FIG. 2 (A) has a low concentration is squeezed to make the state shown in FIG. 2 (B). .

【0020】一方、図2(A)に示すように、測定対象
試料2の濃度が低いときは、散乱平行光3fが弱い光強
度を有することから、可変開口31を絞る必要がなく前
記最大開口31bの状態を維持した状態で測定できる。
この場合、光路に虹彩絞り30を残したままで、散乱光
3fを減光でき、従来のようにフィルタを使わないた
め、フィルタに起因したフィルタの汚れ、キズ、フィル
タ表面からの光ノイズや、焦点位置ズレ、更には、戻り
光による影響を無くすことができる。しかも、セルユニ
ット部10内に設置されている虹彩絞り30のレバー3
4を手動操作するだけで容易に散乱平行光3fの光束
径、すなわち、光量を調節できる。
On the other hand, as shown in FIG. 2A, when the concentration of the sample 2 to be measured is low, since the scattered parallel light 3f has a weak light intensity, it is not necessary to stop down the variable aperture 31 and the maximum aperture is not required. The measurement can be performed while maintaining the state of 31b.
In this case, the scattered light 3f can be reduced while the iris diaphragm 30 is left in the optical path, and the filter is not used as in the related art. It is possible to eliminate the positional shift and the influence of the return light. Moreover, the lever 3 of the iris diaphragm 30 installed in the cell unit section 10
The light beam diameter of the scattered parallel light 3f, that is, the light amount can be easily adjusted only by manually operating the light beam 4.

【0021】ところで、図1に示した粒径分布測定装置
において、仮に虹彩絞り30を用いることなく強すぎる
光強度を有する散乱平行光3fが発生するような高すぎ
る濃度の測定対象試料2を測定したい場合、測定対象試
料2を希釈しなければ測定できないが、この発明では、
その希釈の手間も省ける利点を有する。
In the meantime, in the particle size distribution measuring apparatus shown in FIG. 1, a sample 2 to be measured having a too high concentration such that scattered parallel light 3f having an excessively high light intensity is generated without using the iris diaphragm 30 is measured. If it is desired to perform the measurement, the sample 2 cannot be measured unless the sample 2 is diluted.
There is an advantage that the labor of the dilution can be omitted.

【0022】図3は、手動操作は困難で自動で散乱光の
光束径を可変にできるようにしたこの発明の第2の実施
形態を示す。なお、図3において、図1、図2に示す符
号と同一のものは、同一または相当物である。
FIG. 3 shows a second embodiment of the present invention in which manual operation is difficult and the beam diameter of scattered light can be automatically varied. In FIG. 3, the same components as those shown in FIGS. 1 and 2 are the same or equivalent.

【0023】図3において、虹彩絞り30は、前記レン
ズ20および穴あきミラー15間における散乱平行光3
hの光路に虹彩絞り30の中心と光軸Lを一致させて設
置されている。
In FIG. 3, the iris diaphragm 30 is used to scatter parallel light 3 between the lens 20 and the perforated mirror 15.
The center of the iris diaphragm 30 and the optical axis L are set to coincide with the optical path of h.

【0024】この場合、虹彩絞り30は、光学系1内に
設置されているので、上記第1の実施形態のように手動
で散乱平行光3hの光束径を可変にすることは困難であ
るが、この実施形態では、虹彩絞り30の可変開口部3
1を可変にする信号を、複数の変位部材を駆動するアク
チュエータ(図示せず)に出力する絞り自動調整弁40
が設けられているので、絞り調整を自動で行える。
In this case, since the iris diaphragm 30 is installed in the optical system 1, it is difficult to manually change the beam diameter of the scattered parallel light 3h as in the first embodiment. In this embodiment, the variable aperture 3 of the iris diaphragm 30
Automatic aperture control valve 40 that outputs a signal that makes variable 1 to an actuator (not shown) that drives a plurality of displacement members
Is provided, so that aperture adjustment can be performed automatically.

【0025】なお、変形例として、図3において、一点
鎖線で示したように、前記絞り自動調整弁40を設けた
虹彩絞り30を前記穴あきミラー15および検出器用集
光レンズ23間に設けたものを挙げることができ、この
場合でも、信頼性のあるデータを得ることができる。
As a modification, an iris diaphragm 30 provided with the automatic diaphragm adjusting valve 40 is provided between the perforated mirror 15 and the condenser lens 23 for the detector as shown by a dashed line in FIG. In this case, reliable data can be obtained.

【0026】上記各実施形態では後方散乱光の場合を示
したが、側方散乱光の場合にもこの発明は適用できる。
In each of the above embodiments, the case of backscattered light is shown, but the present invention can be applied to the case of sidescattered light.

【0027】図4は、側方散乱光である散乱平行光3j
の光路に虹彩絞り30の中心と光軸L’を一致させて虹
彩絞り30を設置したこの発明の第3の実施形態を示
す。なお、図4において、図1〜図3に示す符号と同一
のものは、同一または相当物である。
FIG. 4 shows scattered parallel light 3j which is side scattered light.
A third embodiment of the present invention is shown in which the iris diaphragm 30 is installed such that the center of the iris diaphragm 30 and the optical axis L 'coincide with each other in the optical path. In FIG. 4, the same components as those shown in FIGS. 1 to 3 are the same or equivalent.

【0028】この実施形態では、前記虹彩絞り30は光
学系1ではなくセルユニット部10内に設置されてい
る。23’は、液体中に分散した粒子により散乱された
側方散乱光3j’を集光して平行光3jとするためのレ
ンズ、23’’は、前記側方散乱平行光3jを検出器5
に集光するための検出器用集光レンズである。前記集光
レンズ23’,23’’もセルユニット部10内に設置
されている。
In this embodiment, the iris diaphragm 30 is installed not in the optical system 1 but in the cell unit 10. 23 ′ is a lens for condensing the side scattered light 3j ′ scattered by the particles dispersed in the liquid to form a parallel light 3j, and 23 ″ is a lens for detecting the side scattered parallel light 3j in the detector 5
This is a condenser lens for a detector for condensing light on a detector. The condenser lenses 23 ′ and 23 ″ are also provided in the cell unit 10.

【0029】なお、上記各実施形態では、散乱光の光量
を減少させる絞りとして、略同心円状に絞ることができ
る可変開口31を有する虹彩絞り30を用いたものを示
したが、図5に示すような一対の変位部材50の垂直エ
ッジ51間に形成される開口52の大きさを調節できる
ように構成された絞り53や、図6に示すような一対の
変位部材60の凹状エッジ61間に形成される開口62
の大きさを調節できるように構成された絞り63を用い
ることができる。
In each of the above embodiments, the iris diaphragm 30 having the variable aperture 31 which can be concentrically squeezed is used as the diaphragm for reducing the amount of scattered light, but is shown in FIG. The aperture 53 formed so as to be able to adjust the size of the opening 52 formed between the vertical edges 51 of the pair of displacement members 50 and the concave edge 61 of the pair of displacement members 60 as shown in FIG. Opening 62 formed
Can be used.

【0030】また、上記各実施形態では、散乱光の光量
を減少させる絞りとして、虹彩絞り30を用いたものを
示したが、図5に示すような一対の可動部材50の垂直
エッジ51間に形成される開口52の大きさを調節でき
るように構成された絞り53や、図6に示すような一対
の可動部材60のV状エッジ61間に形成される開口6
2の大きさを調節できるように構成された絞り63を用
いることができる。
In each of the above embodiments, the iris diaphragm 30 is used as the diaphragm for reducing the amount of scattered light. However, as shown in FIG. 5, between the vertical edges 51 of the pair of movable members 50 as shown in FIG. The aperture 53 formed between the V-shaped edges 61 of the pair of movable members 60 as shown in FIG.
An aperture 63 configured to be able to adjust the size of 2 can be used.

【0031】また、この発明で、絞りを、散乱光および
/または前記レーザ光が平行光である位置に設置したの
は、前記平行光の光束が絞りによって一部が回折散乱さ
れるのを回避するためである。
Further, in the present invention, the stop is installed at a position where the scattered light and / or the laser light is parallel light, so that the light flux of the parallel light is partially prevented from being diffracted and scattered by the stop. To do that.

【0032】[0032]

【発明の効果】この発明では、測定対象試料にレーザ光
を照射して、生じる散乱光を検出器へ導く光学系に絞り
を設けたので、ノイズなどの影響を受けることなくデー
タの信頼性を保ちながら減光でき、より高濃度の測定対
象試料の粒径分布測定を可能にできる。
According to the present invention, an aperture is provided in the optical system for irradiating the sample to be measured with laser light and guiding the generated scattered light to the detector, so that the reliability of data can be improved without being affected by noise or the like. The light can be dimmed while maintaining the same, and the particle size distribution of the sample having a higher concentration can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施形態を示す全体構成説明
図である。
FIG. 1 is an explanatory diagram of an overall configuration showing a first embodiment of the present invention.

【図2】(A)は、上記実施形態において低濃度の測定
対象試料の粒径分布測定状態を示す構成説明図である。
(B)は、上記実施形態において高濃度の測定対象試料
の粒径分布測定状態を示す構成説明図である。(C)
は、上記実施形態で用いた絞りの動作を示す構成説明図
である。
FIG. 2A is a configuration explanatory view showing a particle size distribution measurement state of a low-concentration sample to be measured in the embodiment.
(B) is a configuration explanatory diagram showing a state of measuring the particle size distribution of a high-concentration sample to be measured in the embodiment. (C)
FIG. 4 is a configuration explanatory view showing the operation of the diaphragm used in the embodiment.

【図3】この発明の第2の実施形態を示す全体構成説明
図である。
FIG. 3 is an overall configuration explanatory view showing a second embodiment of the present invention.

【図4】この発明の第3の実施形態を示す全体構成説明
図である。
FIG. 4 is an explanatory diagram of the entire configuration showing a third embodiment of the present invention.

【図5】この発明で用いた絞りの変形例を示す図であ
る。
FIG. 5 is a view showing a modified example of the diaphragm used in the present invention.

【図6】この発明で用いた絞りの別の変形例を示す図で
ある。
FIG. 6 is a view showing another modified example of the diaphragm used in the present invention.

【符号の説明】[Explanation of symbols]

1…光学系、2…測定対象試料、3…レーザ光、3f…
平行光、4…散乱光、5…検出器、6…半導体レーザ、
30…絞り、L…光軸。
DESCRIPTION OF SYMBOLS 1 ... Optical system, 2 ... Sample to be measured, 3 ... Laser light, 3f ...
Parallel light, 4 ... scattered light, 5 ... detector, 6 ... semiconductor laser,
30 ... stop, L ... optical axis.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 測定対象試料にレーザ光を照射して、生
じる散乱光を電気的な検出信号に変換し、この検出信号
に基づいて前記測定対象試料に含まれる粒子の粒径分布
を算出する粒径分布測定装置において、前記散乱光の光
量を減少させる絞りを、その中心を光学系の光軸に一致
させた状態で、前記光軸に対して前記散乱光および/ま
たは前記レーザ光が平行光である位置に設置してあり、
前記絞りを、最小開口状態で前記レーザ光の入射光束径
より大きく形成してあることを特徴とする粒径分布測定
装置。
1. A measuring object sample is irradiated with a laser beam to convert generated scattered light into an electrical detection signal, and a particle size distribution of particles contained in the measuring object sample is calculated based on the detection signal. In the particle size distribution measuring apparatus, the scattered light and / or the laser light are parallel to the optical axis in a state where the stop for reducing the amount of the scattered light is aligned with the optical axis of the optical system. It is installed in a position that is light,
The particle size distribution measuring apparatus, wherein the aperture is formed to be larger than the incident light beam diameter of the laser beam in a minimum aperture state.
JP2000190472A 2000-06-26 2000-06-26 Particle size distribution measuring device Expired - Fee Related JP3790411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000190472A JP3790411B2 (en) 2000-06-26 2000-06-26 Particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000190472A JP3790411B2 (en) 2000-06-26 2000-06-26 Particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2002005813A true JP2002005813A (en) 2002-01-09
JP3790411B2 JP3790411B2 (en) 2006-06-28

Family

ID=18689935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000190472A Expired - Fee Related JP3790411B2 (en) 2000-06-26 2000-06-26 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP3790411B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151602B2 (en) 2002-11-21 2006-12-19 Horiba, Ltd. Particle size distribution analyzer
CN116242252A (en) * 2023-05-11 2023-06-09 之江实验室 Scattering imaging method with positioning and size measuring functions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151602B2 (en) 2002-11-21 2006-12-19 Horiba, Ltd. Particle size distribution analyzer
CN116242252A (en) * 2023-05-11 2023-06-09 之江实验室 Scattering imaging method with positioning and size measuring functions
CN116242252B (en) * 2023-05-11 2023-08-15 之江实验室 Scattering imaging method with positioning and size measuring functions

Also Published As

Publication number Publication date
JP3790411B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
JP4817442B2 (en) Optical system for particle analyzer and particle analyzer using the same
US5717485A (en) Foreign substance inspection apparatus
JP2020510838A (en) Particle property evaluation device using variable focus lens
JP2005106815A (en) Optical alignment of x-ray microanalyzer
JP5662742B2 (en) Particle size measuring apparatus and particle size measuring method
KR102554867B1 (en) Substrate Inspection Apparatus
CN117664933A (en) Laser spectrum detection device, method, electronic device and storage medium
KR950014849A (en) Photometric detectors scattered by thin films of colloidal media
JP2002189004A (en) X-ray analyzer
JP2021503608A (en) Optical flow cytometer for epifluorescence measurement
JP2002005813A (en) Grain diameter distribution measuring device
US10082456B2 (en) Photothermal conversion spectroscopic analyzer
JP2002340824A (en) Fluorescent x-ray analyzing device
JPH05332934A (en) Spectroscope
JPS6370148A (en) Apparatus for measuring size distribution of fine particle
JP2021051074A (en) Spectroscopic analyzer
WO1991014935A1 (en) A method and an apparatus for cleaning control
JPS61294334A (en) Particle analyzer
JP2000258334A (en) Laser light-irradiating apparatus
US4286875A (en) Diffractometer
JPS62245942A (en) Particle analyzer
JP3898823B2 (en) Optical system of particle measuring device
JPS6244649A (en) Particle analyzing device
JP2002139309A (en) Optical characteristics measuring device, film thickness measuring device, polishing end point determining device and polishing device
JPH10142489A (en) Method and device for focus detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees