JPS59188502A - Optical axis adjusting method - Google Patents

Optical axis adjusting method

Info

Publication number
JPS59188502A
JPS59188502A JP6216083A JP6216083A JPS59188502A JP S59188502 A JPS59188502 A JP S59188502A JP 6216083 A JP6216083 A JP 6216083A JP 6216083 A JP6216083 A JP 6216083A JP S59188502 A JPS59188502 A JP S59188502A
Authority
JP
Japan
Prior art keywords
optical axis
light
pattern
symmetry
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6216083A
Other languages
Japanese (ja)
Inventor
Ryuichi Funatsu
隆一 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6216083A priority Critical patent/JPS59188502A/en
Publication of JPS59188502A publication Critical patent/JPS59188502A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To improve the precision of the adjustment of the optical axis of illumination light by forming a pattern which consists of grooves or projections in a symmetrical step shape on a sample surface, detecting the symmetry of the light quantity distribution of an image formed by the reduced or enlarged projection of an objective, and adjusting the optical axis of the illumination light so that the symmetry is maximum. CONSTITUTION:Light from a lamp 1 illuminates the pattern 12 for optical axis adjustment through a contactor lens 2, light guide 10, intermediate lens 11, half- mirror 3, and objective 4. Its reflected light forms an image on a linear image sensor 14 through the objective 4, half-mirror 3, and a cylindrical lens 13. Light intensity signals regarding respective parts of the sensor 14 are stored in a memory 18 through an AD converter 17 and further processed by an arithmetic circuit 19 to adjust the optical axis of the illumination system so that the symmetry of an image on a monitor 20 corresponding to the symmetry that the pattern 1 has is maximum. Thus, the adjustment precision of the illumination optical axis is improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は落射照明する顕微鏡に係り、特にパり ターンの位置や寸法を測定するマスクアライメント装置
やパターン寸法測長器に適する光軸調整方法に関するも
のである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a microscope that uses epi-illumination, and more particularly to an optical axis adjustment method suitable for a mask alignment device and a pattern dimension measuring device that measure the position and dimensions of a pattern. It is something.

〔発明の背景〕[Background of the invention]

落射照明の顕微鏡において、照明光軸を調整する従来方
式を第1図及び第2図に従って説明する。
A conventional method for adjusting the illumination optical axis in an epi-illumination microscope will be described with reference to FIGS. 1 and 2.

第1図は落射照明する顕*憶の構成を示したものである
。ランプ1より放射された光は、コレクタレンズ2を通
ジノ飄−フミラー3で一部の光が反射され、対物レンズ
4を通って試料5を落射照明する。このような照明系で
はランブトの交換時に、ハーフミラ−3を通過する光で
、・ランプ1の輝度の高い部分、例えばフィラメントや
アーク部の光源像を十字像を設けた十字線板6の上に結
像させ、十字線の中心に光源像の中心が一致するように
ランプ1を動かし、照明光軸を調整1−ていた。
Figure 1 shows the configuration of a microscope for epi-illumination. A portion of the light emitted from the lamp 1 passes through the collector lens 2, is reflected by the Zinoff mirror 3, passes through the objective lens 4, and epi-illuminates the sample 5. In such an illumination system, when replacing the lamp, the light passing through the half mirror 3 is used to place the light source image of a high-brightness part of the lamp 1, such as the filament or arc part, on the crosshair plate 6 with a cross image. After forming an image, the lamp 1 was moved so that the center of the light source image coincided with the center of the crosshair, and the illumination optical axis was adjusted 1-.

まだ、別の光軸調整方法は、試料5として表面が平担で
且つ比較的光反射率の高い物体を世い、試料5より反射
してプリズム7によって折り曲げられてきた光を接眼レ
ンズ8を取り除いて観4察する方法である。すなわち、
矢印の方向から接眼レンズ8を取シ除いた顕微鉾筒内を
のぞき、光源像の中心が億筒の中心に見えるようにラン
プ1を調整する方法である。     ゛上記した従来
の方法で照明光軸を調整した顕微鏡で半導体ウェハ上の
回路パターンを観察した時の視野の一例を第2図に示す
。(a)に示す如く左右対称な断面形状を有するパター
ンに対して、(b)K示す如く検出されるパターン9の
光強度分布((a)のA−A部の光強度分殉は図示の゛
ように非対称となることが多い。このような状態で目視
でパターン9の寸法や位置を測定しでもパターンのエツ
ジが不明確であるため測定精)度が低下する。これは、
光電検出手段を使ってパターンの認識を自動的に行なう
場合も同様に障害となる。
Another method for adjusting the optical axis is to use an object with a flat surface and relatively high light reflectance as the sample 5, and to pass the light reflected from the sample 5 and bent by the prism 7 through the eyepiece lens 8. This is a method of removing and observing. That is,
In this method, the lamp 1 is adjusted so that the center of the light source image can be seen at the center of the tube by looking into the microscope cylinder from which the eyepiece 8 has been removed in the direction of the arrow. FIG. 2 shows an example of the field of view when observing a circuit pattern on a semiconductor wafer using a microscope whose illumination optical axis has been adjusted using the conventional method described above. For a pattern having a symmetrical cross-sectional shape as shown in (a), the light intensity distribution of pattern 9 detected as shown in (b) K (the light intensity distribution in the A-A section of (a) is In such a state, even if the dimensions and position of the pattern 9 are measured visually, the edges of the pattern are unclear and the accuracy of the measurement is reduced. this is,
A similar problem arises when pattern recognition is performed automatically using photoelectric detection means.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点を、なくし、
試料面上のパターンの形状を正しく認識できるように、
落射照明の顕微鏡の照明光軸を調整できるようにした光
軸調整方法を提供する如ある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art,
In order to correctly recognize the shape of the pattern on the sample surface,
An object of the present invention is to provide an optical axis adjustment method that allows adjusting the illumination optical axis of a microscope with epi-illumination.

〔発明の概要〕[Summary of the invention]

即ち本発明は、段差形状が左右対称な溝又は突起からな
るパターンを試料面上に設け、対物レンズによって該パ
ターンを拡大投影した結像画の光量分布を測定1〜、こ
の測定されたバタ」ンの光強度分布の対称性を算出し、
この対称性の度合いに基いてこれが最大になるように照
明光軸を調整することを特徴とするものである。・〔発
明の実施例〕 以下本発明を図に示す実施例にもとづいて具体的に説明
する。第6図は本発明の落射照明の顕微鏡と像強度分布
測定手段の構成を示す。ランプ1から放射された光をコ
レクタレンズ2で集め、ライトガイド10の端面に投射
する。ライトガイド10は各繊維が不規則に配列された
本ブチカルファイバーで作られているため、光串射端で
は輝度分布が一様な光源となる。ここ勿ら放射された光
は中間レンズ11、ノ・−フミラ=3、対物レンズ4を
経て光軸調整用のパターイ12を落射照明する。パター
ン12から反射した52.。
That is, in the present invention, a pattern consisting of grooves or protrusions with bilaterally symmetrical step shapes is provided on a sample surface, and the light intensity distribution of an image formed by enlarging and projecting the pattern with an objective lens is measured. Calculate the symmetry of the light intensity distribution of the
This method is characterized in that the illumination optical axis is adjusted based on the degree of symmetry so that it is maximized. - [Embodiments of the Invention] The present invention will be specifically described below based on embodiments shown in the drawings. FIG. 6 shows the structure of an epi-illumination microscope and image intensity distribution measuring means of the present invention. Light emitted from a lamp 1 is collected by a collector lens 2 and projected onto the end face of a light guide 10. Since the light guide 10 is made of real buttical fibers in which each fiber is irregularly arranged, it becomes a light source with a uniform brightness distribution at the light emitting end. Of course, the emitted light passes through the intermediate lens 11, the nozzle 3, and the objective lens 4, and epi-illuminates the pattern 12 for adjusting the optical axis. 52 reflected from pattern 12. .

・ 3 光は、対物レンズ4.ハーフミラ3を通約円筒じンズ1
3により、リニアイメージセンサ14上に像を結ぶ。該
像のX方向の光強度分布は第4図(a)に示す通りであ
るが、該リニアイメージセンサ14の各受光部は結像面
を短冊状に分割した領燵の光を検出し、第4図(b車示
すように位置、 Xl、’X2・・・・・・Xnでサン
プリングして、各位置での光強度y1、y2、・・・・
・・ynを得る一、15のサンプルホール。
・3 The light passes through the objective lens 4. Half Mira 3 Interchangeable Cylindrical Jinzu 1
3, an image is formed on the linear image sensor 14. The light intensity distribution of the image in the X direction is as shown in FIG. Figure 4 (Car b) Samples at positions Xl, 'X2...
...1.15 sample holes to obtain yn.

ド回路はサンプリング信号発生回路16で制御゛され、
上記光強度出力y1、y2、・・・・・・ynをホール
Pするものである。その後AD変換器17により該ホー
ルド値をデジタル信号に変換し、メモリ18にストアす
る。19はXlを対称折返し点とし、その。
The code circuit is controlled by a sampling signal generation circuit 16,
The above-mentioned light intensity outputs y1, y2, . . . yn are passed through a hole P. Thereafter, the AD converter 17 converts the hold value into a digital signal and stores it in the memory 18. 19 has Xl as the symmetric turning point.

点を中心として±jのサンプリング位置に関[7で、次
の(1)式に示す対称性関数z (x、)を求める演算
)回路である。
This is a circuit that calculates the symmetry function z (x,) shown in the following equation (1) in relation to the sampling positions of ±j with the point as the center.

上記(1)式でmはパターン12の大きさを考慮して定
められる値であり、例えば第4図(b)に・・ 4 ・ 示すように定める。更に上記演算回路19は対称折返し
点X1を順次X1、X2、・・・・・・Xnと変えて第
4・図(c)に示す対称性関数z (x+)を求め、こ
の値・の最小値を示す対称折返し点X。を求めるもので
ある。                   5この
位置X。は最も折返しパターンマツチングの良好な点で
ありz (xo)は対称性の度合を示す指数となる。こ
の指数z (xo)とz (x+)をモニタ。
In the above equation (1), m is a value determined in consideration of the size of the pattern 12, and is determined, for example, as shown in FIG. 4(b). Furthermore, the arithmetic circuit 19 sequentially changes the symmetric turning point X1 to X1, X2, ...... Symmetrical turning point X indicating the value. This is what we seek. 5 This position X. is the point at which folding pattern matching is the best, and z(xo) is an index indicating the degree of symmetry. Monitor this index z (xo) and z (x+).

20に出力し、リニアイメージセンサ14を走査する毎
に演算・出力処理を行なう。このモニタ2見上の指数z
 (Xo)が最小となるよう照明光軸の調整を行なう。
20, and calculation/output processing is performed every time the linear image sensor 14 is scanned. This monitor 2 apparent index z
The illumination optical axis is adjusted so that (Xo) is minimized.

本実施例では撮像素子としてり冊アイメージセンサ14
を用いだが、これに限らず、光電変換素子の前面を走査
するスリットを配置したものも使用できる。さらに、2
次元のイメージセンサを用いれば、一方向のみならず、
それと直角方向にも光軸調整ができる。
In this embodiment, an image sensor 14 is used as an image sensor.
However, the present invention is not limited to this, and it is also possible to use a device in which a slit is arranged to scan the front surface of the photoelectric conversion element. Furthermore, 2
If you use a dimensional image sensor, you can scan not only in one direction, but also in one direction.
The optical axis can also be adjusted in the perpendicular direction.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、従来目視により光
源像を基準位置に合わせて照明光軸を調整して1すなも
のを、パターンの光強変分布の対称性の評価指数を基準
にして定量的に調整で^るようになり、照明光軸の調整
精度を向上で^、さら妬パターンの寸法や位置の測定精
度を高めることができる効果を有する。
As explained above, according to the present invention, what is achieved by adjusting the illumination optical axis by aligning the light source image with the reference position by visual inspection is compared to the evaluation index of the symmetry of the light intensity variation distribution of the pattern. This has the effect of improving the accuracy of adjusting the illumination optical axis and increasing the accuracy of measuring the dimensions and position of the pattern.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の顕微鏡の照明光軸調整方法を説明する顕
微鏡の構成図、第2図(a)は従来の方法で照明光軸が
調整された顕微鏡で半導体ウェハ上の回路パターンを観
察した時の視野を示す図、第2図(b)は第2図(al
に示すパターン。 のA−A部の光強度分布を示す図、第3図は本。 発明の一実施例を示す構成図、第4図(a)は。 撮像装置の出力信号波形を示す図、第4図(b)。 は第4図(a)の信号をサンプリングした時の光強度信
号yを示した図、第4図(c)は対称性開数z (xυ
を示しだ図である。 1・・・・・・ランプ、 4・・・・・対物レンズ、 12・・・・光軸調整用パターン、 15・・・・・・円筒レンズ、 14・・・・・・リニアイメージセンサ、15・・・・
・・サンプルホールド回路、17・・・・・・AD変換
器、 19・・・・・演算回路、            5
20・・・・・・モニタ。 0 第1rfJ 9− 第22 埠3図 特開昭59−188502(4) 第 4 図
Figure 1 is a configuration diagram of a microscope explaining the method of adjusting the illumination optical axis of a conventional microscope, and Figure 2 (a) shows a circuit pattern on a semiconductor wafer observed using a microscope with the illumination optical axis adjusted using the conventional method. Figure 2 (b) is a diagram showing the field of view at the time of Figure 2 (al
The pattern shown in Figure 3 is a diagram showing the light intensity distribution in the A-A section of the book. FIG. 4(a) is a configuration diagram showing one embodiment of the invention. FIG. 4(b) is a diagram showing the output signal waveform of the imaging device. is a diagram showing the optical intensity signal y when the signal in Figure 4 (a) is sampled, and Figure 4 (c) is the symmetry numerical aperture z (xυ
It is a figure showing. 1... Lamp, 4... Objective lens, 12... Optical axis adjustment pattern, 15... Cylindrical lens, 14... Linear image sensor, 15...
... Sample hold circuit, 17 ... AD converter, 19 ... Arithmetic circuit, 5
20...Monitor. 0 1st rfJ 9- 22nd Wharf 3 Figure JP-A-59-188502 (4) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、 対物レンズを通して物体面を照明する顕微鏡の光
軸を調整する方法において、物体面に形成され、且つ相
対する段差の形状が対称な溝または突起からなるパター
ンを対物レンズを介して投影して結像画の光量分布を測
定しこの測定された光量分布の対称性を示す指数を算出
し、この算出された指数にもとづいて1上記光軸を調整
することを特徴とする光軸調整方法。
1. In a method of adjusting the optical axis of a microscope that illuminates the object plane through an objective lens, a pattern consisting of grooves or protrusions formed on the object plane and having symmetrical step shapes is projected through the objective lens. An optical axis adjustment method comprising: measuring a light intensity distribution of an imaged image, calculating an index indicating the symmetry of the measured light intensity distribution, and adjusting the above-mentioned optical axis based on the calculated index.
JP6216083A 1983-04-11 1983-04-11 Optical axis adjusting method Pending JPS59188502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6216083A JPS59188502A (en) 1983-04-11 1983-04-11 Optical axis adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6216083A JPS59188502A (en) 1983-04-11 1983-04-11 Optical axis adjusting method

Publications (1)

Publication Number Publication Date
JPS59188502A true JPS59188502A (en) 1984-10-25

Family

ID=13192080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6216083A Pending JPS59188502A (en) 1983-04-11 1983-04-11 Optical axis adjusting method

Country Status (1)

Country Link
JP (1) JPS59188502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233710A (en) * 1985-04-10 1986-10-18 Ricoh Co Ltd Optical axis adjusting device of digital original reader
JP2004108790A (en) * 2002-09-13 2004-04-08 Dainippon Printing Co Ltd Inspection method and apparatus of light scattering/transmitting object

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233710A (en) * 1985-04-10 1986-10-18 Ricoh Co Ltd Optical axis adjusting device of digital original reader
JPH0831944B2 (en) * 1985-04-10 1996-03-27 株式会社リコー Optical axis adjustment method for digital document reader
JP2004108790A (en) * 2002-09-13 2004-04-08 Dainippon Printing Co Ltd Inspection method and apparatus of light scattering/transmitting object

Similar Documents

Publication Publication Date Title
JPH10311779A (en) Equipment for measuring characteristics of lens
CN107329373B (en) A kind of overlay error measuring device and method
JPS59188502A (en) Optical axis adjusting method
JPH05203431A (en) Surface shape measuring instrument
EP0019941B1 (en) Reduction projection aligner system
JP2922250B2 (en) Shape measuring device
EP1338862A1 (en) Optical method and device for performing geometrical measurements
JPH01145504A (en) Optically measuring apparatus
JP2001166202A (en) Focus detection method and focus detector
JP2828145B2 (en) Optical section microscope apparatus and method for aligning optical means thereof
JPS6255542A (en) Optical system inspecting device
KR0170476B1 (en) Device and method for measuring optical system efficiency using moire pattern
JPH07198345A (en) Circular diameter measurement device
JP2672771B2 (en) Through hole inner diameter measuring device
JPH01304339A (en) Instrument for measuring angle of refraction
US4601581A (en) Method and apparatus of determining the true edge length of a body
JPH023148Y2 (en)
JP2004037191A (en) Spherical part measuring method and spherical part measuring device
JP2003042720A (en) Height measuring apparatus
JPS6136884Y2 (en)
JPS6316964Y2 (en)
JP2524357B2 (en) Optical signal processing method for optical fiber sensor for distance measurement
JPH04351928A (en) Light beam diameter measurement device
SU877323A2 (en) Device for micro-object quantitative analysis
JPH05141924A (en) Film thickness measuring device