JP2003042720A - Height measuring apparatus - Google Patents

Height measuring apparatus

Info

Publication number
JP2003042720A
JP2003042720A JP2001228111A JP2001228111A JP2003042720A JP 2003042720 A JP2003042720 A JP 2003042720A JP 2001228111 A JP2001228111 A JP 2001228111A JP 2001228111 A JP2001228111 A JP 2001228111A JP 2003042720 A JP2003042720 A JP 2003042720A
Authority
JP
Japan
Prior art keywords
sample
height
photodetector
brightness
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001228111A
Other languages
Japanese (ja)
Inventor
Akihiro Kitahara
章広 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2001228111A priority Critical patent/JP2003042720A/en
Priority to PCT/JP2002/002659 priority patent/WO2002077567A1/en
Publication of JP2003042720A publication Critical patent/JP2003042720A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a height measuring apparatus in which the accuracy of the height measurement of a sample is increased, which is not influenced by the reflectance of the sample while the number of times of the movement of a Z-stage is reduced and which can acquire an image focused on the whole face. SOLUTION: A confocal microscope which is provided with an objective lens 7, a scanning mechanism 3, a movement mechanism 14, a very small opening 10 and a photodetector 11 is constituted. The height measuring apparatus is provided with an information computing means 20 wherein the relative position of the condensing position of the objective lens 7 to the sample 8 is changed, two confocal images are imaged, the difference/sum of outputs by the photodetector 11 in each pixel corresponding to the respective confocal images or a divided value is calculated, a proper scaling operation is performed and height information in each point of the sample is obtained and a luminance computing means 21 by which a luminance value in the focused position in each point of the sample is obtained on the basis of the height information obtained by the means 20, on the basis of the outputs by the photodetector 11, and on the basis of the 'luminance-focal position' characteristic of the confocal microscope.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学顕微鏡の光学
系を介して試料を光で走査することにより試料の表面情
報のうち高さを測定する高さ測定装置に係り、特に共焦
点走査型光学顕微鏡に用いる高さ測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a height measuring device for measuring the height of surface information of a sample by scanning the sample with light through an optical system of an optical microscope, and more particularly to a confocal scanning type. The present invention relates to a height measuring device used for an optical microscope.

【0002】[0002]

【従来の技術】共焦点走査型光学顕微鏡は、試料を点状
照明し、試料からの透過光又は反射光をピンホール上に
集光させた後、このピンホールを透過する光の強度を光
検出器で検出することによって試料の表面情報を取得す
る。図5に一般的な共焦点走査型光学顕微鏡の概略構成
を示す。一般的な共焦点走査型光学顕微鏡では、図5に
示すように、光源1から出射した光が、ビームスプリッ
ター2を透過した後、2次元走査機構3に入射する。2
次元走査機構3は第1の光スキャナ3aと第2の光スキ
ャナ3bとからなり、光束を2次元に走査する。そして
この光束は、対物レンズ7へと導かれる。対物レンズ7
へ入射した光束は収束光となって射出し、所定の位置
(以下、集光位置とする。)に集光する。そして、試料
8の面上を走査する。試料8の表面で反射した光は、再
び対物レンズ7から2次元走査機構3を介してビームス
プリッター2に導入された後、ビームスプリッター2に
よって反射され結像レンズ9によってピンホール10上
に集光する。ピンホール10により集光位置とは一致し
ない試料8表面からの反射光はカットされるので、ピン
ホール10を通過する光だけが光検出器11によって検
出される。試料8は試料台13上に載置されており、Z
ステージ14によって光軸方向に移動可能となってい
る。2次元走査機構3、Zステージ14および光検出器
11はコンピュータ12によって制御される。
2. Description of the Related Art A confocal scanning optical microscope illuminates a sample pointwise, collects transmitted light or reflected light from the sample on a pinhole, and then determines the intensity of the light transmitted through this pinhole. The surface information of the sample is acquired by detecting with the detector. FIG. 5 shows a schematic configuration of a general confocal scanning optical microscope. In a general confocal scanning optical microscope, as shown in FIG. 5, the light emitted from the light source 1 passes through the beam splitter 2 and then enters the two-dimensional scanning mechanism 3. Two
The dimensional scanning mechanism 3 includes a first optical scanner 3a and a second optical scanner 3b, and scans a light beam in two dimensions. Then, this light flux is guided to the objective lens 7. Objective lens 7
The light flux that has entered is emitted as convergent light and is condensed at a predetermined position (hereinafter, referred to as a condensing position). Then, the surface of the sample 8 is scanned. The light reflected on the surface of the sample 8 is again introduced from the objective lens 7 to the beam splitter 2 via the two-dimensional scanning mechanism 3, and then reflected by the beam splitter 2 and focused on the pinhole 10 by the imaging lens 9. To do. Since the reflected light from the surface of the sample 8 which does not coincide with the focus position is cut by the pinhole 10, only the light passing through the pinhole 10 is detected by the photodetector 11. The sample 8 is placed on the sample table 13, and Z
The stage 14 is movable in the optical axis direction. The two-dimensional scanning mechanism 3, Z stage 14, and photodetector 11 are controlled by the computer 12.

【0003】ここで、集光位置はピンホール10と光学
的に共役な位置にある。試料8がこの集光位置にある場
合は、試料8からの反射光がピンホール10上に集光す
るので、試料8からの反射光は、ピンホール10を通過
して光検出器11に到達する。一方、試料8がこの集光
位置からずれた位置にある場合は、試料8からの反射光
はピンホール10上では集光しないので、ピンホール1
0を通過しない。よって、試料8からの反射光は光検出
器11に到達しない。
Here, the focusing position is at a position optically conjugate with the pinhole 10. When the sample 8 is at this focusing position, the reflected light from the sample 8 is focused on the pinhole 10, so the reflected light from the sample 8 passes through the pinhole 10 and reaches the photodetector 11. To do. On the other hand, when the sample 8 is located at a position deviated from this focus position, the reflected light from the sample 8 is not focused on the pinhole 10, so the pinhole 1
Do not pass 0. Therefore, the reflected light from the sample 8 does not reach the photodetector 11.

【0004】このときの対物レンズ7と試料8の相対位
置(Z)と光検出器11の出力(I)との関係を図6に
示す。以下この関係をI−Zカーブ(「輝度−焦点位置
特性」)と呼ぶ。図6に示すように、試料8が集光位置
0に一致する場合、光検出器11の出力は最大とな
り、この集光位置Z0から対物レンズ7と試料8との相
対位置が離れるに従い光検出器11の出力は急激に低下
する。
FIG. 6 shows the relationship between the relative position (Z) of the objective lens 7 and the sample 8 and the output (I) of the photodetector 11 at this time. Hereinafter, this relationship is referred to as an IZ curve (“luminance-focus position characteristic”). As shown in FIG. 6, when the sample 8 coincides with the condensing position Z 0 , the output of the photodetector 11 becomes maximum, and as the relative position between the objective lens 7 and the sample 8 moves away from the condensing position Z 0 , The output of the photodetector 11 drops sharply.

【0005】この特性により、2次元走査機構3によっ
て集光点を2次元走査し、光検出器11の出力を2次元
走査機構3に同期して画像化すれば、試料8のある特定
の高さのみが画像化され、試料8を光学的にスライスし
た画像(共焦点画像)が得られる。また、Zステージ1
4で試料8を光軸方向に離散的に移動させ、各位置で2
次元走査機構3を走査して共焦点画像を取得し、試料の
各点において光検出器11の出力が最大になるZステー
ジ14の位置を検出することにより試料8の高さ情報が
得られる。
Due to this characteristic, if the condensing point is two-dimensionally scanned by the two-dimensional scanning mechanism 3 and the output of the photodetector 11 is imaged in synchronism with the two-dimensional scanning mechanism 3, a certain high level of the sample 8 is obtained. An image of the sample 8 is optically sliced (a confocal image). Also, Z stage 1
The sample 8 is discretely moved in the optical axis direction at 4 and 2 at each position.
The height information of the sample 8 can be obtained by scanning the dimensional scanning mechanism 3 to acquire a confocal image and detecting the position of the Z stage 14 at which the output of the photodetector 11 becomes maximum at each point of the sample.

【0006】このような構成によって試料8の高さを計
測する際、測定精度を高めようとすると、Zステージ1
4の1回当りの移動量を小さくすることが必要になり、
計測に時間が掛かる。
When the height of the sample 8 is measured by such a structure, if the measurement accuracy is increased, the Z stage 1
It is necessary to reduce the amount of movement per 4 times,
It takes time to measure.

【0007】そこで、Zステージ14の1回当りの移動
量を小さくすることなく、試料8の高さ計測の精度を高
める高さ測定方法が特開平09−068413号公報に
開示されている。この方法では、光検出器11の出力が
最大になるZステージ14の位置(ステージが離散的に
移動しているので、集光位置と試料位置とが一致してい
るわけではない。)、及びその前後の位置の計3点での
光検出器11の出力に基づいてI−Zカーブを2次曲線
で近似し、光検出器11の出力が本来最大となる(集光
位置と試料位置とが一致したときの)Zステージ14の
位置をZステージ14の移動量以下の精度で求めること
によって、高さ情報を得ている。
Therefore, Japanese Patent Laid-Open No. 09-068413 discloses a height measuring method for increasing the accuracy of height measurement of the sample 8 without reducing the movement amount of the Z stage 14 per movement. In this method, the position of the Z stage 14 at which the output of the photodetector 11 is maximized (the focusing position and the sample position do not match because the stage moves discretely), and The I-Z curve is approximated by a quadratic curve based on the outputs of the photodetector 11 at a total of three positions before and after that, and the output of the photodetector 11 is essentially the maximum (condensing position and sample position). The height information is obtained by obtaining the position of the Z stage 14 (at the time of coincidence) with an accuracy equal to or less than the movement amount of the Z stage 14.

【0008】同様に、例えば特開平10−281743
号公報には、I−Zカーブのピーク部分を示すn個のモ
デルデータを予め記憶しておき、該モデルデータとn個
の光検出器11の出力データを用いてピーク度数を算定
することによって、高さ情報を得る方法が開示されてい
る。
Similarly, for example, Japanese Patent Laid-Open No. 10-281743.
In the publication, n pieces of model data indicating the peak portion of the IZ curve are stored in advance, and the peak frequency is calculated by using the model data and the output data of the n pieces of photodetectors 11. , A method of obtaining height information is disclosed.

【0009】また、特開平11−264933号公報に
は、I−Zカーブを予め記憶しておき、試料8の反射率
が100%の場合にはZステージ14を移動させずに取
込んだ光検出器11の出力でI−ZカーブからどのZス
テージ14の位置に対応するかを判断し、高さ情報を得
ている。また、試料8の反射率が未知の場合にはZステ
ージ14を移動して2つのZステージ14の位置で共焦
点画像を取得し、それぞれの位置での光検出器11の出
力でI−ZカーブからZステージ14のどの位置に対応
するかを判断し得られた試料8の高さを平均化すること
で高さ情報を得る方法が開示されている。
In Japanese Patent Laid-Open No. 11-264933, the IZ curve is stored in advance, and when the reflectance of the sample 8 is 100%, the light captured without moving the Z stage 14 is used. The output of the detector 11 determines which Z stage 14 the position corresponds to from the I-Z curve to obtain height information. When the reflectance of the sample 8 is unknown, the Z stage 14 is moved to acquire confocal images at the positions of the two Z stages 14, and the output of the photodetector 11 at each position causes the I-Z There is disclosed a method of obtaining height information by averaging heights of the sample 8 obtained by determining which position of the Z stage 14 the curve corresponds to.

【0010】[0010]

【発明が解決しようとする課題】しかし、これらの従来
技術においては以下のような欠点がある。特開平09−
068413号公報に記載の方法のように、I−Zカー
ブを2次曲線やその他の曲線で近似して光検出器11の
出力が本来最大となるZステージ14の位置を求めるに
は、Zステージ14を少なくとも3箇所以上に位置決め
する必要がある。また、I−Zカーブを2次曲線やその
他の曲線で近似できる領域を、仮にI−Zカーブで光検
出器11の出力が最高出力の50%以上とすると、Zス
テージ14の1回の移動量はI−Zカーブの半値全幅の
3分の1以下でなければならない。
However, these conventional techniques have the following drawbacks. Japanese Patent Laid-Open No. 09-
In order to obtain the position of the Z stage 14 where the output of the photodetector 11 is originally maximized by approximating the I-Z curve with a quadratic curve or another curve, as in the method described in Japanese Patent No. 068413, the Z stage It is necessary to position 14 in at least three locations. If the output of the photodetector 11 in the I-Z curve is 50% or more of the maximum output in the region where the I-Z curve can be approximated by a quadratic curve or another curve, the Z stage 14 moves once. The amount must be less than one third of the full width at half maximum of the I-Z curve.

【0011】また、特開平11−264933号公報に
記載の方法では、試料8の反射率が100%の場合には
Zステージ14を移動させずに取込んだ光検出器11の
出力がI−ZカーブでどのZステージ14の位置に対応
するかを判断しているが、図6から明らかなように、光
検出器11の出力に対するZステージ14の位置は光検
出器11の出力に対するZステージ14の位置は光検出
器11の出力が本来最大となる(集光位置と試料位置と
が一致する)場合を除いて2つ以上有り、試料8の高さ
を一意的に決定することはできない。また、2つのZス
テージ14位置で共焦点画像を取得し、それぞれの位置
で光検出器11の出力がI−ZカーブでZステージ14
のどの位置に対応するかを判断する場合でも、光検出器
11の出力が反射率に比例するので、光検出器11の出
力がI−ZカーブでどのZステージ14の位置に対応す
るかを判断する際の誤差は光検出器11の出力に依存
し、2つのZステージ14の位置での該誤差量は一般に
一致しないので各々のZステージ14での高さを平均し
ても試料8の反射率の影響を取り除くことはできない。
In the method disclosed in Japanese Patent Laid-Open No. 11-264933, when the reflectance of the sample 8 is 100%, the output of the photodetector 11 taken in without moving the Z stage 14 is I-. It is determined which Z stage 14 the position corresponds to by the Z curve. As is clear from FIG. 6, the position of the Z stage 14 with respect to the output of the photodetector 11 is the Z stage with respect to the output of the photodetector 11. There are two or more positions 14 except when the output of the photodetector 11 is originally the maximum (the light collecting position and the sample position match), and the height of the sample 8 cannot be uniquely determined. . In addition, confocal images are acquired at the two Z stage 14 positions, and the output of the photodetector 11 is an I-Z curve at each of the Z stage 14 positions.
Even when determining which position of the photodetector 11 corresponds to the reflectance, the output of the photodetector 11 corresponds to the position of the Z stage 14 on the I-Z curve. The error at the time of judgment depends on the output of the photodetector 11, and the error amounts at the positions of the two Z stages 14 do not generally match. Therefore, even if the heights at the respective Z stages 14 are averaged, The effect of reflectance cannot be removed.

【0012】また、上記のような方法でZステージ14
の移動量を大きくとった場合、各位置で取得した共焦点
画像だけでは、全ての面にピントのあった画像を得るこ
とが出来ない。特開平09−068413号公報、特開
平10−281743号公報に記載の方法では、各点の
ピーク値を求めるための具体的な方法が記載されていな
い。また、高さを求める場合、光検出器の出力の最大値
を求めるには、Zステージを少なくとも3箇所以上に位
置決めしなければならないという欠点がある。さらに特
開平11−264933号公報では、高さを求める場
合、反射率が100の場合のみのI−Z特性(I−Zカ
ーブ)しか有しておらず、また、反射率が100%でな
い場合の最大値を求める方法は記載されていないので、
各点のピーク値を求めることができない。
Further, the Z stage 14 is manufactured by the above method.
When a large amount of movement is taken, it is not possible to obtain an image in which all surfaces are in focus only with the confocal images obtained at each position. In the methods described in Japanese Patent Application Laid-Open Nos. 09-068413 and 10-281743, no specific method for obtaining the peak value at each point is described. Further, when obtaining the height, there is a drawback that the Z stage must be positioned at least at three or more positions in order to obtain the maximum output of the photodetector. Further, in Japanese Patent Laid-Open No. 11-264933, when the height is obtained, the IZ characteristic (IZ curve) only when the reflectance is 100 is used, and when the reflectance is not 100%. Since the method to find the maximum value of is not described,
The peak value at each point cannot be calculated.

【0013】本発明は上記従来技術の欠点に鑑み、試料
の高さ計測の精度を高め、Zステージの移動回数を少な
くしつつも、試料の反射率の影響を受けず、また全ての
面にピントの合った画像も取得することが可能な高さ測
定装置を提供することを目的とする。
In view of the above-mentioned drawbacks of the prior art, the present invention improves the accuracy of measuring the height of the sample and reduces the number of movements of the Z stage, but is not affected by the reflectance of the sample, and all surfaces are affected. It is an object of the present invention to provide a height measuring device capable of acquiring a focused image.

【0014】[0014]

【課題を解決するための手段および作用】上記目的を達
成するため本第1の発明による高さ測定装置は、光源か
らの光を試料に対して集束させる対物レンズと、前記集
束光を前記試料表面に沿って相対的に走査させる走査機
構と、前記集束光の光軸方向に沿って、前記対物レンズ
の集光位置と前記試料の位置とを相対的に移動させる移
動機構と、前記対物レンズの集光位置と共役な位置に配
置された微小開口と、前記微小開口を通過する光の強度
を検出する光検出器とを備えた共焦点顕微鏡を構成し、
前記対物レンズの集光位置と前記試料との相対位置を変
えて2枚の共焦点画像を撮像し、それぞれの共焦点画像
に対応する各画素毎に前記光検出器による出力の差/
和、又は、除算値を計算し、適当なスケーリングをする
ことによって試料の各点における高さ情報を得る高さ情
報演算手段と、前記高さ情報演算手段で得た高さ情報と
前記光検出器の出力と前記共焦点顕微鏡の「輝度−焦点
位置」特性とにより、試料各点の合焦位置での輝度値を
得る輝度演算手段とを有することを特徴とする。
In order to achieve the above object, the height measuring apparatus according to the first aspect of the present invention comprises an objective lens for focusing light from a light source on a sample, and the focused light for the sample. A scanning mechanism that relatively scans along the surface, a moving mechanism that relatively moves the focusing position of the objective lens and the position of the sample along the optical axis direction of the focused light, and the objective lens. A confocal microscope comprising a micro-aperture arranged at a position conjugate with the condensing position and a photodetector for detecting the intensity of light passing through the micro-aperture,
Two confocal images are taken by changing the relative position between the condensing position of the objective lens and the sample, and the difference between the output of the photodetector for each pixel corresponding to each confocal image /
Height information calculation means for obtaining the height information at each point of the sample by calculating the sum or division value and performing appropriate scaling; the height information obtained by the height information calculation means and the light detection And a brightness calculation means for obtaining a brightness value at a focus position of each point of the sample by the output of the instrument and the "brightness-focus position" characteristic of the confocal microscope.

【0015】また、本第2の発明による高さ測定装置
は、前記輝度演算手段が、前記共焦点顕微鏡の理論値
(設計値)に基づく「輝度-焦点位置」特性を用いるこ
とを特徴とする。
In the height measuring apparatus according to the second aspect of the present invention, the brightness calculating means uses a "brightness-focus position" characteristic based on a theoretical value (design value) of the confocal microscope. .

【0016】また、本第3の発明による高さ測定装置
は、前記輝度演算手段が、前記共焦点顕微鏡の実測値に
基づく「輝度-焦点位置」特性(I−Zカーブ)を用い
ることを特徴とする。
Further, in the height measuring apparatus according to the third aspect of the present invention, the brightness calculating means uses a "brightness-focus position" characteristic (IZ curve) based on an actual measurement value of the confocal microscope. And

【0017】本第1の発明によれば、図7に示すよう
に、Zステージ14を試料8の表面8sをはさむように
焦点位置Za,Zbに位置決めして、2枚の共焦点画像
を得るとき、試料8の高さと光検出器11の出力との関
係は、図1(a)に示すように、それぞれ、焦点位置Za,
Zbを中心とするI−Zカーブになる。
According to the first aspect of the present invention, as shown in FIG. 7, the Z stage 14 is positioned at the focal positions Za and Zb so as to sandwich the surface 8s of the sample 8 to obtain two confocal images. At this time, the relationship between the height of the sample 8 and the output of the photodetector 11 is as shown in FIG.
It becomes an I-Z curve centered on Zb.

【0018】ここでZステージ14を焦点位置Za,Z
bに位置決めしたときの光検出器11の出力をIa,I
bとし、その差/和(Ia−Ib)/(Ia+Ib)を
計算すると、試料8の各高さにおいて図1(b)に示すよ
うな関係が得られる。図1(b)に示すように、光検出器
11の出力の差/和は焦点位置Zaと焦点位置Zbとの
中点で0となり、同図に示す使用範囲においては試料高
さにほぼ比例し、1対1の関係となる。そこで、図1
(b)の関係から、この使用範囲における試料8の高さと
光検出器11の出力の差/和との関係を所定の比例定数
を持つ1次式と近似すれば、この差/和信号より試料8
の高さを得ることができる。
Here, the Z stage 14 is moved to the focal position Za, Z.
The output of the photodetector 11 when positioned at b is Ia, I
If b is calculated and the difference / sum (Ia-Ib) / (Ia + Ib) is calculated, the relationship as shown in FIG. 1 (b) is obtained at each height of the sample 8. As shown in FIG. 1 (b), the difference / sum of the outputs of the photodetector 11 becomes 0 at the midpoint between the focus position Za and the focus position Zb, and is substantially proportional to the sample height in the use range shown in the same figure. However, there is a one-to-one relationship. Therefore, in FIG.
From the relationship of (b), if the relationship between the height of the sample 8 and the difference / sum of the outputs of the photodetector 11 in this usage range is approximated to a linear expression having a predetermined proportional constant, the difference / sum signal Sample 8
The height of can be obtained.

【0019】さらに、このようにして得られた高さと、
焦点位置Za,Zbでの検出器11による出力の実測値
(Za,Ia)(Zb,Ib)と、それらのI−Zカーブ
とから、試料8の各点における輝度Iのピーク値を求め
れば、全ての面にピントの合った画像を得ることが出来
る。I−Zカーブは、本第2の発明のように、光源の波
長、微小開口の大きさ、対物レンズの開口数等について
の設計要素から決まる理論値(設計値)や、本第3の発
明のように、実際の装置毎に測定されるそれらの実測値
を用いることで、より正確に試料8の各点における輝度
Iのピーク値を求めることが出来る。
Further, the height thus obtained and
If the peak value of the brightness I at each point of the sample 8 is obtained from the measured values (Za, Ia) (Zb, Ib) of the output from the detector 11 at the focal positions Za and Zb and their IZ curves, , It is possible to obtain images in focus on all surfaces. The I-Z curve is a theoretical value (design value) determined from design factors such as the wavelength of the light source, the size of the minute aperture, the numerical aperture of the objective lens, or the like as in the second aspect of the invention, and the third aspect of the invention. As described above, it is possible to more accurately obtain the peak value of the brightness I at each point of the sample 8 by using the actual measurement values measured for each actual device.

【0020】また、本第4の発明による高さ測定装置
は、本第1〜3のいずれかの発明において、前記輝度演
算手段が、前記高さ情報演算手段より得られた各点にお
ける高さ情報と、取得した2枚の共焦点画像のいずれか
一方の位置の高さ情報より、各点のデフォーカス量を求
める除算手段と、前記デフォーカス量と、それに対応す
る輝度データを選択可能なルックアップテーブルとを用
いて、試料各点の合焦位置における輝度を得るようにす
るのが好ましい。
The height measuring device according to the fourth aspect of the present invention is the height measuring device according to any one of the first to third aspects of the present invention, in which the luminance calculating means is the height at each point obtained from the height information calculating means. It is possible to select division means for obtaining the defocus amount at each point from the information and the height information of the position of one of the acquired two confocal images, the defocus amount, and the brightness data corresponding thereto. It is preferable to obtain the luminance at the in-focus position of each point of the sample by using a look-up table.

【0021】また、本第5の発明による高さ測定装置
は、本第4の発明において、各点のデフォーカス量を、
2枚の共焦点画像の各点において輝度の大きい方の位置
の高さ情報より求めるようにするのが好ましい。
The height measuring device according to the fifth aspect of the present invention is the height measuring device according to the fourth aspect of the invention, wherein the defocus amount at each point is
It is preferable to obtain it from the height information of the position having the larger luminance at each point of the two confocal images.

【0022】本第4及び第5の発明によれば、得られた
試料8の高さZと、Zステージ14の位置Zaもしくは
Zbより、デフォーカス量ΔZを求める。このデフォー
カス量ΔZと、Zステージ14のZa位置での検出器1
1の出力Ia又はZステージ14のZb位置での検出器
11の出力Ibより、あらかじめ、I−Zカーブの値が
入力されたルックアップテーブルより、即座に、試料8
の各点の輝度Iのピーク値を求めることが出来る。ま
た、出力Ia又は出力Ibとして、より大きな方を選択す
ることにより、S/Nの影響を受けにくくなり、正確に
試料8の各点における輝度Iのピーク値を求めることが
出来る。
According to the fourth and fifth aspects of the invention, the defocus amount ΔZ is obtained from the obtained height Z of the sample 8 and the position Za or Zb of the Z stage 14. This defocus amount ΔZ and the detector 1 at the Za position of the Z stage 14
1 from the output Ia or the output Ib from the detector 11 at the Zb position of the Z stage 14 from the look-up table in which the value of the I-Z curve is input in advance.
The peak value of the brightness I at each point can be obtained. Further, by selecting a larger one as the output Ia or the output Ib, the influence of S / N is less likely to occur, and the peak value of the brightness I at each point of the sample 8 can be accurately obtained.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施例について図
面を用いて説明する。図2は本発明の各実施例で使用す
る共焦点走査型顕微鏡の基本構成を示す概略構成図であ
る。本発明の各実施例で使用する共焦点走査型顕微鏡の
基本構成は図5に示す従来の共焦点走査型顕微鏡の構成
と同一である。よって、基本構成及び作用の説明は省略
する。本発明の各実施例の高さ測定装置は、共焦点走査
型顕微鏡のコンピュータ12内に設けられた高さ演算手
段20と輝度演算手段21の構成に特徴がある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a schematic configuration diagram showing the basic configuration of the confocal scanning microscope used in each embodiment of the present invention. The basic configuration of the confocal scanning microscope used in each embodiment of the present invention is the same as the configuration of the conventional confocal scanning microscope shown in FIG. Therefore, the description of the basic configuration and operation is omitted. The height measuring device of each embodiment of the present invention is characterized by the configuration of the height calculating means 20 and the brightness calculating means 21 provided in the computer 12 of the confocal scanning microscope.

【0024】第1実施例 第1実施例では、高さ演算手段20には、予め求めてお
いたI−Zカーブを図3(a)に示すように間隔dだけシ
フトして、図3(b)に示すようにその差/和(I−I')
/(I+I')を計算して得られた情報が記憶されてい
る。次に、図7に示したように、Zステージ14を試料
8の表面8sをはさむように間隔dをあけた焦点位置Z
a,Zbにそれぞれ位置決めして、2枚の共焦点画像を
得る。このとき高さ演算部21では、Zステージ14を
焦点位置Za,Zbに位置決めしたときの光検出器11
の出力Ia,Ibより、試料の各点毎の差/和信号(Ia
−Ib)/(Ia+Ib)を計算する。すると、図3(c)
に示すように、各点毎にZすなわち、試料8の高さが得
られる。
First Embodiment In the first embodiment, the height calculating means 20 shifts the previously obtained IZ curve by the distance d as shown in FIG. The difference / sum (II ′) as shown in b)
Information obtained by calculating / (I + I ') is stored. Next, as shown in FIG. 7, the Z stage 14 is placed at a focal position Z with a distance d so as to sandwich the surface 8s of the sample 8.
Positioning at a and Zb respectively, two confocal images are obtained. At this time, the height calculation unit 21 detects the photodetector 11 when the Z stage 14 is positioned at the focal positions Za and Zb.
From the outputs Ia and Ib of the sample, the difference / sum signal (Ia
Calculate -Ib) / (Ia + Ib). Then, Fig. 3 (c)
As shown in, Z, that is, the height of the sample 8 is obtained for each point.

【0025】次に、輝度演算手段21では、得られた試
料8の高さと、焦点位置Za,Zbのいずれか一方、例
えば、焦点位置Za、との相対高さΔZaを演算する。
さらに、図4に示すように輝度が正規化されたI−Zカ
ーブを予め記憶しておき、このI−Zカーブに、相対高
さΔZaを代入しスケーリングすることで、輝度iaが
求められる。よって、試料8の実際の輝度のピーク値
は、IPEAK=1×Ia/iaにより得ることが出来る。
ここで、I−Zカーブは、例えば、「T.R.Corle,G.S.Ki
no,"Confocal Scanning Optical Microscopy and Relat
ed Imaging Systems "ACADEMICPRESS 1996」によれば、
次式(1)で表される。理論値としては、これを用いれば
よい。
Next, the brightness calculating means 21 calculates the relative height ΔZa between the obtained height of the sample 8 and one of the focal positions Za and Zb, for example, the focal position Za.
Further, as shown in FIG. 4, an IZ curve whose brightness is normalized is stored in advance, and the relative height ΔZa is substituted into this IZ curve to perform scaling, whereby the brightness ia is obtained. Therefore, the peak value of the actual luminance of the sample 8 can be obtained by I PEAK = 1 × Ia / ia.
Here, the I-Z curve is, for example, “TRCorle, GSKi
no, "Confocal Scanning Optical Microscopy and Relat
According to ed Imaging Systems "ACADEMICPRESS 1996",
It is expressed by the following equation (1). This may be used as the theoretical value.

【0026】また、試料8として平面ミラーを用いて、
Zステージ14を微小量づつ動かして、共焦点画像を取
得するようにすれば、高さ計測装置を構成する対物レン
ズ等との組み合わせ毎にI−Zカーブの実測値を得るこ
とが出来るので、収差等の影響も排除することが可能と
なる。
Further, using a plane mirror as the sample 8,
If the Z stage 14 is moved by a small amount to acquire a confocal image, it is possible to obtain an actual measurement value of the IZ curve for each combination with the objective lens or the like that constitutes the height measuring device. It is possible to eliminate the influence of aberration and the like.

【0027】第2実施例 第2実施例では、第1実施例における輝度演算手段21
が、ルックアップテーブルを備えて構成されている。ル
ックアップテーブルは、理論値又は、実測値から作成さ
れ、(ΔZ、I)の1つの組み合わせに対し、1つの輝
度値が選択されるようにテーブルデータが格納されてい
る。これによれば、輝度演算手段21では、(ΔZ、
I)を求めることにより、ルックアップテーブルを介し
て瞬時に実際の輝度ピーク値を得ることが出来る。
Second Embodiment In the second embodiment, the brightness calculating means 21 in the first embodiment is used.
Is configured with a lookup table. The look-up table is created from theoretical values or measured values, and table data is stored so that one luminance value is selected for one combination of (ΔZ, I). According to this, in the brightness calculation means 21, (ΔZ,
By obtaining I), the actual luminance peak value can be instantly obtained via the look-up table.

【0028】変形例 以上の説明では、本発明の高さ測定装置を構成する共焦
点走査型顕微鏡の基本的構成を図5に示したが、本発明
の高さ測定装置は、これに限らず各種の共焦点走査型顕
微鏡に適用することができる。例えば、対物レンズ7に
よる集束光を試料8の表面に沿って相対的に走査させる
走査機構として光軸に垂直な面内で試料8を移動させる
XYステージを用いても良い。また、円盤上にスパイラ
ル状に複数の微小開口を設けたNipkowディスクを
高速回転させる構成であっても良い。このとき、前記N
ipkowディスクが対物レンズの集光位置と共役な位
置に配置される微小開口を兼ね、光検出器としてCCD
等の2次元画像センサが用いられる。さらには2次元光
走査機構に代えて、1次元光スキャナによって対物レン
ズの集束光を試料の1ライン上で走査し、試料の断面形
状を測定する構成であっても良い。また、対物レンズ7
の集光位置と試料8の位置を相対的に移動させる移動機
構とて試料8の位置を移動させるZステージ14に変え
て対物レンズ7を移動する機構を用いても良い。その
他、上記の構成に限らず、各種の共焦点顕微鏡に本発明
を適用することができる。
Modification In the above description, the basic configuration of the confocal scanning microscope constituting the height measuring device of the present invention is shown in FIG. 5, but the height measuring device of the present invention is not limited to this. It can be applied to various confocal scanning microscopes. For example, an XY stage that moves the sample 8 in a plane perpendicular to the optical axis may be used as a scanning mechanism that relatively scans the focused light from the objective lens 7 along the surface of the sample 8. Further, the Nipkow disk having a plurality of minute openings spirally provided on the disk may be rotated at high speed. At this time, the N
The ipkow disk doubles as a minute aperture that is placed at a position conjugate with the focus position of the objective lens, and acts as a CCD as a photodetector.
A two-dimensional image sensor such as Further, instead of the two-dimensional optical scanning mechanism, the one-dimensional optical scanner may scan the focused light of the objective lens on one line of the sample to measure the cross-sectional shape of the sample. In addition, the objective lens 7
It is also possible to use a mechanism for moving the objective lens 7 instead of the Z stage 14 for moving the position of the sample 8 as a moving mechanism for relatively moving the position of the sample 8 and the position of the sample 8. Besides, the present invention can be applied to various confocal microscopes without being limited to the above configuration.

【0029】以上説明したように、本発明の高さ測定装
置は、特許請求の範囲に記載された特徴の他に下記に示
すような特徴も備えている。
As described above, the height measuring device of the present invention has the following features in addition to the features described in the claims.

【0030】(1)前記輝度演算手段は、前記高さ情報
演算手段より得られた各点における高さ情報と、取得し
た2枚の共焦点画像のいずれか一方の位置の高さ情報よ
り、各点のデフォーカス量を求める除算手段と、前記デ
フォーカス量と、それに対応する輝度データを選択可能
なルックアップテーブルを用いて、試料各点の合焦位置
における輝度を得ることを特徴とする請求項1〜3のい
ずれかに記載の高さ測定装置。
(1) The brightness computing means uses the height information at each point obtained by the height information computing means and the height information at any one of the two acquired confocal images, The brightness at the in-focus position of each point of the sample is obtained by using a division means for obtaining the defocus amount of each point, and a lookup table capable of selecting the defocus amount and the luminance data corresponding thereto. The height measuring device according to claim 1.

【0031】(2)各点のデフォーカス量は、2枚の共
焦点画像の各点において輝度の大きい方の位置の高さ情
報より求めることを特徴とする上記(1)に記載の高さ
測定装置。
(2) The defocus amount at each point is obtained from the height information of the position of the larger brightness at each point of the two confocal images. measuring device.

【0032】[0032]

【発明の効果】以上詳述したように、本発明によれば、
試料の高さ計測の精度を高め、Zステージの移動回数を
少なくしつつも、試料の反射率の影響を受けず、また全
ての面にピントの合った画像も取得することが可能な高
さ測定装置を提供することが可能となる。
As described in detail above, according to the present invention,
Height that can improve the accuracy of the height measurement of the sample and reduce the number of movements of the Z stage, but is not affected by the reflectance of the sample and that can acquire images in focus on all surfaces. It is possible to provide a measuring device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高さ測定装置における対物レンズと試
料の相対位置と光検出器を介して検出される出力との関
係を示す図であり、(a)は対物レンズと試料の相対位置
と光検出器出力との関係を示すグラフ、(b)は対物レン
ズと試料の相対位置と差/和信号との関係を示すグラフ
である。
FIG. 1 is a diagram showing a relationship between a relative position of an objective lens and a sample and an output detected through a photodetector in a height measuring apparatus of the present invention, and (a) is a relative position of the objective lens and the sample. And (b) are graphs showing the relationship between the relative position of the objective lens and the sample and the difference / sum signal.

【図2】本発明の高さ測定装置を構成する共焦点走査型
光学顕微鏡の一実施例を示す概略構成図である。
FIG. 2 is a schematic configuration diagram showing an embodiment of a confocal scanning optical microscope which constitutes the height measuring device of the present invention.

【図3】本発明の第1実施例における対物レンズと試料
の相対位置と光検出器を介して検出される出力との関係
を示す図であり、(a)は対物レンズと試料との相対位置
と光検出器出力の関係を示すグラフ、(b)は本実施例に
おいて使用する差/和信号の範囲を示すグラフ、(c)は
(b)に示す範囲における差/和信号から試料の高さが得
られることを示すグラフである。
FIG. 3 is a diagram showing the relationship between the relative position of the objective lens and the sample and the output detected through the photodetector in the first embodiment of the present invention, (a) shows the relative position between the objective lens and the sample. A graph showing the relationship between the position and the photodetector output, (b) is a graph showing the range of the difference / sum signal used in this embodiment, and (c) is
It is a graph which shows that the height of a sample is obtained from the difference / sum signal in the range shown in (b).

【図4】対物レンズと試料の相対位置と光検出器の出力
との関係を輝度を正規化して示すグラフである。
FIG. 4 is a graph showing the relationship between the relative position of the objective lens and the sample and the output of the photodetector with the luminance normalized.

【図5】一般的な共焦点走査型光学顕微鏡の概略構成図
である。
FIG. 5 is a schematic configuration diagram of a general confocal scanning optical microscope.

【図6】対物レンズと試料の相対位置と光検出器の出力
との関係を示す図である。
FIG. 6 is a diagram showing the relationship between the relative position of the objective lens and the sample and the output of the photodetector.

【図7】2枚の共焦点画像を得るときのZステージの試
料に対する位置を示す説明図である。
FIG. 7 is an explanatory diagram showing the position of the Z stage with respect to the sample when two confocal images are obtained.

【符号の説明】[Explanation of symbols]

1 光源 2 ビームスプリッタ 3 2次元走査機構 3a 第1の光スキャナ 3b 第2の光スキャナ 7 対物レンズ 8 試料 9 結像レンズ 10 ピンホール 11 光検出器 12 コンピュータ 13 試料台 14 Zステージ 20 高さ演算手段 21 輝度演算手段 1 light source 2 beam splitter 3 Two-dimensional scanning mechanism 3a First optical scanner 3b Second optical scanner 7 Objective lens 8 samples 9 Imaging lens 10 pinholes 11 Photodetector 12 computers 13 sample table 14 Z stage 20 Height calculation means 21 Luminance calculation means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光を試料に対して集束させる
対物レンズと、 前記集束光を前記試料表面に沿って相対的に走査させる
走査機構と、 前記集束光の光軸方向に沿って、前記対物レンズの集光
位置と前記試料の位置とを相対的に移動させる移動機構
と、 前記対物レンズの集光位置と共役な位置に配置された微
小開口と、 前記微小開口を通過する光の強度を検出する光検出器と
を備えた共焦点顕微鏡を構成し、 前記対物レンズの集光位置と前記試料との相対位置を変
えて2枚の共焦点画像を撮像し、それぞれの共焦点画像
に対応する各画素毎に前記光検出器による出力の差/
和、又は、除算値を計算し、適当なスケーリングをする
ことによって試料の各点における高さ情報を得る高さ情
報演算手段と、 前記高さ情報演算手段で得た高さ情報と前記光検出器の
出力と前記共焦点顕微鏡の「輝度−焦点位置」特性とに
より、試料各点の合焦位置での輝度値を得る輝度演算手
段とを有することを特徴とする高さ測定装置。
1. An objective lens that focuses light from a light source on a sample, a scanning mechanism that relatively scans the focused light along the surface of the sample, and an optical axis direction of the focused light, A moving mechanism that relatively moves the condensing position of the objective lens and the position of the sample, a minute aperture arranged at a position conjugate with the condensing position of the objective lens, and a light beam passing through the minute aperture. A confocal microscope including a photodetector for detecting intensity is configured, two confocal images are captured by changing the relative position between the condensing position of the objective lens and the sample, and each confocal image is taken. The difference in output from the photodetector for each pixel corresponding to
Height information calculation means for obtaining the height information at each point of the sample by calculating a sum or a division value and performing appropriate scaling; height information obtained by the height information calculation means and the light detection A height measuring device comprising: a brightness calculation unit that obtains a brightness value at a focus position of each point of the sample based on the output of the instrument and the "brightness-focus position" characteristic of the confocal microscope.
【請求項2】 前記輝度演算手段は、前記共焦点顕微鏡
の理論値(設計値)に基づく「輝度-焦点位置」特性を
用いることを特徴とする請求項1に記載の高さ測定装
置。
2. The height measuring apparatus according to claim 1, wherein the brightness calculating means uses a “brightness-focus position” characteristic based on a theoretical value (design value) of the confocal microscope.
【請求項3】 前記輝度演算手段は、前記共焦点顕微鏡
の実測値に基づく「輝度-焦点位置」特性を用いること
を特徴とする請求項1に記載の高さ測定装置。
3. The height measuring apparatus according to claim 1, wherein the brightness calculating means uses a “brightness-focus position” characteristic based on an actual measurement value of the confocal microscope.
JP2001228111A 2001-03-22 2001-07-27 Height measuring apparatus Withdrawn JP2003042720A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001228111A JP2003042720A (en) 2001-07-27 2001-07-27 Height measuring apparatus
PCT/JP2002/002659 WO2002077567A1 (en) 2001-03-22 2002-03-20 Height measuring instrument, and method of measuring height using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001228111A JP2003042720A (en) 2001-07-27 2001-07-27 Height measuring apparatus

Publications (1)

Publication Number Publication Date
JP2003042720A true JP2003042720A (en) 2003-02-13

Family

ID=19060665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001228111A Withdrawn JP2003042720A (en) 2001-03-22 2001-07-27 Height measuring apparatus

Country Status (1)

Country Link
JP (1) JP2003042720A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058642A (en) * 2004-08-20 2006-03-02 Nikon Corp Automatic focus detecting apparatus and microscopic system equipped with the same
JP2010038788A (en) * 2008-08-06 2010-02-18 National Institute Of Advanced Industrial & Technology Height measuring method and height measuring instrument
US20180164563A1 (en) * 2016-12-09 2018-06-14 Olympus Corporation Scanning confocal microscope apparatus, scanning control method, and recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058642A (en) * 2004-08-20 2006-03-02 Nikon Corp Automatic focus detecting apparatus and microscopic system equipped with the same
US7843634B2 (en) 2004-08-20 2010-11-30 Nikon Corporation Automatic focus detection device and microscope system having the same
JP4599941B2 (en) * 2004-08-20 2010-12-15 株式会社ニコン Automatic focus detection apparatus and microscope system including the same
JP2010038788A (en) * 2008-08-06 2010-02-18 National Institute Of Advanced Industrial & Technology Height measuring method and height measuring instrument
US20180164563A1 (en) * 2016-12-09 2018-06-14 Olympus Corporation Scanning confocal microscope apparatus, scanning control method, and recording medium
US10678038B2 (en) * 2016-12-09 2020-06-09 Olympus Corporation Scanning confocal microscope apparatus, scanning control method, and recording medium

Similar Documents

Publication Publication Date Title
US6819415B2 (en) Assembly for increasing the depth discrimination of an optical imaging system
US8027548B2 (en) Microscope system
JP5841750B2 (en) Autofocus device for microscope and appropriate autofocus aperture stop
CN107238919B (en) Method and apparatus for image scanning
JP6662529B2 (en) System and method for continuous asynchronous autofocus of optics
CN104515469A (en) Light microscope and microscopy method for examining a microscopic specimen
JP2006184303A (en) Image inspecting device
JP2010101959A (en) Microscope device
JP2013113650A (en) Trench depth measuring apparatus and trench depth measuring method and confocal microscope
TW200521481A (en) Focusing system and method
JP6363477B2 (en) 3D shape measuring device
JP3579166B2 (en) Scanning laser microscope
CN117491285A (en) Image definition focusing-based method and device
JP3726028B2 (en) 3D shape measuring device
JP4603177B2 (en) Scanning laser microscope
US20030058455A1 (en) Three-dimensional shape measuring apparatus
JPH1068616A (en) Shape measuring equipment
JP4179790B2 (en) Confocal scanning optical microscope
JP2001318302A (en) Focus detecting device and autofocusing microscope
JP2003042720A (en) Height measuring apparatus
JP2004102032A (en) Scanning type confocal microscope system
JP4398183B2 (en) Confocal microscope
JPH09325278A (en) Confocal type optical microscope
JPS63241407A (en) Method and device for measuring depth of fine recessed part
WO2022145391A1 (en) Scanning confocal microscope and adjustment method for scanning confocal microscope

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007