WO2002077567A1 - Height measuring instrument, and method of measuring height using the same - Google Patents

Height measuring instrument, and method of measuring height using the same Download PDF

Info

Publication number
WO2002077567A1
WO2002077567A1 PCT/JP2002/002659 JP0202659W WO02077567A1 WO 2002077567 A1 WO2002077567 A1 WO 2002077567A1 JP 0202659 W JP0202659 W JP 0202659W WO 02077567 A1 WO02077567 A1 WO 02077567A1
Authority
WO
WIPO (PCT)
Prior art keywords
height
sample
curve
light
objective lens
Prior art date
Application number
PCT/JP2002/002659
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiro Kita
Shigeru Kanegae
Hideo Watanabe
Akihiro Kitahara
Original Assignee
Olympus Optical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001082593A external-priority patent/JP2002286423A/en
Priority claimed from JP2001223992A external-priority patent/JP2003035519A/en
Priority claimed from JP2001228111A external-priority patent/JP2003042720A/en
Priority claimed from JP2001229114A external-priority patent/JP2003043364A/en
Application filed by Olympus Optical Co., Ltd. filed Critical Olympus Optical Co., Ltd.
Publication of WO2002077567A1 publication Critical patent/WO2002077567A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges

Definitions

  • the present invention records a sample height measurement method for measuring surface information of a sample by scanning the sample with light through an optical system of an optical microscope, a confocal microscope, and a height measurement program for a confocal microscope.
  • the present invention relates to a recording medium and a program therefor.
  • FIG. 1 shows a schematic configuration of a conventional confocal scanning optical microscope.
  • light emitted from a light source 3 passes through a beam splitter 4, is reflected by a mirror 5 and enters a two-dimensional scanning mechanism 6.
  • the two-dimensional scanning mechanism 6 includes a first optical scanner 6a and a second optical scanner 6b.
  • the two-dimensional scanning mechanism 6 scans the light beam from the light source 3 two-dimensionally and passes through the relay lens system 7 to the objective lens 8. Be guided.
  • the light beam incident on the objective lens 8 becomes a converged light beam and scans the surface of the sample 9 two-dimensionally.
  • the light reflected on the surface of the sample 9 enters the beam splitter 4 via the reproduction objective lens 8, the relay lens system 7, and the two-dimensional scanning mechanism 6, and is reflected by the beam splitter 4 to form the imaging lens 1.
  • a pinhole 11 which is a minute aperture member.
  • the reflected light from the point other than the focal point of the sample 9 is focused by the pinhole 11 and only the reflected light from the focal point passes through the pinhole 11 and is detected by the photodetector 12.
  • the sample 9 is placed on a sample stage 13, and can be moved in the optical axis direction by a Z stage 14.
  • the two-dimensional scanning mechanism 6, the Z stage 14 and the photodetector 12 are controlled by a computer 15.
  • the computer 15 issues a drive command to the scanner drive unit 19 from the CPU 25 via the CPU path 17 and the IZF (interface) 18 to drive the scanner 6.
  • a drive command is issued to the Z drive unit 21 via the IZF (interface) 20, Drives Z stage 14
  • a computer program for converting the analog output of the photodetector 12 into digital data by an AZD (analog Z-digital) converter 22 and controlling the confocal scanning optical microscope used for the control process is as follows. Are recorded on the recording medium 23, copied to the main memory 24, and executed by the CPU 25.
  • the computer program can be downloaded from a server computer located at a remote place via a communication circuit such as a network (not shown) connected to the computer 15 and executed.
  • the condensing position of the objective lens 8 is at a position optically conjugate with the pinhole 11, and when the sample 9 is at the condensing position of the objective lens 8, the reflected light from the sample 9 is When the light is focused on the pinhole 11 and passes through the pinhole 11, but the sample 9 is located at a position shifted from the focus position by the objective lens 8, the reflected light from the sample 9 is reflected on the pinhole 11. Does not converge, and does not pass through pinhole 11.
  • FIG. 3 shows the relative position Z of the objective lens 8 and the sample 9 at this time on the horizontal axis, and the output I of the photodetector 12 on the vertical axis.
  • this relation is referred to as an I_Z curve. As shown in Fig.
  • the output I of the photodetector 12 becomes maximum, and the relative position between the objective lens 8 and the sample 9 is separated from this position. , The output of the photodetector 12 decreases rapidly. Due to this characteristic, the two-dimensional scanning mechanism 6 scans the condensing point of the objective lens 8 two-dimensionally, and the output of the photodetector 12 is imaged in synchronization with the two-dimensional scanning mechanism 6, so that a specific sample 9 can be identified. Only the height of the sample 9 is imaged, and an image (confocal image) obtained by optically slicing the sample 9 is obtained.
  • the sample 9 is moved discretely in the optical axis direction by the Z stage 14, and the confocal image is acquired by scanning the two-dimensional scanning mechanism 6 at each position (each height), and light is detected at each point of the sample.
  • the position of the Z stage 14 at which the output of the vessel 12 becomes maximum, the height information of the sample 9 can be obtained.
  • Japanese Patent Application Laid-Open No. Hei 9-198643 discloses a height measuring method for improving the accuracy of the height measurement of a sample without reducing the amount of movement of the Z stage per operation.
  • the I_Z curve is quadratic based on the photodetector output at a total of three points: the position (height) of the Z stage where the output of the photodetector is maximized, and the positions before and after it.
  • the position (height) of the Z stage at which the output of the photodetector is maximized is obtained with an accuracy equal to or less than the movement amount of the Z stage to obtain height information.
  • n model data indicating a peak portion of the I-Z force is previously stored, and the model data and the n light beams are stored. It describes that the peak frequency is calculated using the output data of the detector to obtain height information. Furthermore, according to the description in Japanese Patent Application Laid-Open No. H11-246493, the I-Z curve is stored in advance, and if the reflectance of the sample is 100%, the Z-step is set. The height information is obtained by judging which Z stage position the captured photodetector output corresponds to in the I-Z curve without moving the sensor.
  • the Z stage is moved to acquire a confocal image at two Z-stage positions, and the output of the photodetector at each position is represented by the Z curve using the I_Z curve. Height information is obtained by deciding which position on the stage it corresponds to and averaging the heights of the obtained samples.
  • the I-Z curve is approximated by a quadratic curve or other curves to find the position of the Z stage at which the output of the photodetector is maximized. To do this, it is necessary to position the Z stage in at least three places. Also, if the area where the I-Z curve can be approximated by a quadratic curve or other curves is assumed to be 50% or more of the maximum output of the photodetector in the I-Z curve, the amount of one movement of the Z stage Must be less than one-third of the full width at half maximum of the I-Z curve. Furthermore, since the position of the peak (the output of the photodetector 12 is the highest output in the I-Z curve) must be estimated, the load on the computer 12 is concentrated on the arithmetic processing and the operability is impaired.
  • the I-Z curve is stored in advance in the method disclosed in Japanese Patent Application Laid-Open No. H10-281843, as in the method disclosed in Japanese Patent Application Laid-Open No. H11-264733. If this is done, individual differences will also occur in confocal microscopes.
  • the measurement operator could not select the measurement accuracy and the measurement speed according to the measurement conditions.
  • a main object of the present invention is to reduce the number of movements of the Z stage without reducing the amount of movement per movement of the Z stage, and to reduce the number of movements of the Z stage, and
  • the present invention provides a height measuring method, a confocal microscope, a recording medium recording a height measuring program for a confocal microscope, and a program therefor.
  • Another object of the present invention is to increase the accuracy of sample height measurement, and at the same time, reduce the number of movements of the Z stage, thereby speeding up the measurement, and without being affected by the reflectance of the sample.
  • Another object of the present invention is to provide a height measuring device capable of reducing the load on a control device, improving responsiveness, and expanding a measuring range.
  • Still another object of the present invention is to improve the accuracy of sample height measurement and reduce the number of movements of the Z stage, without being affected by the reflectance of the sample, and focusing on all surfaces.
  • An object of the present invention is to provide a height measuring device capable of acquiring an image.
  • Another object of the present invention is to increase the accuracy of sample height measurement without reducing the amount of movement of the Z stage per stroke, and at the same time, to increase the Z stage required for sample height measurement.
  • An object of the present invention is to provide a parameter setting method capable of selecting a measurement accuracy and a measurement speed according to a measurement condition when performing a measurement in which the number of times of movement is reduced.
  • the height measuring method includes an objective lens that focuses light from a light source on a sample, a scanning mechanism that relatively scans the focused light along the sample surface, and an optical axis direction of the focused light.
  • a confocal scanning microscope equipped with a photodetector for detecting the intensity of light passing through the minute aperture member is used.
  • two confocal images are taken by changing the focusing position of the objective lens and the relative position of the sample, and the sum Z of the output of the photodetector is calculated for each corresponding pixel, and the calculated value is calculated.
  • the height information of each point of the sample is obtained by substituting into a predetermined polynomial for.
  • the polynomial for obtaining the height information is a linear expression.
  • the difference between the condensing position of the objective lens and the relative position of the sample in the two confocal images is calculated by the above-described relative position-one-light detection It is 0.3 to 2 times the full width at half maximum of the output signal strength curve.
  • the height measuring method comprises an objective lens for focusing light from a light source onto a sample.
  • Lens a scanning mechanism that relatively scans the focused light along the sample surface, and moves the focus position of the objective lens and the position of the sample relatively along the optical axis along the optical axis of the focused light.
  • a confocal scanning ⁇ ⁇ microscope equipped with a moving mechanism, a micro-aperture member arranged at a position conjugate to the focusing position of the objective lens, and a photodetector for detecting the intensity of light passing through the micro-aperture member Used.
  • the converging position of the objective lens and the relative position of the sample are sequentially changed by a fixed amount of movement to capture multiple confocal images, and the difference between the converging position of the two objective lenses and the relative position of the sample is calculated.
  • the difference / sum of the output of the photodetector is calculated for each corresponding pixel between the two confocal images where the shift amount is an integral multiple of the above shift amount, and this calculated value is substituted into a predetermined polynomial.
  • the height information of each point of the sample is obtained by adding the average value of the focusing position of the objective lens and the relative position of the sample in the two confocal images to the result.
  • the shift amount obtained from the two confocal images is the movement amount.
  • the amount of movement is 0.3 to 0.8 times the full width at half maximum of the relative position-one photodetector output signal intensity curve.
  • a confocal scanning microscope includes: an objective lens for focusing light from a light source on a sample; a scanning mechanism for relatively scanning the focused light along a sample surface; and an optical axis direction of the focused light.
  • a moving mechanism for relatively moving the focus position of the objective lens and the position of the sample in the optical axis direction; a micro aperture member arranged at a position conjugate with the focus position of the objective lens;
  • a light detector for detecting the intensity of light passing through the minute aperture member.
  • two confocal images are captured by changing the focusing position of the objective lens and the relative position of the sample, and the output difference of the photodetector is determined for each corresponding pixel by the photodetector.
  • a height measurement function is provided to obtain the height information of each point of the sample by dividing by the sum of the outputs and substituting it into an appropriate polynomial.
  • a recording medium storing a control program for controlling height measurement of a confocal microscope by a computer, wherein a focusing position of an objective lens and a relative position of a sample are changed.
  • the height information of each point of the sample is obtained by dividing the difference of each corresponding pixel by the sum of each pixel from the two confocal images taken and substituting it into an appropriate polynomial.
  • the height of the confocal microscope can be A measurement control program that divides the difference of each corresponding pixel by the sum of each pixel from two confocal images taken while changing the focusing position of the objective lens and the relative position of the sample. By substituting it into an appropriate polynomial, the computer obtains the height information for each point on the sample.
  • the height measuring device includes: an objective lens for condensing light from a light source at a predetermined position; a scanning mechanism for relatively scanning the condensed light along a surface at the predetermined position; A moving mechanism that relatively moves the light-collecting position and the predetermined position along the optical axis direction; a small aperture disposed at a position conjugate to the light-collecting position; A photodetector for detecting the intensity, a storage device for storing a signal from the photodetector as image data, a plurality of input terminals and at least one output terminal, and a plurality of inputs from these input terminals. And a calculation device having a look-up table for outputting a predetermined value to the data.
  • the image data of the two image data at one focus position is input to the look-up table via the storage device, and the image data at the other focus position is directly input to the look-up table.
  • the height measuring device according to the invention, the minimum value A mi n of the image data in the first collection point, the maximum value A ma x, the minimum value of the image data in the second collection point B min, and the maximum value and B ma x, the maximum value a ma x to m data between the minimum value a min, when between the minimum value B min to the maximum value B ma x there are n data
  • the lookup table has at least the following data C (i, j).
  • the height measuring apparatus of the present invention acquires a confocal image at different light condensing positions and calculates height information from the image data. This will be described.
  • the light condensing position means that the light from the light source is condensed through the objective lens 8 as shown in Fig. 5A. It is the position that was done.
  • the shape of the I_Z carp centered on the condensing position is exactly as shown in FIG. 3, but in FIGS. 5B and 5C, the fine shape is omitted for convenience of explanation. It is.
  • FIG. 5B shows the state and the I-Z curve when the focusing position is set to the position of Zb.
  • the value of I-Z carp becomes maximum at the position of Z b.
  • the value of the I-Z curve becomes smaller as the distance from the light condensing position Z b increases.
  • point P on the inclined surface is located at a position lower than the focusing position Zb, so its value is lower than the maximum value Pb on the I-Z curve at the focusing position Zb.
  • Fig. 5B point P on the inclined surface is located at a position lower than the focusing position Zb, so its value is lower than the maximum value Pb on the I-Z curve at the focusing position Zb.
  • Fig. 5B point P on the inclined surface is located at a position lower than the focusing position Zb, so its value is lower than the maximum value Pb on the I-Z curve at the focusing position Zb.
  • 5C shows the situation when the light condensing position is set to a position Za lower than Zb and the I-Z curve.
  • the point P since the point P is located at a position higher than the light condensing position Za, its value is lower than the maximum value P on the I-Z curve at the light condensing position Za as shown in FIG. 5C. becomes a.
  • FIG. 6A is a diagram in which the I-Z curves shown on the right side of FIGS. 5B and 5C are superimposed.
  • la (Z) and Ib (Z) indicate the I-Z curves at the light condensing positions Za and Zb, respectively.
  • the I-Z curves I a (Z) and lb (Z) have the same maximum value and shape.
  • I a (Z p) Pa. Therefore, for any one point on the sample (in the direction of the optical axis), there is a combination of IZ curves I a (Z) and lb (Z) at different light condensing positions corresponding one-to-one. Is shown.
  • the relative position (height) in the optical axis direction at any one point on the sample can be determined.
  • the linearity and the slope of the graph are determined by the shape of the I-Z curve shown in Fig. 3 and the interval from Za to Zb.
  • the shape of the I-Z curve differs depending on the objective lens used. Therefore, it is necessary to measure the I-Z curve of the objective lens to be used before the measurement. Then, the I one Z curve based on, in the required linearity and c confocal microscope from Z a so that the inclination can be obtained so that the previously determined intervals up to Z b in the graph, the sample surface 2 A sample image is formed by performing dimensional scanning.
  • U b (Z) ⁇ I a (ZZ U b (Z) + I a (Z) ⁇ is calculated in advance, and the result is stored (stored) in a lookup table.
  • the height measurement device of the present invention the minimum value of Luminance data of the confocal image in the first condensing position A mi [pi, the maximum value and A ma x, confocal in the second collection point
  • the minimum value of the luminance data of the point image is B min
  • the maximum value is B raax .
  • the look-up table will have at least the following data C (i, j).
  • the arithmetic unit inputs the image data at the other light-collecting position to the look-up table via the storage device and is adjacent to the other light-collecting position. And directly inputting image data at a different light condensing position different from the one light condensing position to the look-up table; and outputting from the look-up table for the input in the process. Adding the distance from the light position to the other light condensing position. As shown in Fig. ⁇ ⁇ , if the surface unevenness of sample 9 is out of the height measurement range by the I-Z curve, Z stage 14 shown in Fig. Are sequentially positioned as Zl, Z2, (2003), Zn and the confocal image Get.
  • the relationship between the height of the sample 9 and the output of the photodetector 12 is the same as in the above case, with the center of the condensing position (for example, Z k, Z k +1). Obtained by Z Carp.
  • the difference Z sum signal from the look-up table which gives relative height information in each area is converted to the other light-collecting position (for example, Z k) and another light-collecting position (for example, Z k).
  • Z k + 1) is scaled by an appropriate value determined by the interval, and the amount of movement from one focus position (Z 1) to the other focus position (Z k) is added. Height can be obtained.
  • the look-up table has a threshold value indicating a predetermined range, and outputs C (i, j) only when the value falls within the predetermined range.
  • the Z stage 14 determines whether or not the difference / sum value (the output data of the lookup table) is within a range that can be uniquely determined as the height information of the sample 9. This can be performed immediately by combining the luminance values Ia and lb, which are the outputs from the photodetectors 12 when positioned at the light condensing positions Za and Zb.
  • the data C (i, j) is subjected to a predetermined correction.
  • the linearity of the difference / sum value (output data of the lookup table) can be corrected in an arbitrary range.
  • the height measuring device preferably includes a step in which the arithmetic device changes the predetermined range.
  • the present invention it is possible to arbitrarily set a determination condition such as whether the sample 9 is in a range uniquely determined as height information.
  • the height measuring device includes: an objective lens that focuses light from a light source on a sample; a scanning mechanism that relatively scans the focused light along the sample surface; and a light of the focused light.
  • a confocal microscope equipped with a photodetector that detects the intensity of light passing through the aperture is constructed, and two confocal images are taken by changing the focusing position of the objective lens and the relative position of the sample.
  • Each pixel corresponding to each confocal image Calculating the difference / sum of the outputs from the photodetectors, or the divided value, and performing appropriate scaling to obtain height information at each point of the sample; and Brightness information obtained by the height information obtained by the height information calculation means, the output of the photodetector, and the “brightness-one focus position” characteristic of the confocal microscope; have.
  • the luminance calculation means uses a “luminance-focus position” characteristic based on a theoretical value (design value) of the confocal microscope.
  • the luminance calculation means uses a “luminance-focus position” characteristic (I-Z curve) based on an actual measurement value of the confocal microscope.
  • the relationship between the height of the sample 9 and the output of the photodetector 12 is an I-Z curve centered on the focal positions Za and Zb, respectively.
  • the outputs of the photodetector 12 when the Z stage 14 is positioned at the focal positions Za and Zb are defined as Ia and Ib, and the sum of the differences (la—Ib) Z (Ia + I When b) is calculated, the relationship shown in FIG. 9B is obtained at each height of the sample 9. As shown in FIG. 9B, the difference Z sum of the outputs of the photodetectors 12 is 0 at the midpoint between the focal position Za and the focal position Zb. It is almost proportional and has a one-to-one relationship. Therefore, from the relationship in FIG.
  • the difference Z The height of the sample 9 can be obtained from the sum signal.
  • the height thus obtained, the actual measured values (Za, Ia) (Zb, Ib) of the output from the detector 12 at the focal positions Za and Zb, and their I- By obtaining the peak value of the luminance I at each point of the sample 9 from the Z curve, an image in which all surfaces are in focus can be obtained.
  • the I-Z curve is a theoretical value (design value) determined from design factors such as the wavelength of the light source, the size of the minute aperture, the numerical aperture of the objective lens, and is measured for each actual device. By using these measured values, the peak value of the luminance I at each point of the sample 9 can be obtained more accurately.
  • the luminance calculation means may include the height information.
  • the defocus amount at each point is obtained from height information of a position having a larger luminance at each point of the two confocal images.
  • the defocus amount ⁇ Z is determined from the obtained height Z of the sample 9 and the position Za or Zb of the Z stage 14. From the defocus amount ⁇ Z and the output Ia of the detector 12 at the Za position of the Z stage 14 or the output Ib of the detector 12 at the Zb position of the Z stage 14, The peak value of the luminance I at each point of the sample 9 can be immediately obtained from the lookup table into which the value of the first Z curve is input. Further, by selecting the larger one as the output la or the output lb, the influence of SZN is reduced, and the peak value of the luminance I at each point of the sample 9 can be accurately obtained.
  • the parameter setting method is a method of setting a first axis, which is represented by a coordinate axis of a first axis indicating a relative position and a second axis orthogonal to the first axis and indicating a light intensity signal. Moving the curve I (Z) by a predetermined amount A along the first axis; the first curve I (Z) before the movement by the predetermined amount A and the first curve I (Z + A) after the movement.
  • the operation ⁇ I (Z)-I (Z + A) ⁇ / ⁇ I (Z) + I (Z + A) ⁇ to obtain the second curve, and define the second curve group And a desired moving amount is obtained.
  • the present invention provides an objective lens for focusing light from a light source on a sample, a scanning mechanism for relatively scanning the focused light along the surface of the sample, and an objective lens along an optical axis direction of the focused light.
  • a moving mechanism for relatively moving the focus position of the lens and the position of the sample, a small aperture disposed at a position conjugate with the focus position of the objective lens, and an intensity of light transmitted through the small aperture It is used for height measurement of a confocal microscope equipped with a photodetector for detecting the height. Then, two confocal point images are taken by changing the converging position of the objective lens and the relative position of the sample, and the sum Z of the output of the photodetector is calculated for each corresponding pixel.
  • the height information of each point of the sample is obtained by multiplying by an appropriate coefficient. At this time, it is important to appropriately set the relative positions of the two confocal images.
  • the I-Z curve acquired in advance and the I-Z curve are moved in the relative position direction by a predetermined amount. The sum of the differences between the curves is calculated as height information, the height information curve obtained from the difference / sum calculation is evaluated under specified conditions, and the two confocal images most suitable for measurement are evaluated. To obtain the relative distance of
  • the objective lens for condensing the light from the first curve I (Z) light source at a predetermined position and the objective lens may be disposed at a position conjugate to the predetermined condensing position.
  • the parameter setting method of the present invention is for obtaining confocal images at different light condensing positions and calculating height information from the image data.
  • the height curve is calculated by calculating the difference Z sum between the I-Z curve la (Z) and the I-Z curve lb (Z), which is shifted by a predetermined amount in the relative position direction. .
  • the height curve is zero at the midpoint between the top of the I-Z curve Ia (Z) and the top of the I-Z curve Ib (Z), and is almost proportional to the sample height in the vicinity.
  • the height curve is determined by the shift amount between the I—Z curve la (Z) and the I_Z curve lb (Z). The slope and linearity of change.
  • FIG. 9A and 9B the height curve is determined by the shift amount between the I—Z curve la (Z) and the I_Z curve lb (Z). The slope and linearity of change.
  • the shift amount of the I-Z curve is a relative distance between the converging position Za and the converging position Zb.
  • the distance between the focal position Z a and the focal position Z b must be determined according to the required measurement range, measurement speed (stage or objective lens movement step), and measurement accuracy. I just need.
  • the I-Z force Ia (Z) differs for each objective lens, it is desirable to obtain the I-Z curve la (Z) in advance for at least the objective lens to be used.
  • the predetermined condition can be selected according to a measurement condition.
  • the measurement conditions are a type of an objective lens, a required measurement speed and a required measurement accuracy, and a measurement sample.
  • the predetermined condition is a linearity of the second curve, and a step of determining the linearity is provided. That is, the selection of the relative distance is determined from the linearity of the height curve.
  • the height curve is linearly shifted in an arbitrary relative distance range before and after the midpoint of the I-Z curve Ia (Z) and the I-Z curve lb (Z) shifted by a certain shift amount. If the sum of the straight line error and the square error of the height curve approximating the equation is large enough to affect the accuracy of height measurement, it can be determined that the linearity is poor, and the shift amount at this time is inappropriate. It can be determined that there is.
  • the predetermined condition is a gradient of an approximate expression when the second curve is approximated by a linear expression, and a step of determining a gradient of the approximate expression is provided. Is preferred.
  • the predetermined condition may be such that:
  • the method further comprises a step of determining a range in which the curve 2 substantially matches the approximate expression, and determining the matching range. That is, the selection of the optimized relative distance is determined from the width of the straight line portion where the height curve (the second curve) and its approximate expression almost match.
  • the approximate expression of the height curve and the linear portion of the height curve obtained by using the I—Z carp I a (Z) and the I—Z curve lb (Z) shifted by a certain shift amount By determining the width of the portion where the values almost match, it is possible to determine the ratio of the measurement range to the shift amount.
  • the selection of the optimized relative distance may be determined based on both the slope of the approximate expression and the width of the straight line portion where the approximate expression matches the height curve.
  • the parameter setting method according to the present invention preferably includes a step of sequentially changing the movement amount (shift amount) to obtain a plurality of second curves.
  • the present invention is a system for executing a program provided with the above parameter setting method.
  • the present invention is a recording medium having a program provided with the above parameter setting method.
  • FIG. 1 is a diagram schematically showing a configuration of a conventional confocal scanning optical microscope.
  • FIG. 2A is a block diagram of a computer of the confocal scanning optical microscope shown in FIG.
  • FIG. 2B is an explanatory diagram of the recording medium of FIG. 2A.
  • FIG. 3 is a graph showing the relationship between the relative position of an objective lens and a sample and the output of a photodetector in a conventional confocal scanning optical microscope.
  • Figure 4A shows the relationship between the relative position of one objective lens and the sample with the same magnification and the output of the photodetector. It is a graph which shows a relationship.
  • FIG. 4B is a graph showing the relationship between the relative position of another objective lens having the same magnification and the sample and the output of the photodetector.
  • 5A, 58 and 5 8 are explanatory diagrams showing the sample with respect to the focal position.
  • FIG. 6A is a graph showing the relationship between the relative position of the objective lens and the sample and the output of the photodetector, with the I-Z curves in FIGS. 5B and 5C superimposed.
  • FIG. 6B is a graph showing the relationship between the relative position of the objective lens and the sample and the Z-sum difference signal of the photodetector output.
  • FIG. 7 is an explanatory diagram showing a sample having irregularities at each focal position.
  • FIG. 8 is an explanatory diagram showing the position of the Z stage with respect to the sample when obtaining two confocal images.
  • FIG. 9A is a graph showing the relationship between the relative positions of the objective lens and the sample and the photodetector output when obtaining two confocal images in FIG.
  • FIG. 9B is a graph showing the relationship between the relative position of the objective lens and the sample in FIG. 8A and the difference Z sum signal of the photodetector output.
  • FIG. 10A is a graph showing the relationship between the relative position of the objective lens and the sample and the output of the photodetector when the slope of the linear portion of the difference / sum signal is large.
  • FIG. 10B is a graph showing the relationship between the relative position of the objective lens and the sample and the difference Z sum signal of the photodetector output when the slope of the linear portion of the difference Z sum signal is large.
  • FIG. 11A is a graph showing the relationship between the relative position between the objective lens and the sample and the output of the photodetector in the second embodiment of the present invention.
  • FIG. 11B is a graph showing the relationship between the relative position between the objective lens and the sample and the sum signal of the photodetector output in the second embodiment.
  • FIG. 12 is a flowchart for obtaining the height of the sample in the second embodiment.
  • FIG. 13 is an explanatory diagram of the second embodiment in which the value of the constant is set so that the height of the sample is uniquely determined with respect to the difference / sum signal corresponding to the calculation range.
  • FIG. 11B is a graph showing the relationship between the relative position of the objective lens and the sample and the difference / sum signal of the photodetector output in the second embodiment.
  • FIG. 14 is a block diagram showing a circuit configuration of the height measuring device according to the fourth embodiment of the present invention.
  • FIG. 15 is a diagram illustrating an example of an output data format of LUT of the height measuring device according to the fourth embodiment.
  • FIG. 16 is a block diagram showing a circuit configuration of the height measuring device according to the fifth embodiment of the present invention.
  • FIG. 17A is a graph showing the relationship between the relative position of the objective lens and the sample and the output of the photodetector in the fifth embodiment.
  • FIG. 17B is a graph showing the relationship between the relative position of the objective lens and the sample and the Z-sum difference signal of the photodetector output in the fifth embodiment.
  • FIG. 18 is an explanatory diagram of the operation of the frame unit in the fifth embodiment.
  • FIG. 19 is a schematic diagram of a confocal scanning microscope constituting a height measuring device in the sixth and seventh embodiments of the present invention.
  • FIG. 2OA is a graph showing the relationship between the relative position of the objective lens and the sample and the output of the photodetector in the sixth embodiment.
  • FIG. 20B is a graph showing the range of the difference sum signal used in the sixth embodiment.
  • FIG. 20C is a graph showing that the height of the sample can be obtained from the difference Z sum signal of FIG. 20B.
  • FIG. 21 is a graph showing the relationship between the relative position of the objective lens and the sample and the output of the photodetector with normalized luminance.
  • FIG. 22 is a flowchart showing a calculation procedure in the parameter setting method according to the eighth embodiment of the present invention.
  • FIG. 23 is a flowchart showing a calculation procedure in the parameter setting method according to the ninth embodiment of the present invention.
  • FIG. 24 is a flowchart showing a calculation procedure in the parameter setting method according to the tenth embodiment of the present invention.
  • FIG. 25 is a graph showing the relationship between measurement accuracy and measurement speed in the parameter setting method according to the tenth embodiment of the present invention.
  • FIG. 26A is an explanatory diagram showing the sample shape and the position of the Z stage in the parameter setting methods of the eighth to tenth embodiments.
  • FIG. 26B is an explanatory diagram of the measurement range in the measurement of FIG. 26A.
  • FIG. 27A is a graph showing the relationship between the relative positions of the objective lens and the sample and the photodetector output when measuring the height of the sample in FIG. 26A.
  • FIG. 27B is a graph showing the relationship between the relative position between the objective lens and the sample and the difference / sum signal of the photodetector output.
  • the confocal scanning microscope used in the present embodiment has the same configuration as that shown in FIG. 1 described as the related art, and thus the same reference numerals are given and the description is omitted. It is assumed that the calculation procedure shown in the following embodiment is recorded as a computer program as a height measurement program 23a of the recording medium 23 shown in FIG. 2B.
  • the movement interval (Zb-Za) of the Z-stage 14 set so as to sandwich the surface 9 s of the sample 9 becomes approximately 0.3 times the full width at half maximum of the I-Z curve.
  • the height of the sample 9 and the output relation of the photodetector 12 at this time are I-Z curves centered at Za and Zb, respectively.
  • the output of the photodetector 12 when the Z stage 14 is positioned at Za and Zb is defined as Ia and Ib, and the difference / sum signal, that is, (la—Ib) Z (I When a + I b) is calculated, the relationship shown in Fig. 9B is obtained at each height of the sample.
  • the difference Z sum signal of the outputs of the photodetectors 12 is 0 at the midpoint of Za and Zb, and is almost proportional to the sample height near that. Therefore, the height of the sample 9 can be obtained by multiplying the difference / sum signal by a predetermined value determined by the interval between Za and Zb.
  • the interval between Za and Zb is set to approximately 0.3 times the full width at half maximum of the I-Z curve so that the height measurement range is the widest.
  • the height measurement range at this time is approximately 1.4 times the full width at half maximum of the I-Z curve.
  • interval between Za and Zb of the Z stage 14 is not limited to the above value, but may vary depending on the height range and measurement accuracy required for height measurement. Can be set between 0.3 and 2 times the full width at half maximum of.
  • the surface unevenness of the sample is maximum, and the half value of the I-Z carp is obtained. It can measure with high accuracy up to about 1.4 times the full width.
  • the height information is obtained by the linear expression of the difference / sum, but if it is a polynomial, the height can be obtained in a wider range.
  • the Z stage 14 is set so that the surface 9 s of the sample 9 having relatively large irregularities is sandwiched, and the distance between Z k and Z k + 1 is almost the full width at half maximum of the I-Z curve.
  • the setting is made to be 0.8 times, and the Z stage 14 is sequentially positioned from Z1 to Zn to obtain a confocal image.
  • the relationship between the height of the sample 2 and the output of the photodetector 12 is an I-Z carp centered on Z k and Z k + 1 as shown in FIG. 11A.
  • the output of the photodetector 12 when the Z stage 14 is positioned at Z k and Z k + 1 is defined as I k and I k + 1, and the difference / sum signal (I k + 1 ⁇ I k) /
  • the relationship shown in FIG. 11B is obtained at each height of the sample 9.
  • the difference / sum signal of the output of the photodetector 12 becomes 0 at the midpoint between Z k and Z k + 1, and is almost proportional to the height of the sample 9 in the vicinity thereof. Therefore, the difference / sum signal is added at the interval of Z k and Z k + 1
  • the height of the sample can be obtained by multiplying by the determined predetermined value and adding the average value of Zk and Zk + 1.
  • the interval between Zk and Zk + 1 is set to be approximately 0.8 times the full width at half maximum of the I-Z curve.
  • the measurement range of the sample height coincides with the interval between Zk and Zk + 1. For this reason, when obtaining the confocal image by sequentially positioning the Z stage 14 at Zl, Z2, ⁇ , and Zn, the confocal point at the position of the immediately preceding Zk-1 can be obtained for any Zk position. If only the images are temporarily stored in the computer 15, the height of the sample can be measured by the above-described method, so that the image memory of the computer 15 can be reduced.
  • the interval between Zk and Zk + 1 must be
  • the width is not limited to 0.8 times the full width at half maximum of the I-Z curve, but may be 0.3 times the full width at half maximum of the I-Z curve (see the first embodiment) or 0.8 times.
  • the position of Z stage 12 is When moving from Z1 force to Zn, if the height of sample 2 is not between Zk and Zk + 1, the height of sample 2 cannot be obtained correctly even if the above difference Z sum signal is calculated. .
  • the k value of the Z counter (not shown; the same applies hereinafter) built into the computer 15 is set to the initial value 1, the Z stage 14 is moved to the position Z1, and the confocal of the sample 9 is placed at this position.
  • the image I (X, y) is fetched and stored in the image memory M (X, y) (not shown; the same applies hereinafter) built in the computer 15 (step S1).
  • the k value of the Z counter is increased by 1
  • the Z stage 14 is moved to the position of Z2, and the confocal image I (x, y) of the sample 9 is captured (step S2).
  • the value I (x, y) of the confocal image of each point of the sample 9 obtained in step S2 and the value of the confocal image of the sample 9 obtained in step S1 The sum of the values M (x, y) is calculated, and the constant C1 is compared with the magnitude (step S3). As shown in Fig. 13, the value of the constant C1 is such that the height of sample 9 is higher than the difference Z sum signal corresponding to the calculation range. It is set to be determined uniquely.
  • step S4 If the sum of the value I (x, y) of the confocal image and the value M (x, y) of the memory M in step S3 is equal to or greater than the constant C1, the above I (X, y) and M (x , Y) and Z (x, y) are calculated (step S4). As shown in Fig. 13, the difference / sum signal between the height of sample 9 and the output of photodetector 10 is proportional to the difference / sum signal between C2 and C2. Then, the absolute value of the difference / sum signal calculated in step S4 is compared with the magnitude of the constant C2 (step S5).
  • the difference Z sum signal is multiplied by C3 determined by the interval between Zk and Zk + 1, and the average value of Zk and Zk + 1 is added. Then, it is stored in a height memory Z (x, y) (not shown; the same applies hereinafter) built in the computer 15 (step S6).
  • step S7 the value I (X, y) of the confocal image is stored in the image memory M, y) (step S7).
  • steps S2 to S6 are performed until the k value of the Z counter becomes n (step S8).
  • the difference Z sum signal is calculated only for the range where the height of the sample 9 is uniquely determined, and then the sample is calculated for the difference Z sum signal. Only in the range where the height of 9 is proportional, the height calculation result is stored in the height memory Z ⁇ .
  • step S3 the sum of the value I (X, y) of the confocal image and the value M (x, y) of the image memory M, and the difference / sum signal corresponding to the calculation range, Judgment is made to determine whether the height is uniquely determined.
  • the height of the sample 9 is calculated based on the difference Z sum signal corresponding to the calculation range based on the confocal image value I (X, y) and the value M (x, y) Any condition can be used as long as it can be determined whether or not is within a range uniquely determined.
  • the surface of the sample has the largest convexity, and the I-Z curve Outline 1. Since the measurement can be performed even at about 4 times or more, high-speed and high-accuracy height measurement can be performed.
  • the shift amount is made to coincide with the movement amount.
  • the height can be determined with higher precision by setting it to an integral multiple of the quantity (2, 3, 4,).
  • FIG. 14 shows a circuit configuration of a height measuring apparatus according to a fourth embodiment of the present invention. This configuration is provided in a computer 15 which is a control device of the confocal scanning optical microscope shown in FIG.
  • the AZD converter 101 outputs the output signal of the photodetector 12 corresponding to the amount of reflected light from the sample 9 passing through the pinhole 11 shown in FIG. 1 as a digital value. It is designed to sequentially convert digital values according to the sampling clock (SCLK) synchronized with scanning. Digital image data from the A / D converter 101 is sent to the frame buffer 102 and one input port B of the lookup table 103 (hereinafter, LUT).
  • the frame buffer 102 is a memory having a capacity of one screen and temporarily storing digital image data from the AZD converter 101 in synchronization with scanning by the two-dimensional scanning mechanism 6. The output from the frame buffer 102 is sent to the other input port A of the LUT 103.
  • the LUT 103 outputs one value corresponding to a combination of two input values sent from the two input ports A and B, and stores table data as shown in Table 1.
  • Table 1 shows, for simplicity, for example, assuming that the maximum value of the two inputs is “20”, and for each combination of the two inputs, the operation of (B—A) / (A + B) The example of the table which expanded the value is shown.
  • the LUT 103 can use the input means (not shown) to validate the calculated value. Data processing is performed so that an invalid condition can be given.
  • a predetermined value in this case, “15”
  • the calculation value is limited so as not to indicate the calculated value. It can be changed as the “upper threshold” because it changes at the curve interval.
  • the condition that determines "UNDER" is when the two inputs are too small. Limit the input values that deviate from the two I-Z curves, that is, do not indicate the calculated values near the left and right ends that are less than the specified value (in this case, “3”).
  • the predetermined value in this case can be changed as the “lower threshold value” because it is determined by how much the calculation range is desired.
  • the condition for determining “UP” is determined by the input value to input port A of LUT103. Determine the upper end of the effective measurement range. If the input value to input port A is less than the “lower threshold” (in this case, “3”), limit the computed value to not be displayed.
  • the “lower threshold” in this case, “3”
  • the condition for determining “DOWN” is determined by the input value to input port B of LUT103. Determine the lower end of the effective measurement range, and limit the computation if the input value to input port B is less than the “lower threshold” (in this case, “3”).
  • the calculation result of (B-A) / (A + B) in the valid range as the height information of sample 9 has positive and negative values. Is scaled. For example, when the number of output bits is set to, for example, 8 bits, scaling is performed as in the following equation.
  • the data in LUT 103 is as shown in Table 3.
  • the “maximum value” is a value normalized such that the upper and lower ends of the effective measurement range correspond to the upper and lower limits in the output bit number. Specifically, it corresponds to the maximum value in Table 2.
  • the data in the area outside the effective measurement range may be replaced with, for example, “0” so as not to be output as the height information of the sample 9, and can be represented by an arbitrary value.
  • Such a table may be created in advance corresponding to the gradation of the digital value output from the photodetector 12 whose input is predicted.
  • the Z stage 14 is set at an interval of Za and Zb so as to sandwich the surface 9 s of the sample 9 so as to obtain a confocal image.
  • the relationship between the height of the sample 9 and the output of the photodetector 12 at this time is, as shown in FIG. 6A, an I-Z curve Ia (Z), lb ( Z).
  • a confocal image at the Za position is first obtained in synchronization with scanning.
  • the AZD converter 101 in Fig. 14 converts the output of the photodetector 12 into digital data for each pixel by SCLK.
  • the converted image data is temporarily stored in the frame buffer 102.
  • the Z stage 14 is moved to the Zb position to start capturing the image of the next frame.
  • the image data of the immediately preceding frame (Za position) stored in the frame buffer 102 is taken out, and the LUT 103 receives the Za and Zb directions. Data of the same pixel at the position You.
  • the output of the photodetector 12 when the Z stage 14 is positioned at Za and Zb is Ia and Ib, and the difference Z sum signal (Ib—la) / (Ia + Ib)
  • the relationship shown in FIG. 6B is obtained at each height of the sample 9.
  • the difference Z sum of the outputs of the photodetectors 12 is 0 at the midpoint between the Za position and the Zb position, and a value that is almost proportional to the sample height is obtained in the vicinity. . Therefore, the height information of the sample 9 can be obtained by scaling this difference Z sum signal with an appropriate value determined by the interval between the Za position and the Zb position.
  • the LUT 103 Since the LUT 103 is created in advance according to this processing, one piece of height data after calculation corresponding to the data of the same pixel at the sequentially input Za and Zb positions is immediately determined. .
  • the reflected light from the point P on the surface of the sample 9 shown in FIGS. 5B and 5C is transmitted through the photodetector 12 when the Z stage 14 is positioned at the focusing positions Za and Zb. It is obtained as the values of P a and P b of A and converted by the A / D converter 101.
  • One value passes through the frame buffer 102 and the other value is directly Input to two input ports A and B. Since LUT 103 outputs the value P LUT in FIG. 6B, it uniquely indicates the position of Z p.
  • the interval between Za and Zb is set to approximately 0.3 times the full width at half maximum of the I-Z curve so that the effective measurement range of the sample height is maximized.
  • the effective measurement range of the sample height is approximately 1.4 times the full width at half maximum of the I-Z curve.
  • the “change in Z coordinate, the change in Z operation value” changes compared to the center, and the linearity of the difference / “sum signal operation data becomes worse toward the end.
  • the area that can actually be used for measurement is reduced.Therefore, the linearity can be improved by applying appropriate corrections to the data stored in the LUT 103. Also, the actual I-Z curve is This may cause the linearity of the calculated data to deteriorate, but it is also possible to correct it, and set the “lower threshold” to the LUT 103 appropriately.
  • the effective range of measurement can be set freely by adjusting, so the range where the value of difference / sum is uniquely determined It can be extended to In addition, since these correction processes are performed when preparing table data from the I-Z curve in advance in the LUT 103, they do not impose a load on the computer 15 during measurement, and lower the scanning speed, drawing speed, etc. In addition, it is possible to absorb fluctuations and obtain accurate height information immediately. Further, by repeatedly scanning the Z stage 14 in synchronization with the two-dimensional scanning, it is possible to directly display three-dimensional data in accordance with the scanning.
  • the accuracy of the height measurement of the sample 9 can be increased, and at the same time, the number of movements of the Z stage 14 can be reduced to speed up the measurement. be able to.
  • the influence of the reflectance of the sample 9 can be eliminated, and the load on the control device can be reduced, the responsiveness can be improved, and the effective measurement range can be expanded.
  • FIG. 16 shows a circuit configuration of a height measuring apparatus according to a fifth embodiment of the present invention.
  • the configuration of the present embodiment, except for the monitor 806, is provided in a computer 15 which is a control device of the confocal scanning optical microscope shown in FIG.
  • the A / D converter 801 is a two-dimensional scanning mechanism that outputs the output signal of the photodetector 12 as a digital value corresponding to the amount of reflected light from the sample 9 that has passed through the pinhole 11 shown in Fig. 1. The conversion is performed sequentially according to the SCLK synchronized with the scanning of 6.
  • the digital image data from the AZD converter 801 is sent to the frame buffer 802 and one input port B of the LUT 803.
  • the frame buffer 802 is a memory having a capacity of two screens 802 (a) and 802 (b) and storing digital image data from the AZD converter 801 in synchronization with the scanning of the two-dimensional scanning mechanism 6. .
  • the frame buffers 802 (a) and 802 (b) are configured so that writing and reading are exclusively switched alternately by a vertical synchronization signal (hereinafter, VD) from the two-dimensional scanning mechanism 6. I have.
  • VD vertical synchronization signal
  • the output from the frame buffer 802 on the read side is sent to the other input port A of the LUT 803.
  • the LUT 803 outputs one value corresponding to a combination of the two input values sent from the two input ports A and B, and stores the same table data as in the first embodiment of the present invention.
  • Input means (not shown). Data processing is performed so that the valid / invalid condition of the difference / sum operation value can be given.
  • the LUT 803 separately outputs a flag for the measurement effective range together with the height information of the sample 9.
  • the addition control circuit 804 receives the VD from the two-dimensional scanning mechanism 6 and the flag for the measurement effective range from the LUT 803, and adds the height information of the sample 9 output from the LUT 803 to the Z stage 14 described later.
  • the drawing memory 805 is a memory in the computer 12 for displaying a control interface of the confocal scanning optical microscope and various information.
  • the monitor 806 displays the contents of the drawing memory 805 to the operator as each information of the confocal scanning optical microscope, so that the operator can visually recognize the height information of the sample 9.
  • the fourth embodiment It is not possible to measure all of the two ⁇ stages 14 only from the position as close as.
  • the moving range of the stage 14 is set so as to sandwich the surface 9 s of the sample 9, and the stage 14 is sequentially positioned at equal intervals from Z 1 to ⁇ to share Try to get a focused image.
  • the relationship between the height of the sample 9 and the output of the photodetector 12 is, as shown in Fig. 17 ⁇ , the I-Z curve I k ( Z), I k + 1 (Z).
  • the interval between Z k and Z k + 1 or the “lower threshold” to LUT 803 is appropriately adjusted in advance, and the Z k position of Z stage 14 is adjusted. It is assumed that the distance from the Z k + 1 position is equal to the effective measurement range.
  • a confocal image (1) at the Z1 position is first synchronized with scanning as shown in Fig. 18. can get.
  • the AZD converter 801 in FIG. 16 converts the output of the photodetector 12 into digital data for each pixel by SCLK.
  • the converted image data is temporarily stored in the frame buffer 802 (a).
  • the Z stage 14 is moved to the Z2 position and the capture of the image 2 of the next frame is started.
  • the frame buffer 802 (a) and the frame buffer 802 (b) are switched, and the frame buffer 802 (a) starts reading and stores the previous frame (Z 1
  • the image data 1 ′ at the position) is taken out, and data of the same pixel at both positions Z 1 and Z 2 are sequentially input to the LUT 803.
  • the switched frame buffer 802 (b) stores the image data at the Z2 position at the same time.
  • the subsequent frames alternately switch the frame buffers 802 (a) and 802 (b) and store the current frame image data while storing the current frame image data.
  • the image data of the frame and the image data of the previous frame are input to the LUT 803 as “2 and 3”, “3 and 4”.
  • the process of outputting height data from LUT 803 at point Q in FIG. 7 is the same as the process of outputting height data from LUT 103 at point P in FIG. 5B or 5C in the fourth embodiment. Is the same.
  • the height information of the sample 9 can be obtained for each section while the Z stage 14 is sequentially positioned at equal intervals from Z1 to Zn.
  • the addition control circuit 804 controls the VD, and if the section is represented by 8 bits, the Z LUT of ⁇ 256 X 0J '' between 1 and Z 2, ⁇ 256 X 1 '' between Z 2 and Z 3, ⁇ 256 X (k-1) '' between Z k and Z k + 1 It is added to the height data of 803 output. Also, writing to the drawing memory 805 is prohibited for pixels for which a height cannot be obtained in the current section. As a result, the drawing memory 805 has a height only for the pixel whose height is obtained. The data will be stored.
  • the addition control circuit 804 must prohibit writing to the drawing memory 805. This can be considered by exchanging the viewpoints of the Q point and the R point, and from the region of Z k + l and Z k + 2, the Q point is
  • the height of the Q point has already been found in the Z k and Z k + 1 regions, but the addition control circuit 804 uses the height data of the Q point in the Z k + 1 and Z k + 2 regions.
  • ⁇ 256 X k j is added to ⁇ 0 J.
  • ⁇ 256 X (k ⁇ 1) + Q ” ⁇ ⁇ 256 X k + 0 J so this value must not be written to the drawing memory 805.
  • height data is written into the drawing memory 805 from the pixel whose height has been newly determined while the Z stage 14 moves from Z1 to Zn, and the height once increases.
  • the determined pixel is not overwritten.
  • the correction processing, range determination, section connection processing, etc. do not become a load on the computer 15 during measurement, and Accurate height information can be obtained immediately without reducing the inspection speed, drawing speed, etc., absorbing variations.
  • by repeatedly scanning the Z stage 14 in synchronization with the two-dimensional scanning it is possible to directly display three-dimensional data on a monitor in synchronization with the scanning.
  • the accuracy of the height measurement of the sample 9 can be increased, and at the same time, the number of movements of the Z stage 14 can be reduced to speed up the measurement. be able to.
  • the influence of the reflectivity of the sample 9 is not required, and the load on the control device can be reduced, the responsiveness can be improved, and the effective measurement range can be extended.
  • FIG. 19 shows the basic configuration of a confocal scanning microscope used in each of the sixth and seventh embodiments of the present invention.
  • the basic configuration of the confocal scanning microscope used in each of these examples is
  • the height measuring device of each embodiment is characterized by the configuration of the height calculating means 15a and the luminance calculating means 15b provided in the computer 15 of the confocal scanning microscope.
  • the previously calculated I-Z curve is shifted by an interval d as shown in FIG. 2OA, and the difference / Information obtained by calculating the sum (I ⁇ I ′) / (I + I ′) is stored.
  • two confocal images are obtained by positioning the Z stage 14 at the focal positions Za and Zb spaced apart so as to sandwich the surface 9 s of the sample 9. .
  • the height calculator 15a calculates the difference / point for each point of the sample from the output Ia, lb of the photodetector 12 when the Z stage 14 is positioned at the focal position Za, Zb. Calculate the sum signal (Ia-Ib) / (Ia + Ib).
  • Z for each point, that is, the height of the sample 9 is obtained.
  • the I-Z curve is expressed by the following equation (1) according to, for example, “TR. Corle, GS Kino,“ Confocal Scanning Optical Microscopy and Related Imaging Systems ”ACADEMICPRESS 1996”. This can be used as a theoretical value.
  • the luminance calculation means 15b in the sixth embodiment is provided with a look-up table.
  • the lookup table is created from theoretical values or measured values, and stores table data so that one luminance value is selected for one combination of ( ⁇ , I). According to this, the luminance calculating means 15b can instantaneously obtain the actual luminance peak value via the look-up table by obtaining ( ⁇ , I).
  • the basic configuration of the confocal scanning microscope constituting the height measuring device of the present invention is shown in FIG. 1.
  • the height measuring device of the present invention is not limited to this, and various types of confocal scanning can be used. It can be applied to a type microscope.
  • the focused light from the objective lens 8 is relatively scanned along the surface of the sample 9.
  • An XY stage that moves the sample 9 in a plane perpendicular to the optical axis may be used as the scanning mechanism.
  • a configuration may be adopted in which a Nipkow disk having a plurality of minute openings spirally formed on a disk is rotated at a low speed.
  • the Nipkow disk also serves as a minute aperture arranged at a position conjugate to the condensing position of the objective lens, and a two-dimensional image sensor such as a CCD is used as a photodetector.
  • a configuration may be employed in which the focused light of the objective lens is scanned on one line of the sample by a one-dimensional optical scanner to measure the cross-sectional shape of the sample.
  • a mechanism for moving the objective lens 8 in place of the Z stage 14 for moving the position of the sample 9 may be used as a moving mechanism for relatively moving the focus position of the objective lens 8 and the position of the sample 9. .
  • the present invention is not limited to the above configuration, and can be applied to various confocal microscopes.
  • the pinhole is disposed as a member having a minute opening at a position conjugate with the condensing position of the objective lens, and light passing through the pinhole is detected by the detector.
  • the micro-apertures arranged at conjugate positions can be micro-apertures made of a material having a reflection characteristic such as a mirror at a portion corresponding to the hole, in addition to the hole through which light passes.
  • FIG. 22 is a flowchart showing a calculation procedure in the parameter setting method according to the eighth embodiment of the present invention.
  • measurement accuracy is obtained according to a procedure as shown in FIG. 22, and an interval between the focal position Za and the focal position Zb is set based on the measurement accuracy.
  • step S1 On the surface of a highly reflective sample such as a mirror, obtain the I-Z curve Ia (Z) as the first curve of the objective lens used for measurement (step S1) c
  • step S6 perform the operation ⁇ la (Z)-I a (Z + A) ⁇ / ⁇ la (Z) + I a (Z + A) ⁇ to find the difference Z sum of those I-Z curves.
  • a height curve is calculated as the second curve (step S6).
  • step S7 an approximation expression (primary expression) of the height curve is derived using a least square method or the like (step S7).
  • step S8 the linearity of the height curve is determined (step S8).
  • the square sum of the error between the height curve and the approximation formula of the height curve becomes a significantly large value (a value that affects the measurement accuracy) near the midpoint between Za and Zb. Is determined based on whether the Here, if the sum of the squares of the error between the height curve and the approximation formula of the height curve is large, the linearity is deteriorated. Therefore, the shift amount at this time is inappropriate, and the steps S9 and S10 described later The processing of step S11 described below is performed without performing the processing of.
  • the wider the linear portion of the difference Z sum signal the wider the measurement range of the sample height.
  • the relationship between the height of the sample 9 and the output of the photodetector 12 is as shown in FIG. 9A, and the difference / sum signal is as shown in FIG. 9B.
  • the slope of the linear portion of the difference Z sum signal increases, the change of the difference / sum signal with respect to the sample height increases, the sensitivity of sample height detection increases, and highly accurate measurement can be performed.
  • the relationship between the height of the sample 9 and the output of the photodetector 12 is as shown in FIG. 10A, and the difference / sum signal is as shown in FIG. 10B.
  • step S9 it is determined whether or not the slope of the approximate expression is larger than the slope a that satisfies the minimum required accuracy (step S9).
  • a tilt value a that can derive the minimum required accuracy is set in advance for each type of objective lens. If the gradient of the approximate expression is larger than the gradient a that satisfies the minimum required accuracy, the shift amount A at that time and the gradient of the approximate expression are stored in the memory (step S10).
  • step S10 it is determined whether the slope of the approximation formula is not too small for the measurement accuracy, that is, larger than the maximum slope value b that can be measured with higher accuracy and higher speed than the height measurement in the prior art. I do.
  • the tilt value b is set in advance for each type of objective lens. If the slope of the approximation formula is smaller than the slope b, the I-Z curve I b 1 (Z) is obtained by shifting the I-Z force Ia (Z) in the height direction Z by a certain amount A + 1. A height curve is calculated from the difference sum of Ia (Z + A + 1 ) (steps S3 to S6), and similarly, the linearity of the height curve and the slope of the approximate expression of the height curve are determined. This is repeated, and if the slope of the approximate expression is larger than the slope b, the calculation is terminated.
  • step S14 select the measurement accuracy required for the measurement (step S1 2), and calculate the Judging from the slope of the approximate expression of the height curve (step S13), the optimum interval between Za and Zb can be set (step S14).
  • the relationship between the slope of the approximate expression and the measurement accuracy is defined in advance for each type of objective lens, and the measurement accuracy is determined by a computer.
  • the surface 9 s of the sample 9 is sandwiched as shown in FIGS.
  • the interval between Za and Zb is set to a value optimized for the measurement conditions as described above, and a confocal image is obtained.
  • the relationship between the height of the sample 9 and the output of the photodetector 12 at this time is an I-Z curve la (Z), lb with the focal positions Za and Zb as the center positions, respectively. (Z).
  • the difference / sum signal (la-Ib) / (Ia + Ib) is calculated with the outputs of the photodetectors 12 when the Z stage 14 is positioned at Za and Zb as Ia and Ib. Then, a relationship as shown in FIG. 9B is obtained at each height of the sample 9. As shown in Fig. 9B, the difference Z sum of the outputs of the photodetectors 12 is 0 at the middle point between the Za position and the Zb position, and a value that is almost proportional to the sample height is obtained in the vicinity. . Therefore, the height can be obtained by multiplying the difference Z sum signal by the slope of the approximate expression of the height curve.
  • the interval between Za and Zb can be set according to the measurement accuracy required for height measurement.
  • FIG. 23 is a flowchart showing a calculation procedure in the parameter setting method according to the ninth embodiment of the present invention.
  • the interval between the focal position Za and the focal position Zb is set from the measurement range (measurement speed) according to the procedure shown in FIG.
  • an I-Z curve Ia (Z) is obtained as the first curve of the objective lens used for measurement on the surface of a sample having a high reflectance such as a mirror (step S15).
  • the operation ⁇ la (Z) ⁇ I a (Z + A) ⁇ / ⁇ la (Z) + 1 a (Z + A) ⁇ to calculate the difference / sum of those I-Z curves
  • a height curve is calculated as a curve (step S20).
  • an approximate expression (linear expression) of the height curve is derived using a least squares method or the like (step S21).
  • the linearity of the height curve is determined (step S22).
  • the square sum of the error between the height curve and the approximation formula of the height curve is a remarkably large value (a value that affects the measurement accuracy) near the midpoint between Za and Zb. It is determined by whether or not there is.
  • step S26 The processing in step S26 described below is performed without performing the processing.
  • the wider the linear portion of the difference Z sum signal the wider the measurement range of the sample height.
  • the relationship between the height of the sample 9 and the output of the photodetector 12 at this time is as shown in FIG. 9A, and the difference / sum signal is as shown in FIG. 9B.
  • the measurement range is a straight line portion of the height curve, that is, a range in which the height curve and the approximate expression of the height curve substantially match. Therefore, the height range of the height curve where the square of the error between the height curve and the approximate expression of the height curve does not affect the accuracy is calculated (step S23). This is set as a measurement range in calculation. Then, it is determined whether or not the calculated measurement range is smaller than the measurement range c that satisfies the minimum required accuracy (step S24). Prior to this determination, a measurement range c that satisfies the minimum required accuracy is set in advance for each type of objective lens. If the calculated measurement range is smaller than the measurement range, the shift amount, the inclination of the approximate expression and the measurement range are stored in the memory (step S25).
  • the calculated measurement range is not too small for the accuracy, that is, higher than the height measurement in the prior art. It is determined whether or not is also wide (step S26). Prior to this determination, the measurement range d is set in advance for each type of objective lens.
  • the I—Z curve la (Z) is shifted by a certain amount A +1 in the height direction Z in the height direction Z.
  • step S27 select the measurement speed required for measurement (step S27), judge from the measurement range obtained from the height curve previously calculated (step S28), and determine the optimal Za and Zb.
  • the interval can be set (step S29).
  • the relationship between the measurement range and the measurement speed is defined in advance for each type of objective lens, and the measurement speed is determined by a computer. It is also desirable to define the shift amount A of the I-Z carp for each type of objective lens.
  • the surface 9 s of the sample 9 is sandwiched as shown in FIGS.
  • the confocal image is obtained by setting the interval between Za and Zb to a value optimized for the measurement conditions as described above.
  • the relationship between the height of the sample 9 and the output of the photodetector 12 at this time is an I-Z curve la (Z), where the focal positions Za and Zb are the center positions, respectively. lb (Z).
  • the interval between Za and Zb can be set according to the measurement speed (measurement range) required for height measurement.
  • FIG. 24 is a flowchart showing a calculation procedure in the parameter setting method according to the tenth embodiment of the present invention.
  • the focal position Za and the focus position are determined from the measurement accuracy and the measurement range (measurement speed) according to the procedure shown in FIG. Set the distance from the point position Zb.
  • an I_Z force 1 "group Ia (Z) is acquired as a first curve of an objective lens used for measurement (step S30).
  • the approximate expression (primary expression) of this height curve is (Step S36) After deriving the approximate expression of the height curve, first determine the linearity of the height curve (Step S37).
  • the wider the linear portion of the difference sum signal the wider the measurement range of the sample height.
  • the relationship between the height of the sample 9 and the output of the photodetector 12 at this time is as shown in FIG. 9A, and the difference sum signal is as shown in FIG. 9B.
  • step S38 it is determined whether or not the slope of the approximate expression satisfies the slope a that satisfies the minimum required accuracy.
  • the slope value a that can derive the minimum required accuracy is set in advance for each type of objective lens, and the slope of the approximate expression is calculated from the slope a that satisfies the minimum required accuracy. If is also large, then consider the measurement range, and the square of the error between the height curve and the approximation does not affect the accuracy.
  • the height range of the height curve having the maximum value is calculated (step S39). This is the measurement range for calculation. Then, the shift amount satisfying the condition, the slope of the approximate expression, and the calculated measurement range are stored in the memory (Step S40).
  • Step S 41 it is determined whether or not the calculated measurement range is not too small for the accuracy, that is, whether the calculated measurement range is wider than the minimum measurement range d that can be measured with higher accuracy and higher speed than the height measurement in the prior art (Ste S 41).
  • the measurement range d is set in advance for each type of objective lens.
  • a height curve is calculated from the difference Z sum of a (Z + A + 1 ) (steps S31 to S35), and similarly, the linearity of the height curve and the slope of the approximate expression are determined. This operation is repeated, and if the calculated measurement range is smaller than the measurement range d, the calculation is terminated.
  • step S42 select the measurement accuracy and measurement speed required for measurement (step S42), and judge from the slope of the approximation formula of the height curve calculated previously and the measurement range obtained from the height curve (step S42). 43), the optimum distance between Za and Zb can be set (step S44).
  • the relationship between the measurement accuracy and the measurement speed is inversely proportional as shown in FIG.
  • the relationship is different for each objective lens, and such a graph is plotted on a computer by shifting the I-Z curve to obtain a balance between measurement accuracy and measurement speed required by the operator. Can be selected.
  • the shift amount A of the I-Z curve is defined for each type of objective lens.
  • the surface 9 s of the sample 9 is sandwiched as shown in FIGS.
  • the interval between Za and Zb is set to a value optimized for the measurement conditions as described above, and a confocal image is obtained.
  • FIG. 9A the relationship between the height of the sample 9 and the output of the photodetector 12 at this time is, as shown in FIG. 9A, the I-Z curves la (Z), lb (Z).
  • the output of the photodetector 12 when the Z stage 14 is positioned at Za and Zb When the difference / sum signal (la-lb) (Ia + Ib) is calculated with the values of Ia and Ib, the relationship shown in FIG. 9B at each height of the sample 9 is obtained. Therefore, the height can be obtained by multiplying the difference sum signal by the slope of the approximate expression of the height curve.
  • the interval between Za and Zb can be set according to the measurement speed (measurement range) and measurement accuracy required for height measurement.
  • the calculation is automatically performed using a computer.
  • the approximate expression of the height curve approximates only the straight line portion of the height curve.
  • the confocal scanning microscope to which the parameter setting method of the present invention is applied has a configuration as shown in FIG. 1, but is not limited thereto and various confocal scanning microscopes are used. Can be applied to
  • an XY stage that moves the sample 9 in a plane perpendicular to the optical axis may be used as a scanning mechanism that relatively scans the focused light by the objective lens 8 along the surface of the sample 9.
  • a configuration may be employed in which a Nip kow disk having a plurality of minute openings spirally formed on a disk is rotated at a high speed.
  • the Nipkow disk also serves as a minute aperture arranged at a position conjugate to the condensing position of the objective lens, and a two-dimensional image sensor such as a CCD is used as a light detector.
  • a configuration may be employed in which the focused light of the objective lens is scanned on one line of the sample by a one-dimensional optical scanner to measure the cross-sectional shape of the sample.
  • a moving mechanism that relatively moves the focusing position of the objective lens 8 and the position of the sample 9 also includes a mechanism that moves the objective lens 8 instead of the Z stage 14 that moves the position of the sample 9. May be used.
  • the present invention is not limited to the above configuration, and can be applied to various confocal microscopes.
  • the selection of the balance between the measurement accuracy and the measurement speed is performed after the calculation of the height curve. ) May be performed prior to the calculation, or the result may be output immediately after the approximate expression of the height curve satisfying the input condition is calculated.
  • the acquisition of the I_Z curve la (Z) is performed by using a mirror or the like. Although the measurement was performed with a high reflectivity, the measurement may be performed with the sample 9. Further, it is desirable that the values of a, b, c, and d used in the above embodiment have a margin more than the values at the boundaries. In each of the above embodiments, the shift amount of the I-Z curve la (Z) and the I-Z curve lb (Z) was changed from a small value to a large value, but the shift amount was changed from a large value to a small value. May be.
  • the interval between Za and Zb was optimized so as to sandwich the surface 9 s of the sample 9.
  • this height may be applied to the measurement according to the measurement c in sample 9 with O UNA relatively large irregularities indicating time, the optimal Z k and Z k + i in the same manner as in the measurement conditions and the above-described embodiments the distance set so as to satisfy, to obtain a focused image by sequentially positioned from the Z stage 1 4 to Z n.
  • the output of the photodetector 12 when the Z stage 14 is positioned at Z k , Z k + ; is defined as I k , I k + i , and the difference Z sum signal (I k + i _ I k ) / (I k + When i + I k ) is calculated, a relationship as shown in FIG. 27A is obtained at each height of the sample 9.
  • the difference Z sum of the outputs of the optical detectors 1 2 as shown in FIG. 2 7 B becomes zero at the midpoint of the Z k and Z k + i, substantially proportional to the sample height in the vicinity.
  • the height of the sample 9 can be obtained by multiplying the difference Z sum signal by the slope of the approximate expression of the height curve and adding the average value of Z k and Z k + i .
  • the interval between the Z k and Z k + i, as shown in FIG. 26 B, intersect the measurement range of the Z k, the measurement range of the Z k + i and Z k + 1, Z k + 1 + i Must be set as follows.
  • the approximation formula of the height curve has been linear expression so far, but the approximation formula is not limited to the linear expression, but may be approximated by an n-order expression.
  • the measurement range is not limited to the linear portion of the height curve.
  • Shi because accuracy is lowered in the curved portion, that apply a ToTadashi when multiplied to the result of the difference between the sum of Z a and Z b as coefficients desirable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

A height measuring instrument comprises an object lens (8) for focusing light from a light source (3) on a sample (9), a moving mechanism (14) for relatively moving the focusing position of the object lens (9) and the position of the sample (9) along the direction of the optical axis of the focused light, a small-aperture member (11) positioned conjugate to the focusing position of the object lens (9), and an optical detector (12) for detecting the intensity of the light passing through the small-aperture member (11). A method of measuring the height of the sample (9) using this height measuring instrument comprises the steps of making two cofocal images by changing the relative position between the focusing position of the object lens (8) and the sample (9), calculating the difference/sum of the outputs from the optical detector (12) for the corresponding individual pixels, and multiplying this calculated value by a predetermined coefficient, thereby obtaining information about the height of each sample point.

Description

明 細 書 高さ測定装置及びこれを用いた高さ測定方法 技術分野  Description Height measuring device and height measuring method using the same
本発明は、 光学顕微鏡の光学系を介して試料を光で走査することにより、 試料 の表面情報を測定する試料の高さ測定方法及び共焦点顕微鏡及び共焦点顕微鏡の 高さ測定プログラムを記録した記録媒体及びそのプログラムに関する。  The present invention records a sample height measurement method for measuring surface information of a sample by scanning the sample with light through an optical system of an optical microscope, a confocal microscope, and a height measurement program for a confocal microscope. The present invention relates to a recording medium and a program therefor.
背景技術  Background art
共焦点走査型光学顕微鏡は、 試料を点状照明し試料からの光 (透過光、反射光、 蛍光) をピンホール上に集光させた後、 このピンホールを通過する光の強度を光 検出器で検出することによって、 試料の 3次元情報を取得することができる。 図 1に従来の共焦点走査型光学顕微鏡の概略的な構成を示す。 同図において、 光源 3から出射した光がビームスプリッター 4を透過した後、 ミラー 5で反射さ れて 2次元走査機構 6に入射する。 2次元走査機構 6は、 第 1の光スキャナ 6 a と第 2の光スキャナ 6 bからなり、 光源 3からの光束を 2次元に走査し、 リ レー レンズ系 7を介して対物レンズ 8へと導かれる。 対物レンズ 8に入射した光束は 、 集束光となって試料 9面上を 2次元に走査する。 試料 9の表面で反射した光は 、 再ぴ対物レンズ 8、 リ レーレンズ系 7 、 2次元走査機構 6を介してビームスプ リ ツター 4に入射した後、 ビームスプリツター 4によって反射され、 結像レンズ 1 0によって微小開口部材であるピンホール 1 1上に集光する。 この時、 ピンホ ール 1 1により試料 9の集光点以外からの反射光は力ットされ、 集光点からの反 射光のみピンホール 1 1を通過して光検出器 1 2によって検出される。 試料 9は 試料台 1 3上に載置されており、 Zステージ 1 4によって光軸方向に移動可能と なっている。 2次元走査機構 6 、 Zステージ 1 4および光検出器 1 2は、 コンビ ユータ 1 5によって制御される。 コンピュータ 1 5は、 図 2 Aに示すように C P U 2 5から C P Uパス 1 7 、 I Z F (インターフェース) 1 8を介してスキャナ駆 動部 1 9に駆動命令を出し、 スキャナ 6を駆動する。  A confocal scanning optical microscope illuminates a sample in a point-like manner, collects light (transmitted light, reflected light, and fluorescent light) from the sample onto a pinhole, and then detects the intensity of light passing through the pinhole. 3D information of the sample can be obtained by detecting with the instrument. FIG. 1 shows a schematic configuration of a conventional confocal scanning optical microscope. In the figure, light emitted from a light source 3 passes through a beam splitter 4, is reflected by a mirror 5 and enters a two-dimensional scanning mechanism 6. The two-dimensional scanning mechanism 6 includes a first optical scanner 6a and a second optical scanner 6b. The two-dimensional scanning mechanism 6 scans the light beam from the light source 3 two-dimensionally and passes through the relay lens system 7 to the objective lens 8. Be guided. The light beam incident on the objective lens 8 becomes a converged light beam and scans the surface of the sample 9 two-dimensionally. The light reflected on the surface of the sample 9 enters the beam splitter 4 via the reproduction objective lens 8, the relay lens system 7, and the two-dimensional scanning mechanism 6, and is reflected by the beam splitter 4 to form the imaging lens 1. By 0, light is condensed on a pinhole 11 which is a minute aperture member. At this time, the reflected light from the point other than the focal point of the sample 9 is focused by the pinhole 11 and only the reflected light from the focal point passes through the pinhole 11 and is detected by the photodetector 12. You. The sample 9 is placed on a sample stage 13, and can be moved in the optical axis direction by a Z stage 14. The two-dimensional scanning mechanism 6, the Z stage 14 and the photodetector 12 are controlled by a computer 15. As shown in FIG. 2A, the computer 15 issues a drive command to the scanner drive unit 19 from the CPU 25 via the CPU path 17 and the IZF (interface) 18 to drive the scanner 6.
また、 I Z F (ィンターフェース) 2 0を介して Z駆動部 2 1に駆動命令を出し、 Zステージ 1 4を駆動する。 さらに、光検出器 1 2のアナログ出力を AZ D (アナ 口グ Zデジタル)変換器 2 2にてデジタルデータに変換し、制御処理に用いている 共焦点走査型光学顕微鏡を制御するコンピュータプログラムは、 記録媒体 2 3 に記録されておりメインメモリ 2 4にコピーされ、 C P U 2 5にて実行処理され ている。 コンピュータプログラムは、 コンピュータ 1 5に接続されている不図示 のネッ トワークなどの通信回路を介して遠隔地にあるサーバコンピュータからダ ゥンロードし実行処理することも可能である。 In addition, a drive command is issued to the Z drive unit 21 via the IZF (interface) 20, Drives Z stage 14 Further, a computer program for converting the analog output of the photodetector 12 into digital data by an AZD (analog Z-digital) converter 22 and controlling the confocal scanning optical microscope used for the control process is as follows. Are recorded on the recording medium 23, copied to the main memory 24, and executed by the CPU 25. The computer program can be downloaded from a server computer located at a remote place via a communication circuit such as a network (not shown) connected to the computer 15 and executed.
ここで、 対物レンズ 8による集光位置は、 ピンホール 1 1と光学的に共役な位 置にあり、 試料 9が対物レンズ 8による集光位置にある場合は、 試科 9からの反 射光がピンホール 1 1上で集光し、 ピンホール 1 1を通過するが、 試料 9が対物 レンズ 8による集光位置からずれた位置にある場合は、 試料 9からの反射光はピ ンホール 1 1上には集光しておらず、 ピンホール 1 1を通過しない。 このときの 対物レンズ 8と試料 9の相対位置 Zを横軸にとり、 光検出器 1 2の出力 Iを縦軸 にとつてその関係を図 3に示す。 以下、 この関系を I _ Zカーブと称する。 図 3 に示すように、 試料 9が対物レンズ 8の集光位置 Z oにある場合、 光検出器 1 2 の出力 Iは最大となり、 この位置から対物レンズ 8 と試料 9 との相対位置が離れ るに従い、 光検出器 1 2の出力は急激に低下する。 この特性により、 2次元走査 機構 6によって対物レンズ 8の集光点を 2次元走査し、 光検出器 1 2の出力を 2 次元走査機構 6に同期して画像化すれば、 試料 9のある特定の高さのみが画像化 され、 試料 9を光学的にスライスした画像 (共焦点画像) が得られる。 さらに、 Zステージ 1 4で試料 9を光軸方向に離散的に移動させ、 各位置 (各高さ) で 2 次元走査機構 6を走査して共焦点画像を取得し、 試料各点で光検出器 1 2の出力 が最大になる Zステージ 1 4の位置を検出することにより、 試科 9の高さ情報が 得られる。  Here, the condensing position of the objective lens 8 is at a position optically conjugate with the pinhole 11, and when the sample 9 is at the condensing position of the objective lens 8, the reflected light from the sample 9 is When the light is focused on the pinhole 11 and passes through the pinhole 11, but the sample 9 is located at a position shifted from the focus position by the objective lens 8, the reflected light from the sample 9 is reflected on the pinhole 11. Does not converge, and does not pass through pinhole 11. FIG. 3 shows the relative position Z of the objective lens 8 and the sample 9 at this time on the horizontal axis, and the output I of the photodetector 12 on the vertical axis. Hereinafter, this relation is referred to as an I_Z curve. As shown in Fig. 3, when the sample 9 is located at the focusing position Z o of the objective lens 8, the output I of the photodetector 12 becomes maximum, and the relative position between the objective lens 8 and the sample 9 is separated from this position. , The output of the photodetector 12 decreases rapidly. Due to this characteristic, the two-dimensional scanning mechanism 6 scans the condensing point of the objective lens 8 two-dimensionally, and the output of the photodetector 12 is imaged in synchronization with the two-dimensional scanning mechanism 6, so that a specific sample 9 can be identified. Only the height of the sample 9 is imaged, and an image (confocal image) obtained by optically slicing the sample 9 is obtained. Furthermore, the sample 9 is moved discretely in the optical axis direction by the Z stage 14, and the confocal image is acquired by scanning the two-dimensional scanning mechanism 6 at each position (each height), and light is detected at each point of the sample. By detecting the position of the Z stage 14 at which the output of the vessel 12 becomes maximum, the height information of the sample 9 can be obtained.
このような構成によって試料の高さを計測する際、 測定精度を高めようとする と、 Zステージの 1回当りの移動量を小さくすることが必要になり、 計測に時間 が掛かる。  When measuring the height of the sample with such a configuration, if the accuracy of the measurement is to be increased, it is necessary to reduce the amount of movement of the Z stage per operation, which takes time.
そこで、 Zステージの 1回当りの移動量を小さくすることなく、 試料の高さ計 測の精度を高める高さ測定方法が特開平 9一 6 8 4 1 3号公報に開示されている。 この方法では、 光検出器の出力が、 最大になる Zステージの位置 (高さ) および その前後の位置の計 3点での光検出器の出力に基づいて、 I _ Zカーブを 2次曲 線で近似することによって、 光検出器の出力が最大となる Zステージの位置 (高 さ) を、 Zステージの移動量以下の精度で求めて高さ情報を得ている。 Japanese Patent Application Laid-Open No. Hei 9-198643 discloses a height measuring method for improving the accuracy of the height measurement of a sample without reducing the amount of movement of the Z stage per operation. In this method, the I_Z curve is quadratic based on the photodetector output at a total of three points: the position (height) of the Z stage where the output of the photodetector is maximized, and the positions before and after it. By approximating with a line, the position (height) of the Z stage at which the output of the photodetector is maximized is obtained with an accuracy equal to or less than the movement amount of the Z stage to obtain height information.
また、 特開平 1 0— 2 8 1 7 4 3号公報には、 I 一 Z力一ブのピーク部分を示 す n個のモデルデータを予め記憶しておき、 該モデルデータと n個の光検出器の 出力データを用いてピーク度数を算定し高さ情報を得ることが記載されている。 さらに、 特開平 1 1— 2 6 4 9 3 3号公報の記載によれば、 I—Zカーブを予 め記憶しておき、 試科の反射率が 1 0 0 %の場合には、 Zステ一ジを移動させず に、 取込んだ光検出器の出力が、 I一 Zカーブでどの Zステージの位置に対応す るかを判断し、 高さ情報を得ている。 試料の反射率が未知の場合には、 Zステー ジを移動して、 2つの Zステージ位置で共焦点画像を取得し、 それぞれの位置に おける光検出器の出力が、 I _ Zカーブで Zステージのどの位置に対応するかを 判断し、 得られた試料の高さを平均することで高さ情報を得ている。  In Japanese Patent Application Laid-Open No. H10-281843, n model data indicating a peak portion of the I-Z force is previously stored, and the model data and the n light beams are stored. It describes that the peak frequency is calculated using the output data of the detector to obtain height information. Furthermore, according to the description in Japanese Patent Application Laid-Open No. H11-246493, the I-Z curve is stored in advance, and if the reflectance of the sample is 100%, the Z-step is set. The height information is obtained by judging which Z stage position the captured photodetector output corresponds to in the I-Z curve without moving the sensor. If the reflectance of the sample is unknown, the Z stage is moved to acquire a confocal image at two Z-stage positions, and the output of the photodetector at each position is represented by the Z curve using the I_Z curve. Height information is obtained by deciding which position on the stage it corresponds to and averaging the heights of the obtained samples.
上記の従来技術においては、 以下のような問題点がある。  The above prior art has the following problems.
特開平 9 - 6 8 4 1 3号公報に記載のように、 I — Zカーブを 2次曲線やその 他の曲線で近似して、 光検出器の出力が最大となる Zステージの位置を求めるに は、 Zステージを少なくとも 3箇所以上に位置決めする必要がある。 また、 I— Zカーブを 2次曲線やその他の曲線で近似できる領域を、 仮に I—Zカーブで光 検出器の出力が最高出力の 5 0 %以上とすると、 Zステージの 1回の移動量は、 I一 Zカーブの半値全幅の 3分の 1以下でなければならない。 さらには、 ピーク ( I—Zカーブで光検出器 1 2の出力が最高出力) 位置を推定しなくてはならな いため、 コンピュータ 1 2の負荷が演算処理に集中し操作性を損ねる。  As described in Japanese Unexamined Patent Publication No. 9-68413, the I-Z curve is approximated by a quadratic curve or other curves to find the position of the Z stage at which the output of the photodetector is maximized. To do this, it is necessary to position the Z stage in at least three places. Also, if the area where the I-Z curve can be approximated by a quadratic curve or other curves is assumed to be 50% or more of the maximum output of the photodetector in the I-Z curve, the amount of one movement of the Z stage Must be less than one-third of the full width at half maximum of the I-Z curve. Furthermore, since the position of the peak (the output of the photodetector 12 is the highest output in the I-Z curve) must be estimated, the load on the computer 12 is concentrated on the arithmetic processing and the operability is impaired.
また、 特開平 1 0— 2 8 1 7 4 3号公報の記載によれば、 n個の光検出器が必 要になり、 コス トが高くなる。  Further, according to the description of Japanese Patent Application Laid-Open No. 10-281743, n photodetectors are required, which increases the cost.
さらに、 特開平 1 1一 2 6 4 9 3 3号公報の記载によれば、 試料の反射率が 1 0 0 %の場合には、 Zステージを移動させずに取込んだ光検出器の出力が、 I一 Zカーブでどの Zステージのどの位置 (高さ)に対応するかを判断しているが、 図 3から明らかなように、 光検出器の出力に対する Zステージの位置 (高さ)は 2つ 以上あり、 試料の高さを一義的に決定することができない。 Further, according to the description in Japanese Patent Application Laid-Open No. 11-246493, when the reflectance of the sample is 100%, the photodetector taken in without moving the Z stage is used. It is determined which output (Z-curve) corresponds to which position (height) of the Z stage. As is clear from Fig. 3, the position (height) of the Z stage with respect to the output of the photodetector is determined. ) Is two As described above, the height of the sample cannot be uniquely determined.
また、 試料の反射率が未知な場合、 2つの Zステージ位置で共焦点画像を取得 し、 それぞれの位置での光検出器の出力が, I— Zカープで Zステージのどの位 置に対応するかを判断する場合でも、 光検出器の出力が試料の反射率に比例する ので、 上記の判断をする際の誤差は、 光検出器の出力に依存する。 したがって、 2つの Zステージの位置での誤差量は、 一般に一致しないので、 各々の Zステ一 ジでの高さを平均しても、 試料の反射率の影響を取り除くことはできない。 そして、 いずれの場合でも動作中常に各種条件判断や補正処理にコンピュータ 1 5での判断を必要とするので、 計測時間の短縮のために Zステージ 1 4の移動 を減らした効果が現れ難い。 '  If the reflectance of the sample is unknown, a confocal image is acquired at two Z-stage positions, and the output of the photodetector at each position corresponds to the position of the Z-stage with the I-Z carp. Even when judging this, since the output of the photodetector is proportional to the reflectance of the sample, the error in making the above judgment depends on the output of the photodetector. Therefore, since the error amount at the positions of the two Z stages generally does not match, averaging the heights of the respective Z stages cannot eliminate the influence of the reflectance of the sample. In any case, since the computer 15 needs to judge various conditions and correct the processing during operation, the effect of reducing the movement of the Z stage 14 in order to reduce the measurement time is unlikely to appear. '
また、 上記のような方法で Zステージ 1 4の移動量を大きくとった場合、 各位 置で取得した共焦点画像だけでは、 全ての面にピントのあった画像を得ることが 出来ない。 特開平 0 9— 0 6 8 4 1 3号公報、 特開平 1 0— 2 8 1 7 4 3号公報 に記載の方法では、 各点のピーク値を求めるための具体的な方法が記載されてい ない。 また、 高さを求める場合、 光検出器の出力の最大値を求めるには、 Zステ ージを少なくとも 3箇所以上に位置決めしなければならないという欠点がある。 さらに特開平 1 1— 2 6 4 9 3 3号公報では、 高さを求める場合、 反射率が 1 0 0の場合のみの I— Z特性 (I一 Zカーブ) しか有しておらず、 また、 反射率が 1 0 0 %でない場合の最大値を求める方法は記載されていないので、 各点のピー ク値を求めることができない。  Also, when the movement amount of the Z stage 14 is increased by the above-described method, it is not possible to obtain an image in which all the surfaces are in focus only by the confocal images acquired at each position. In the methods described in JP-A-09-0 684 13 and JP-A-10-281743, a specific method for obtaining a peak value at each point is described. Absent. In addition, when determining the height, there is a disadvantage that the Z stage must be positioned at at least three places in order to determine the maximum value of the output of the photodetector. Further, in Japanese Patent Application Laid-Open No. H11-2464933, when the height is obtained, only the I-Z characteristic (I-Z curve) only when the reflectance is 100 is obtained. However, since there is no description of a method for obtaining the maximum value when the reflectance is not 100%, the peak value of each point cannot be obtained.
また、 図 4 A、 4 B に示すように、 対物レンズは同じ倍率であっても個体によ つて I一 Zカーブの特性に差が存在する。 このため、 特開平 1 0— 2 8 1 7 4 3 号公報に開示された方法ゃ特開平 1 1一 2 6 4 9 3 3号公報に開示された方法の ように I一 Zカーブを予め記憶しておくと、 共焦点顕微鏡にも個体差が生じてし まう。  Also, as shown in FIGS. 4A and 4B, there is a difference in the characteristics of the I-Z curve depending on the individual even if the objective lens has the same magnification. For this reason, the I-Z curve is stored in advance in the method disclosed in Japanese Patent Application Laid-Open No. H10-281843, as in the method disclosed in Japanese Patent Application Laid-Open No. H11-264733. If this is done, individual differences will also occur in confocal microscopes.
また、 上述の先行技術においては、 測定条件に応じて測定精度と測定速度とを 測定作業者により選択することができなかった。  Further, in the above-described prior art, the measurement operator could not select the measurement accuracy and the measurement speed according to the measurement conditions.
従って、 本発明の主な目的は、 Zステージの 1回当りの移動量を小さくするこ となく、 Zステージの移動回数を少なくし、 試料の反射率の影響を受けない試料 の高さ測定方法及び共焦点顕微鏡及び共焦点顕微鏡の高さ測定プログラムを記録 した記録媒体およびそのプログラムを提供することである。 Therefore, a main object of the present invention is to reduce the number of movements of the Z stage without reducing the amount of movement per movement of the Z stage, and to reduce the number of movements of the Z stage, and The present invention provides a height measuring method, a confocal microscope, a recording medium recording a height measuring program for a confocal microscope, and a program therefor.
本発明の他の目的は、 試料の高さ計測の精度を高め、 同時に Zステージの移動 回数を少なくして、 測定を高速化することができ、 また、 試料の反射率の影響を 受けずに済み、 さらには、 制御装置の負荷を軽減し、 応答性を改善すると共に測 定範囲も広げることが可能な高さ測定装置を提供することである。  Another object of the present invention is to increase the accuracy of sample height measurement, and at the same time, reduce the number of movements of the Z stage, thereby speeding up the measurement, and without being affected by the reflectance of the sample. Another object of the present invention is to provide a height measuring device capable of reducing the load on a control device, improving responsiveness, and expanding a measuring range.
本発明の更に他の目的は、 試料の高さ計測の精度を高め、 Zステージの移動回 数を少なく しつつも、 試料の反射率の影響を受けず、 また全ての面にピントの合 つた画像も取得することが可能な高さ測定装置を提供することである。  Still another object of the present invention is to improve the accuracy of sample height measurement and reduce the number of movements of the Z stage, without being affected by the reflectance of the sample, and focusing on all surfaces. An object of the present invention is to provide a height measuring device capable of acquiring an image.
本発明の他の目的は、 Zステージの 1回当りの移動量を小さくすることなく、 試料の高さ計測の精度を高め、 同時に、 試料の高さ計測の際に必要となる Zステ 一ジの移動回数を少なくする測定の際に、 測定条件に応じて測定精度と測定速度 を選択できるパラメータ設定方法を提供することである。  Another object of the present invention is to increase the accuracy of sample height measurement without reducing the amount of movement of the Z stage per stroke, and at the same time, to increase the Z stage required for sample height measurement. An object of the present invention is to provide a parameter setting method capable of selecting a measurement accuracy and a measurement speed according to a measurement condition when performing a measurement in which the number of times of movement is reduced.
発明の開示  Disclosure of the invention
本発明による高さ測定方法は、 光源からの光を試料に対して集束させる対物レ ンズと、 集束光を試料表面に沿って相対的に走査させる走査機構と、 集束光の光 軸方向に沿って、 対物レンズの集光位置と試料の位置を光軸方向に相対的に移動 させる移動機構と、 対物レンズの集光位置と共役な位置に配置された微小開口部 材と、  The height measuring method according to the present invention includes an objective lens that focuses light from a light source on a sample, a scanning mechanism that relatively scans the focused light along the sample surface, and an optical axis direction of the focused light. A moving mechanism for relatively moving the focus position of the objective lens and the position of the sample in the optical axis direction; a minute aperture member arranged at a position conjugate with the focus position of the objective lens;
微小開口部材を通過する光の強度を検出する光検出器とを備えた共焦点走査型 顕微鏡を用いている。 この場合、 対物レンズの集光位置と試料の相対位置を変え て 2枚の共焦点画像を撮像し、 対応する各画素毎に光検出器の出力の差 Z和を計 算し、 この計算値に所定の多項式に代入することによって、 試料各点の高さ情報 を得ている。  A confocal scanning microscope equipped with a photodetector for detecting the intensity of light passing through the minute aperture member is used. In this case, two confocal images are taken by changing the focusing position of the objective lens and the relative position of the sample, and the sum Z of the output of the photodetector is calculated for each corresponding pixel, and the calculated value is calculated. The height information of each point of the sample is obtained by substituting into a predetermined polynomial for.
本発明によれば、 前記高さ情報を得る多項式は、 1次式である。  According to the present invention, the polynomial for obtaining the height information is a linear expression.
本発明によれば、 前記 1次式に代入される計算式を得るため、 2枚の共焦点画 像における対物レンズの集光位置と試料の相対位置の差は、 上記相対位置一光検' 出器出力信号強度曲線の半値全幅の 0 . 3倍ないし 2倍である。  According to the present invention, in order to obtain a calculation formula to be substituted into the linear expression, the difference between the condensing position of the objective lens and the relative position of the sample in the two confocal images is calculated by the above-described relative position-one-light detection It is 0.3 to 2 times the full width at half maximum of the output signal strength curve.
本発明による高さ測定方法は、 光源からの光を試料に対して集束させる対物レ ンズと、 集束光を試料表面に沿って相対的に走査させる走査機構と、 集束光の光 軸方向に沿って、 対物レンズの集光位置と試料の位置を光軸方向に相対的に移動 させる移動機構と、 対物レンズの集光位置と共役な位置に配置された微小開口部 材と、 微小開口部材を通過する光の強度を検出する光検出器とを備えた共焦点走 查型顕微鏡を用いている。 この場合、 対物レンズの集光位置と試料の相対位置を 一定の移動量で順次変えて複数枚の共焦点画像を撮像し、 2枚の対物レンズの集 光位置と試料の相対位置の差からなるずらし量が上記移動量の整数倍である 2枚 の共焦点画像間で対応する各画素毎に光検出器の出力の差/和を計算し、 この計 算値を所定の多項式に代入し、 その結果に 2枚の共焦点画像での対物レンズの集 光位置と試料の相対位置の平均値を加算することによって、 試料各点の高さ情報 を得ている。 The height measuring method according to the present invention comprises an objective lens for focusing light from a light source onto a sample. Lens, a scanning mechanism that relatively scans the focused light along the sample surface, and moves the focus position of the objective lens and the position of the sample relatively along the optical axis along the optical axis of the focused light. A confocal scanning 顕 微鏡 microscope equipped with a moving mechanism, a micro-aperture member arranged at a position conjugate to the focusing position of the objective lens, and a photodetector for detecting the intensity of light passing through the micro-aperture member Used. In this case, the converging position of the objective lens and the relative position of the sample are sequentially changed by a fixed amount of movement to capture multiple confocal images, and the difference between the converging position of the two objective lenses and the relative position of the sample is calculated. The difference / sum of the output of the photodetector is calculated for each corresponding pixel between the two confocal images where the shift amount is an integral multiple of the above shift amount, and this calculated value is substituted into a predetermined polynomial. Then, the height information of each point of the sample is obtained by adding the average value of the focusing position of the objective lens and the relative position of the sample in the two confocal images to the result.
本発明によれば、前記 2枚の共焦点画像から得たずらし量が前記移動量である。 本発明によれば、 前記移動量が上記相対位置一光検出器出力信号強度曲線の半 値全幅の 0 . 3倍ないし 0 . 8倍である。  According to the present invention, the shift amount obtained from the two confocal images is the movement amount. According to the present invention, the amount of movement is 0.3 to 0.8 times the full width at half maximum of the relative position-one photodetector output signal intensity curve.
本発明による共焦点走査型顕微鏡は、 光源からの光を試料に対して集束させる 対物レンズと、 前記集束光を試料表面に沿って相対的に走査させる走査機構と、 前記集束光の光軸方向に沿って、 前記対物レンズの集光位置と前記試料の位置を 光軸方向に相対的に移動させる移動機構と、 前記対物レンズの集光位置と共役な 位置に配置された微小開口部材と、 前記微小開口部材を通過する光の強度を検出 する光検出器とを備えている。 この場合、 前記対物レンズの集光位置と前記試料 の相対位置とを変えて 2枚の共焦点画像を撮像し、 対応する各画素毎に前記光検 出器の出力差を前記光検出器の出力の和で除算し、 適当な多項式に代入すること によって、 試料各点の高さ情報を得る高さ測定機能を備えている。  A confocal scanning microscope according to the present invention includes: an objective lens for focusing light from a light source on a sample; a scanning mechanism for relatively scanning the focused light along a sample surface; and an optical axis direction of the focused light. Along, a moving mechanism for relatively moving the focus position of the objective lens and the position of the sample in the optical axis direction; a micro aperture member arranged at a position conjugate with the focus position of the objective lens; A light detector for detecting the intensity of light passing through the minute aperture member. In this case, two confocal images are captured by changing the focusing position of the objective lens and the relative position of the sample, and the output difference of the photodetector is determined for each corresponding pixel by the photodetector. A height measurement function is provided to obtain the height information of each point of the sample by dividing by the sum of the outputs and substituting it into an appropriate polynomial.
本発明によれば、 コンピュータによつて共焦点顕微鏡の高さ測定を制御するた めの制御プログラムを記録した記録媒体であって、 対物レンズの集光位置と試科 の相対位置とを変えて撮像した 2枚の共焦点画像から、 対応する各画素毎の差を 各画素毎の和で除算し、 適当な多項式に代入することによって、 試料各点の高さ 情報を得ている。  According to the present invention, there is provided a recording medium storing a control program for controlling height measurement of a confocal microscope by a computer, wherein a focusing position of an objective lens and a relative position of a sample are changed. The height information of each point of the sample is obtained by dividing the difference of each corresponding pixel by the sum of each pixel from the two confocal images taken and substituting it into an appropriate polynomial.
本発明によれば、 コンピュータで実行させることによって共焦点顕微鏡の高さ 測定を制御するプログラムであって、 対物レンズの集光位置と試料の相対位置と を変えて撮像した 2枚の共焦点画像から、 対応する各画素毎の差を各画素毎の和 で除算し、 適当な多項式に代入することによって、 試料各点の高さ情報を得るこ とをコンピュータに行わせるようにしている。 According to the present invention, the height of the confocal microscope can be A measurement control program that divides the difference of each corresponding pixel by the sum of each pixel from two confocal images taken while changing the focusing position of the objective lens and the relative position of the sample. By substituting it into an appropriate polynomial, the computer obtains the height information for each point on the sample.
本発明による高さ測定装置は、 光源からの光を所定位置に集光させる対物レン ズと、 前記集光を前記所定位置の表面に沿って相対的に走査させる走査機構と、 前記対物レンズの光軸方向に沿って、 前記集光位置と前記所定位置を相対的に移 動させる移動機構と、 前記集光位置と共役な位置に配置された微小開口と、 前記 微小開口を通過する光の強度を検出する光検出器と、 前記光検出器からの信号を 画像データとして記憶する記憶装置と複数の入力端と少なく とも一つの出力端と を有し、 これらの入力端からの複数の入力に対して所定の値を出力するルックァ ップテーブルとを備えた演算装置とを備えている。 前記演算装置が、 前記対物レ ンズの集光位置と前記所定位置の相対位置とを変えて複数の画像データを取得す る過程と、 前記取得した複数の画像データのうち隣接する集光位置における 2つ の画像データの、 一方の集光位置における画像デ一タを前記記憶装置を介して前 記ルックアップテーブルに入力すると共に、 他方の集光位置における画像データ を前記ルックアップテーブルに直接入力する過程とを備えている。  The height measuring device according to the present invention includes: an objective lens for condensing light from a light source at a predetermined position; a scanning mechanism for relatively scanning the condensed light along a surface at the predetermined position; A moving mechanism that relatively moves the light-collecting position and the predetermined position along the optical axis direction; a small aperture disposed at a position conjugate to the light-collecting position; A photodetector for detecting the intensity, a storage device for storing a signal from the photodetector as image data, a plurality of input terminals and at least one output terminal, and a plurality of inputs from these input terminals. And a calculation device having a look-up table for outputting a predetermined value to the data. A step of acquiring a plurality of image data by changing the focusing position of the objective lens and the relative position of the predetermined position; and The image data of the two image data at one focus position is input to the look-up table via the storage device, and the image data at the other focus position is directly input to the look-up table. Process.
また、 本発明による高さ測定装置は、 第 1の集光位置における画像データの最 小値を Ami n、 最大値を Ama x、 第 2の集光位置における画像データの最小値を Bm i n、 最大値を Bma xとし、 最小値 Am i nから最大値 Ama xまでの間に m個の データ、 最小値 Bm i nから最大値 Bma xまでの間に n個のデータがあるとした場 合、 前記ルツクァップテーブルが、 少なくとも次のデータ C ( i, j ) を有して いる。 The height measuring device according to the invention, the minimum value A mi n of the image data in the first collection point, the maximum value A ma x, the minimum value of the image data in the second collection point B min, and the maximum value and B ma x, the maximum value a ma x to m data between the minimum value a min, when between the minimum value B min to the maximum value B ma x there are n data In this case, the lookup table has at least the following data C (i, j).
C ( i, j ) = (B j -A i ) / (B j +A i )  C (i, j) = (B j -A i) / (B j + A i)
伹し、 i = l, 2, 3, ···, m、 j = 1 , 2, 3, ···, nであって、 m, nは整 数である。 また、 Am i n A i ≤ Ama x、 Bmi n B j ≤Bma xである。 Where i = l, 2, 3, ..., m, j = 1, 2, 3, ..., n, where m and n are integers. Further, it is A min A i ≤ A ma x , B mi n B j ≤B ma x.
本発明の高さ測定装置は、 異なる集光位置において共焦点画像を取得し、 その 画像データから高さ情報を算出するものである。 この点について説明する。なお、 集光位置とは、 図 5 Aに示すように、 対物レンズ 8を介して光源からの光が集光 された位置である。 また、 この集光位置を中心とする I _ Zカープの形状は、 正 確には図 3に示すようになるが、 図 5 B、 5 Cでは、 説明の便宜上、 細かい形状 は省略して示してある。 The height measuring apparatus of the present invention acquires a confocal image at different light condensing positions and calculates height information from the image data. This will be described. Note that the light condensing position means that the light from the light source is condensed through the objective lens 8 as shown in Fig. 5A. It is the position that was done. In addition, the shape of the I_Z carp centered on the condensing position is exactly as shown in FIG. 3, but in FIGS. 5B and 5C, the fine shape is omitted for convenience of explanation. It is.
まず、 集光位置を試料 9の任意の位置に移動させる。 例えば、 図 5 Bは集光位 置を Z bの位置にしたときの様子及び I—Zカーブを示している。 ここで、 I一 Zカープの値が最大になるのは Z bの位置である。 そして、 Z bよりも高い位置 あるいは低い位置では、 集光位置 Z bから離れるにしたがって I— Zカーブの値 は小さくなる。 図 5 Bでは、 傾斜面上の点 Pは集光位置 Z bよりも低い位置にあ るので、 その値は集光位置 Z bにおける I— Zカーブ上の最大値よりも低い値 P bになる。 次に、 集光位置を Z bよりも低い位置 Z aにしたときの様子及び I一 Zカーブを図 5 Cに示す。 この場合、 点 Pは集光位置 Z aよりも高い位置にある ので、 その値は図 5 Cに示すように、 集光位置 Z aにおける I一 Zカーブ上の最 大値よりも低い値 P aになる。  First, the focusing position is moved to an arbitrary position on the sample 9. For example, FIG. 5B shows the state and the I-Z curve when the focusing position is set to the position of Zb. Here, the value of I-Z carp becomes maximum at the position of Z b. At a position higher or lower than Z b, the value of the I-Z curve becomes smaller as the distance from the light condensing position Z b increases. In Fig. 5B, point P on the inclined surface is located at a position lower than the focusing position Zb, so its value is lower than the maximum value Pb on the I-Z curve at the focusing position Zb. Become. Next, Fig. 5C shows the situation when the light condensing position is set to a position Za lower than Zb and the I-Z curve. In this case, since the point P is located at a position higher than the light condensing position Za, its value is lower than the maximum value P on the I-Z curve at the light condensing position Za as shown in FIG. 5C. becomes a.
図 6 Aは、 図 5 B、 5 Cの右側に示されている I— Zカーブを重ねて示した図 である。 図 6A、 6 B中、 l a (Z) 及び I b (Z) は、 それぞれ集光位置 Z a 及び Z bにおける I— Zカーブを示している。ここで、この I— Zカーブ I a (Z) 及び l b (Z) は、 最大値及び形状が同じになっている。 また、 I— Zカーブ I a (Z) あるいは l b (Z) の基となるデータ (以下、 輝度値という) は、 予め 対物レンズと試料 (通常は鏡面) を相対的に移動させることにより取得しておい たもので、 コンピュータに記億されている。  FIG. 6A is a diagram in which the I-Z curves shown on the right side of FIGS. 5B and 5C are superimposed. 6A and 6B, la (Z) and Ib (Z) indicate the I-Z curves at the light condensing positions Za and Zb, respectively. Here, the I-Z curves I a (Z) and lb (Z) have the same maximum value and shape. The data (hereinafter referred to as “brightness value”) on which the I-Z curve I a (Z) or lb (Z) is obtained by previously moving the objective lens and the sample (usually a mirror surface) relatively. It is recorded on a computer.
図 6 Aに示すように、 図 5 B、 5 Cの P点に対する輝度値は、 集光位置が Z b にある場合が l b (Z p) =P bで、 集光位置が Z aにある場合が I a (Z p ) =P aとなる。 このことから、 試料上 (光軸方向) の任意の 1点に対して、 1対 1で対応する異なる集光位置での I Zカーブ I a (Z), l b (Z) の組み合わせ が存在することを示している。 逆に言うと、 l a (Z) と l b (Z) との組み合 わせが分かれば、 試料上の任意の 1点における光軸方向の相対的な位置 (高さ) が分かるということになる。  As shown in Fig. 6A, the brightness value for point P in Figs. 5B and 5C is lb (Zp) = Pb when the focus position is at Zb, and the focus position is at Za. In the case, I a (Z p) = Pa. Therefore, for any one point on the sample (in the direction of the optical axis), there is a combination of IZ curves I a (Z) and lb (Z) at different light condensing positions corresponding one-to-one. Is shown. Conversely, if the combination of l a (Z) and l b (Z) is known, the relative position (height) in the optical axis direction at any one point on the sample can be determined.
次に、 図 6 Aに示す I— Zカープ I a (Z) 及ぴ I b (Z) を基にして、 各 Z の位置において C (Z) = { I b (Z) - I a (Z)} / { I b (Z) + 1 a (Z)} の計算を行い、その結果をグラフに表したのが図 6 Bである。図 6 Bにおいて「測 定範囲」 で示されている区間に着目すると、 この区間では C (Z) のグラフがほ ぼ直線状になっている。 従って、 この区間では C (Z) の値に所定の係数をかけ 合わせるだけで、 実際の光軸方向の相対的な位置 (高さ) を求めることができる。 ところで、 この 「測定範囲」 は直線性とグラフの傾きから決まるが、 この直線 性とグラフの傾きは図 3に示す I一 Zカーブの形と Z aから Z bまでの間隔とで 決まる。 このうち、 I一 Zカーブの形状は使用する対物レンズによって異なる。 したがって、 測定に先立ち、 予め使用する対物レンズに関して I一 Zカーブを測 定しておく必要がある。 そして、 この I一 Zカーブを基にして、 必要な直線性と グラフの傾きが得られるように Z aから Z bまでの間隔を決めておくことになる c 共焦点顕微鏡では、 試料表面を 2次元走査することで試料像を形成している。 そこで、 集光位置を Z bの位置にして 2次元走査を行うと、 この Z b位置におけ る I—Zカーブ l b (Z) 上の輝度値として各画素のデータが得られる。 次に、 集光位置を Z aに移動させて走査を行うと、 この Z a位置における I一 Zカーブ I a (Z) 上の輝度値として各画素のデータが得られる。 ここで、 各画素ごとの 高さを得るには、 2つの集光位置 Z a, Z bでの走査によりそれぞれ取得した各 画素ごとに { l b (Z) - I a (Z)} / { l b (Z) + I a (Z)} の計算を行 わなければならない。 しかしながら、各種条件判断等の制御を行いながら、 { I b (Z) - I a (Z)} / { l b (Z) + I a (Z)} の計算を行おうとすると、 コ ンピュータに負荷がかかるため、 その分、 短時間で高さ情報を得ることが難しく なる。 Next, based on the I—Z carp I a (Z) and I b (Z) shown in FIG. 6A, at each Z position, C (Z) = {I b (Z) −I a (Z )} / {I b (Z) + 1 a (Z)} Fig. 6B shows the result of the calculation. Focusing on the section indicated by “measurement range” in FIG. 6B, the graph of C (Z) is almost linear in this section. Therefore, in this section, the relative position (height) in the actual optical axis direction can be obtained simply by multiplying the value of C (Z) by a predetermined coefficient. By the way, this “measurement range” is determined by the linearity and the slope of the graph. The linearity and the slope of the graph are determined by the shape of the I-Z curve shown in Fig. 3 and the interval from Za to Zb. Among these, the shape of the I-Z curve differs depending on the objective lens used. Therefore, it is necessary to measure the I-Z curve of the objective lens to be used before the measurement. Then, the I one Z curve based on, in the required linearity and c confocal microscope from Z a so that the inclination can be obtained so that the previously determined intervals up to Z b in the graph, the sample surface 2 A sample image is formed by performing dimensional scanning. Therefore, when two-dimensional scanning is performed with the light condensing position at the position Zb, data of each pixel is obtained as a luminance value on the I-Z curve lb (Z) at the position Zb. Next, when scanning is performed by moving the light converging position to Za, data of each pixel is obtained as a luminance value on the I-Z curve Ia (Z) at this Za position. Here, in order to obtain the height of each pixel, for each pixel obtained by scanning at two light condensing positions Za and Zb, for each pixel, {lb (Z)-Ia (Z)} / {lb (Z) + I a (Z)} must be calculated. However, when trying to calculate {Ib (Z)-Ia (Z)} / {lb (Z) + Ia (Z)} while controlling various conditions, etc., the load on the computer is increased. This makes it difficult to obtain height information in a short time.
そこで、 本発明では、 U b (Z) - I a (Z Z U b (Z) + I a (Z)} を予め計算しておき、 その結果をルックアップテーブルに保存(記憶) しておく。 そして、 ルックアップテーブルには、 入力された複数 (一般的には 2つ) の値 の組み合わせに対して 1つの値を出力する機能を有するようにデータを保存する。 したがって、 l a (Z) と l b (Z) のとり得る値が、 例えば、 l a (Z) = 1 , 2, 3、 l b (Z) = 1, 2であれば、  Therefore, in the present invention, U b (Z) −I a (ZZ U b (Z) + I a (Z)} is calculated in advance, and the result is stored (stored) in a lookup table. The lookup table stores data so that it has the function of outputting one value for a combination of multiple (typically two) values that are input, so that la (Z) and lb If the possible values of (Z) are, for example, la (Z) = 1, 2, 3, lb (Z) = 1, 2,
I a (Z) = 1と l b (Z) = 1、 I a (Z) = 1 and l b (Z) = 1,
I a (Z) = 1と I b (Z) = 2、 I a (Z) = 3と I b (Z) = 2 I a (Z) = 1 and I b (Z) = 2, I a (Z) = 3 and I b (Z) = 2
の各組み合わせについてそれぞれ { l b (Z) 一 I a (Z)} / { l b (Z) + I a (Z)} を計算しておき、 その結果をルックアップテーブルに保存しておけば良 い。 このようにすれば、 例えば、 ルックアップテーブルに I a (Z) =mと I b (Z) = nが入力されると、 直ちに (n— m) / (n +m) が出力されるので、 短時間で高さ情報を得ることができる。 Calculate {lb (Z)-I a (Z)} / {lb (Z) + I a (Z)} for each combination of, and save the result in a lookup table. . In this way, for example, when I a (Z) = m and I b (Z) = n are input to the lookup table, (n−m) / (n + m) is output immediately. Height information can be obtained in a short time.
上述のように、 ルックアップテーブルには、 2つの輝度値 (第 1の集光位置に おける共焦点画像の輝度データと第 2の集光位置における共焦点画像の輝度デー タ) を入力すると、 その 2つの入力値の組み合わせに応じた 1つの値が出力され るようにデータが保存されている。  As described above, when two brightness values (the brightness data of the confocal image at the first focus position and the brightness data of the confocal image at the second focus position) are input to the lookup table, Data is stored so that one value corresponding to the combination of the two input values is output.
よって、 本発明の高さ測定装置では、 第 1の集光位置における共焦点画像の輝 度データの最小値を Ami π、 最大値を Ama xとし、 第 2の集光位置における共焦 点画像の輝度データの最小値を Bm i n、 最大値を Braa xとする。 そして、 最小値 A∞i nから最大値 Ama xまでの間に m個の輝度値、 最小値 Bmi nから最大値 Bma xまでの間に n個の輝度値があるとする。 この場合、 ルックアップテーブルは、 少なくとも次のデータ C ( i , j ) を有することになる。 Therefore, the height measurement device of the present invention, the minimum value of Luminance data of the confocal image in the first condensing position A mi [pi, the maximum value and A ma x, confocal in the second collection point The minimum value of the luminance data of the point image is B min , and the maximum value is B raax . Then, there are n of luminance values between the m luminance value between the minimum value A ∞In maximum value A ma x, the minimum value B mi n to the maximum value B ma x. In this case, the look-up table will have at least the following data C (i, j).
C ( i , j ) = (B j -A i ) / (B j +A i )  C (i, j) = (B j -A i) / (B j + A i)
但し、 i = 1, 2, 3, ···, m, j = 1 , 2, 3, ···, nであって、 m, nは整 数である。 また、 Ami n≤ A i≤ Ama x, Bmi n≤B j ≤Bma xである。 Here, i = 1, 2, 3, ···, m, j = 1, 2, 3, ···, n, where m and n are integers. Also, A mi n ≤ A i≤ A ma x, a B mi n ≤B j ≤B ma x .
また、 本発明による高さ測定装置は、 前記演算装置は前記他方の集光位置にお ける画像データを前記記憶装置を介して前記ルックアップテーブルに入力すると 共に、 前記他方の集光位置に隣接し且つ前記一方の集光位置とは異なる別の集光 位置における画像データを前記ルックアップテーブルに直接入力する過程と、 そ の過程における入力に対する前記ルックァップテーブルからの出力に、 前記一方 の集光位置から前記他方の集光位置までの距離を加算する過程とを有している。 図 Ίに示すように、 試料 9の表面凹凸が I一 Zカーブによる高さ測定範囲から はみ出すような形状の場合、 試料 9の表面 9 sをはさむように、 図 1に示す Zス テージ 1 4を Z l、 Z 2、 ……、 Z nというように順次位置決めして共焦点画像 を得る。 このとき、 試科 9の高さと光検出器 1 2の出力との関係は上述の場合と 同様に、 それぞれ隣接する集光位置 (例えば Z k、 Z k + 1 ) を中心位置とする I 一 Zカープによって得られる。 本発明によれば、 各領域内において相対的な高 さ情報を与えるルックアップテーブルからの差 Z和信号を他方の集光位置 (例え ば Z k ) と他方とは別の集光位置 (例えば Z k + 1 ) との間隔で決まる適当な値 でスケーリングし、 一方の集光位置 (Z 1 ) から他方の集光位置 (Z k ) までの 移動量を加えると試料 9の Z 1からの高さを得ることができる。 Further, in the height measuring device according to the present invention, the arithmetic unit inputs the image data at the other light-collecting position to the look-up table via the storage device and is adjacent to the other light-collecting position. And directly inputting image data at a different light condensing position different from the one light condensing position to the look-up table; and outputting from the look-up table for the input in the process. Adding the distance from the light position to the other light condensing position. As shown in Fig. 試 料, if the surface unevenness of sample 9 is out of the height measurement range by the I-Z curve, Z stage 14 shown in Fig. Are sequentially positioned as Zl, Z2, ……, Zn and the confocal image Get. At this time, the relationship between the height of the sample 9 and the output of the photodetector 12 is the same as in the above case, with the center of the condensing position (for example, Z k, Z k +1). Obtained by Z Carp. According to the present invention, the difference Z sum signal from the look-up table which gives relative height information in each area is converted to the other light-collecting position (for example, Z k) and another light-collecting position (for example, Z k). Z k + 1) is scaled by an appropriate value determined by the interval, and the amount of movement from one focus position (Z 1) to the other focus position (Z k) is added. Height can be obtained.
また、 本発明による高さ測定装置は、 前記ルックアップテーブルは、 所定の範 囲を示す閾値を有し、 所定の範囲内の場合のみ C ( i , j ) を出力するのが好ま しい。  Further, in the height measuring device according to the present invention, it is preferable that the look-up table has a threshold value indicating a predetermined range, and outputs C (i, j) only when the value falls within the predetermined range.
本発明によれば、 前記差/和の値 (ルックアップテーブルの出力データ) が試 料 9の高さ情報として一意的に決定できる範囲にあるか否かの判定を、 Zステー ジ 1 4が集光位置 Z a、 Z bに位置決めされたときの光検出器 1 2からの出力で ある輝度値 I aと l bとの組み合わせにより直ちに行なうことができる。  According to the present invention, the Z stage 14 determines whether or not the difference / sum value (the output data of the lookup table) is within a range that can be uniquely determined as the height information of the sample 9. This can be performed immediately by combining the luminance values Ia and lb, which are the outputs from the photodetectors 12 when positioned at the light condensing positions Za and Zb.
また、 本発明による高さ測定装置は、 前記データ C ( i , j ) に所定の捕正が 加わっている。  In the height measuring apparatus according to the present invention, the data C (i, j) is subjected to a predetermined correction.
本発明によれば、 前記差/和の値 (ルックアップテーブルの出力データ) の直 線性を任意の範囲において補正することができる。  According to the present invention, the linearity of the difference / sum value (output data of the lookup table) can be corrected in an arbitrary range.
また、 本発明による高さ測定装置は、 前記演算装置が、 前記所定の範囲を変更 する過程を備えているのが好ましい。  In addition, the height measuring device according to the present invention preferably includes a step in which the arithmetic device changes the predetermined range.
本発明によれば、 試料 9の高さ情報として一意に決定される範囲にあるかどう かなどの判定条件を任意に設定することができる。  According to the present invention, it is possible to arbitrarily set a determination condition such as whether the sample 9 is in a range uniquely determined as height information.
本発明による高さ測定装置は、 光源からの光を試料に対して集束させる対物レ ンズと、 前記集束光を前記試料表面に沿って相対的に走査させる走査機構と、 前 記集束光の光軸方向に沿って、 前記対物レンズの集光位置と前記試料の位置とを 相対的に移動させる移動機構と、 前記対物レンズの集光位置と共役な位置に配置 された微小開口と、 前記微小開口を通過する光の強度を検出する光検出器とを備 えた共焦点顕微鏡を構成し、 前記対物レンズの集光位置と前記試料との相対位置 を変えて 2枚の共焦点画像を撮像し、 それぞれの共焦点画像に対応する各画素毎 に前記光検出器による出力の差/和、 又は、 除算値を計算し、 適当なスケ一リ ン グをすることによって試料の各点における高さ情報を得る高さ情報演算手段と、 前記高さ情報演算手段で得た高さ情報と前記光検出器の出力と前記共焦点顕微鏡 の 「輝度一焦点位置」 特性とにより、 試料各点の合焦位置での輝度値を得る輝度 演算手段とを有している。 The height measuring device according to the present invention includes: an objective lens that focuses light from a light source on a sample; a scanning mechanism that relatively scans the focused light along the sample surface; and a light of the focused light. A moving mechanism for relatively moving the focus position of the objective lens and the position of the sample along the axial direction; a fine aperture disposed at a position conjugate to the focus position of the objective lens; A confocal microscope equipped with a photodetector that detects the intensity of light passing through the aperture is constructed, and two confocal images are taken by changing the focusing position of the objective lens and the relative position of the sample. , Each pixel corresponding to each confocal image Calculating the difference / sum of the outputs from the photodetectors, or the divided value, and performing appropriate scaling to obtain height information at each point of the sample; and Brightness information obtained by the height information obtained by the height information calculation means, the output of the photodetector, and the “brightness-one focus position” characteristic of the confocal microscope; have.
また、 本発明による高さ測定装置は、 前記輝度演算手段が、 前記共焦点顕微鏡 の理論値 (設計値) に基づく 「輝度-焦点位置」 特性を用いている。  Further, in the height measuring device according to the present invention, the luminance calculation means uses a “luminance-focus position” characteristic based on a theoretical value (design value) of the confocal microscope.
また、 本発明による高さ測定装置は、 前記輝度演算手段が、 前記共焦点顕微鏡 の実測値に基づく 「輝度-焦点位置」 特性 (I一 Zカーブ) を用いている。  Further, in the height measuring device according to the present invention, the luminance calculation means uses a “luminance-focus position” characteristic (I-Z curve) based on an actual measurement value of the confocal microscope.
本発明によれば、 図 8に示すように、 Zステージ 1 4を試料 9の表面 9 sをは さむように焦点位置 Z a,Z bに位置決めして、 2枚の共焦点画像を得るとき、試 料 9の高さと光検出器 1 2の出力との関係は、 図 9 Aに示すように、 それぞれ、 焦点位置 Z a, Z bを中心とする I 一 Zカーブになる。  According to the present invention, as shown in FIG. 8, when the Z stage 14 is positioned at the focal positions Za and Zb so as to sandwich the surface 9 s of the sample 9 to obtain two confocal images, As shown in FIG. 9A, the relationship between the height of the sample 9 and the output of the photodetector 12 is an I-Z curve centered on the focal positions Za and Zb, respectively.
ここで Zステージ 1 4を焦点位置 Z a , Z bに位置決めしたときの光検出器 1 2の出力を I a, I bとし、 その差ノ和 (l a— I b )Z ( I a + I b ) を計算す ると、 試料 9の各高さにおいて図 9 Bに示すような関係が得られる。 図 9 Bに示 すように、 光検出器 1 2の出力の差 Z和は焦点位置 Z aと焦点位置 Z bとの中点 で 0となり、 同図に示す使用範囲においては試料高さにほぼ比例し、 1対 1の関 係となる。 そこで、 図 9 Bの関係から、 この使用範囲における試料 9の高さと光 検出器 1 2の出力の差ノ和との関係を所定の比例定数を持つ 1次式と近似すれば、 この差 Z和信号より試料 9の高さを得ることができる。  Here, the outputs of the photodetector 12 when the Z stage 14 is positioned at the focal positions Za and Zb are defined as Ia and Ib, and the sum of the differences (la—Ib) Z (Ia + I When b) is calculated, the relationship shown in FIG. 9B is obtained at each height of the sample 9. As shown in FIG. 9B, the difference Z sum of the outputs of the photodetectors 12 is 0 at the midpoint between the focal position Za and the focal position Zb. It is almost proportional and has a one-to-one relationship. Therefore, from the relationship in FIG. 9B, if the relationship between the height of the sample 9 and the sum of the differences of the outputs of the photodetectors 12 in this use range is approximated by a linear equation having a predetermined proportionality constant, the difference Z The height of the sample 9 can be obtained from the sum signal.
さらに、 このようにして得られた高さと、 焦点位置 Z a , Z bでの検出器 1 2 による出力の実測値(Z a, I a ) ( Z b , I b ) と、 それらの I一 Zカーブとから、 試料 9の各点における輝度 Iのピーク値を求めれば、 全ての面にピントの合った 画像を得ることが出来る。 I一 Zカーブは、 上記のように、 光源の波長、 微小開 口の大きさ、 対物レンズの開口数等についての設計要素から決まる理論値 (設計 値) や、 実際の装置毎に測定されるそれらの実測値を用いることで、 より正確に 試料 9の各点における輝度 Iのピーク値を求めることが出来る。  Further, the height thus obtained, the actual measured values (Za, Ia) (Zb, Ib) of the output from the detector 12 at the focal positions Za and Zb, and their I- By obtaining the peak value of the luminance I at each point of the sample 9 from the Z curve, an image in which all surfaces are in focus can be obtained. As described above, the I-Z curve is a theoretical value (design value) determined from design factors such as the wavelength of the light source, the size of the minute aperture, the numerical aperture of the objective lens, and is measured for each actual device. By using these measured values, the peak value of the luminance I at each point of the sample 9 can be obtained more accurately.
また、 本発明による高さ測定装置において、 前記輝度演算手段が、 前記高さ情 報演算手段より得られた各点における高さ情報と、 取得した 2枚の共焦点画像の いずれか一方の位置の高さ情報より、各点のデフォーカス量を求める除算手段と、 前記デフォーカス量と、 それに対応する輝度データを選択可能なルックアップテ 一ブルとを用いて、 試料各点の合焦位置における輝度を得るようにするのが好ま しい。 Further, in the height measuring device according to the present invention, the luminance calculation means may include the height information. Dividing means for calculating the defocus amount of each point from the height information at each point obtained by the information calculating means and the height information at one of the two acquired confocal images; and It is preferable to obtain the luminance at the in-focus position of each point of the sample using the amount and a look-up table from which the corresponding luminance data can be selected.
また、 本発明による高さ測定装置において、 各点のデフォーカス量を、 2枚の 共焦点画像の各点において輝度の大きい方の位置の高さ情報より求めるようにす るのが好ましい。  Further, in the height measuring apparatus according to the present invention, it is preferable that the defocus amount at each point is obtained from height information of a position having a larger luminance at each point of the two confocal images.
本発明によれば、 得られた試料 9の高さ Zと、 Zステージ 1 4の位置 Z aもし くは Z bより、 デフォーカス量 Δ Zを求める。 このデフォーカス量 Δ Zと、 Zス テージ 1 4の Z a位置での検出器 1 2の出力 I a又は Zステージ 14の Z b位置 での検出器 1 2の出力 I bより、 あらかじめ、 I一 Zカーブの値が入力されたル ックアップテーブルより、 即座に、 試料 9の各点の輝度 Iのピーク値を求めるこ とが出来る。 また、 出力 la又は出力 lbとして、 より大きな方を選択することに より、 SZNの影響を受けにくくなり、 正確に試料 9の各点における輝度 Iのピ 一ク値を求めることが出来る。  According to the present invention, the defocus amount ΔZ is determined from the obtained height Z of the sample 9 and the position Za or Zb of the Z stage 14. From the defocus amount ΔZ and the output Ia of the detector 12 at the Za position of the Z stage 14 or the output Ib of the detector 12 at the Zb position of the Z stage 14, The peak value of the luminance I at each point of the sample 9 can be immediately obtained from the lookup table into which the value of the first Z curve is input. Further, by selecting the larger one as the output la or the output lb, the influence of SZN is reduced, and the peak value of the luminance I at each point of the sample 9 can be accurately obtained.
本発明によるパラメータ設定方法は, 相対位置を示す第 1の軸と該第 1の軸に 直交し光強度信号を示す第 2の軸との座標軸で表される、 予め取得しておいた第 1の曲線 I (Z) を、 第 1軸に沿って所定量 A移動させる過程と、 前記所定量 A 移動する前の第 1曲線 I (Z) と移動後の第 1曲線 I (Z+A) を用いて、 演算 { I (Z) 一 I (Z+A)} / { I (Z) + I (Z+A)} を行い、 第 2の曲線を 得る過程と、 第 2曲線群を所定の条件で評価する過程とを備え、 所望の移動量を 得ている。  The parameter setting method according to the present invention is a method of setting a first axis, which is represented by a coordinate axis of a first axis indicating a relative position and a second axis orthogonal to the first axis and indicating a light intensity signal. Moving the curve I (Z) by a predetermined amount A along the first axis; the first curve I (Z) before the movement by the predetermined amount A and the first curve I (Z + A) after the movement. The operation {I (Z)-I (Z + A)} / {I (Z) + I (Z + A)} to obtain the second curve, and define the second curve group And a desired moving amount is obtained.
本発明は、 光源からの光を試料に対して集束させる対物レンズと、 前記集束光 を前記試料表面に沿って相対的に走査させる走査機構と、 集束光の光軸方向に沿 つて、 前記対物レンズの集光位置と前記試料の位置を相対的に移動させる移動機 構と、 前記対物レンズの集光位置と共役な位置に配置された微小開口と、 前記微 小開口を透過する光の強度を検出する光検出器とを備えた共焦点顕微鏡の高さ測 定に用いられる。 そして、 前記対物レンズの集光位置と前記試料の相対位置を変えて 2枚の共焦 点画像を撮像し、 対応する各画素毎に前記光検出器の出力の差 Z和を計算し、 適 当な係数を乗ずることによって試料各点の高さ情報を得る。 その際に、 2枚の共 焦点画像の相対位置を適切に設定することが重要となるが、 本発明では、 予め取 得しておいた I一 Zカーブとそれを所定量相対位置方向に移動させた曲線の差ノ 和を計算して高さ情報とし、 その差/和の計算より得られる高さ情報の曲線を所 定の条件で評価し、 最も測定に適した 2枚の共焦点画像の相対距離が得られるよ うにする。 The present invention provides an objective lens for focusing light from a light source on a sample, a scanning mechanism for relatively scanning the focused light along the surface of the sample, and an objective lens along an optical axis direction of the focused light. A moving mechanism for relatively moving the focus position of the lens and the position of the sample, a small aperture disposed at a position conjugate with the focus position of the objective lens, and an intensity of light transmitted through the small aperture It is used for height measurement of a confocal microscope equipped with a photodetector for detecting the height. Then, two confocal point images are taken by changing the converging position of the objective lens and the relative position of the sample, and the sum Z of the output of the photodetector is calculated for each corresponding pixel. The height information of each point of the sample is obtained by multiplying by an appropriate coefficient. At this time, it is important to appropriately set the relative positions of the two confocal images.In the present invention, the I-Z curve acquired in advance and the I-Z curve are moved in the relative position direction by a predetermined amount. The sum of the differences between the curves is calculated as height information, the height information curve obtained from the difference / sum calculation is evaluated under specified conditions, and the two confocal images most suitable for measurement are evaluated. To obtain the relative distance of
また、 本発明によるパラメータ設定方法は、 前記第 1の曲線 I (Z) 力 光源 からの光を所定の位置に集光させる対物レンズと、 前記所定の集光位置と共役な 位置に配置された微小開口と、 前記微小開口を通過する光の強度を光検出器とを 備えた構成において、 前記集光位置近傍で反射面を光軸方向に沿つて移動させた ときの相対移動量と、 各相対位置における前記光検出器からの出力とによって得 られる。  In the parameter setting method according to the present invention, the objective lens for condensing the light from the first curve I (Z) light source at a predetermined position, and the objective lens may be disposed at a position conjugate to the predetermined condensing position. A configuration in which a micro-aperture and a photodetector for detecting the intensity of light passing through the micro-aperture, wherein a relative movement amount when the reflecting surface is moved along the optical axis direction in the vicinity of the converging position; And the output from the photodetector at the relative position.
本発明のパラメータ設定方法は、異なる集光位置において共焦点画像を取得し、 その画像データから高さ情報を算出するためのものである。  The parameter setting method of the present invention is for obtaining confocal images at different light condensing positions and calculating height information from the image data.
ここで、 I一 Zカーブ l a (Z) とそれを所定量だけ相対位置方向にシフ トさ せた I— Zカーブ l b (Z) との差 Z和を計算すると、 高さ曲線が算出される。 高さ曲線は、 I一 Zカーブ I a (Z) の頂点と I— Zカーブ I b (Z) の頂点と の中点で 0となり、 その近傍において、 試料高さにほぼ比例する。 また、 図 9A、 9 Bと図 1 0A、 1 0 Bとを比べてみればわかるように、 I— Zカーブ l a (Z) と I _Zカーブ l b (Z) とのシフト量によって上記高さ曲線の傾きと直線性と が変化する。 ここで、 図 9 Bに示すように、 高さ曲線の直線部分が広いほど、 試 料高さの計測有効範囲が広くなる。 また、 図 9 Bに示すように、 高さ曲線の直線 部分の傾きが大きいほど、 試料高さに対する差/和信号の変化が大きくなり、 試 料高さ検出の感度が高くなり、 高精度な測定を行うことができる。 このように、 I—Zカーブ l a (Z) と I— Zカーブ l b (Z) の相対的なシフト量は測定精 度に大きく関係するので、 このシフト量を適切に設定することが重要である。 そ こで本発明では、 シフ ト量を順次変化させて異なる高さ曲線を複数取得し、 それ ぞれの高さ曲線について所定の条件を満足するかどうか判断する処理を行ってい る。 これにより、 所定の条件を満足する高さ曲線を見つけることができ、 適切な シフト量が得られる。 ここで、 I — Zカーブのシフ ト量は、 集光位置 Z aと集光 位置 Z bの相対距離となる。 なお、 高さ測定の際には集光位置 Z aと集光位置 Z b との間隔を、 必要とする測定範囲と測定速度 (ステージあるいは対物レンズの 移動ステップ)と測定精度に応じて決定すればよい。また、 I 一 Z力一ブ I a ( Z ) は対物レンズ毎に異なるので、 少なくとも使用する対物レンズについて予め I 一 Zカーブ l a ( Z ) を得ておくことが望ましい。 Here, the height curve is calculated by calculating the difference Z sum between the I-Z curve la (Z) and the I-Z curve lb (Z), which is shifted by a predetermined amount in the relative position direction. . The height curve is zero at the midpoint between the top of the I-Z curve Ia (Z) and the top of the I-Z curve Ib (Z), and is almost proportional to the sample height in the vicinity. Also, as can be seen by comparing FIGS. 9A and 9B with FIGS. 10A and 10B, the height curve is determined by the shift amount between the I—Z curve la (Z) and the I_Z curve lb (Z). The slope and linearity of change. Here, as shown in FIG. 9B, the wider the linear portion of the height curve, the wider the effective range for measuring the sample height. Also, as shown in Fig. 9B, the greater the slope of the linear portion of the height curve, the greater the change in the difference / sum signal with respect to the sample height, the higher the sensitivity of sample height detection, and the higher the accuracy. A measurement can be made. As described above, since the relative shift between the I—Z curve la (Z) and the I—Z curve lb (Z) is greatly related to the measurement accuracy, it is important to set this shift appropriately. . Therefore, in the present invention, a plurality of different height curves are acquired by sequentially changing the shift amount, and A process is performed to determine whether or not each height curve satisfies a predetermined condition. As a result, a height curve satisfying the predetermined condition can be found, and an appropriate shift amount can be obtained. Here, the shift amount of the I-Z curve is a relative distance between the converging position Za and the converging position Zb. When measuring the height, the distance between the focal position Z a and the focal position Z b must be determined according to the required measurement range, measurement speed (stage or objective lens movement step), and measurement accuracy. I just need. In addition, since the I-Z force Ia (Z) differs for each objective lens, it is desirable to obtain the I-Z curve la (Z) in advance for at least the objective lens to be used.
また、 本発明によるパラメ一タ設定方法において、 前記所定の条件が、 測定条 件に応じて選択可能である。  In the parameter setting method according to the present invention, the predetermined condition can be selected according to a measurement condition.
そして、 本発明によるパラメータ設定方法において、 前記測定条件が、 対物レ ンズの種類、 要求される測定速度と測定精度及び測定試料であるのが好ましい。 また、 本発明によるパラメ一タ設定方法において、 前記所定の条件が、 前記第 2の曲線の直線性であって、該直線性を判定する過程を備えているのが好ましい。 即ち、 相対距離の選択を、 高さ曲線の直線性から判断する。  In the parameter setting method according to the present invention, it is preferable that the measurement conditions are a type of an objective lens, a required measurement speed and a required measurement accuracy, and a measurement sample. Further, in the parameter setting method according to the present invention, it is preferable that the predetermined condition is a linearity of the second curve, and a step of determining the linearity is provided. That is, the selection of the relative distance is determined from the linearity of the height curve.
本発明によれば、 あるシフ ト量だけずらした I—Zカーブ I a ( Z ) と I—Z カーブ l b ( Z ) の頂点の中点前後における任意の相対距離範囲において、 高さ 曲線を一次式に近似した直線と高さ曲線自乗誤差の合計が、 高さ測定の精度に影 響が表れる程度に大きい場合、 これは直線性が悪いと判断でき、 このときのシフ ト量は不適当であると判断できる。  According to the present invention, the height curve is linearly shifted in an arbitrary relative distance range before and after the midpoint of the I-Z curve Ia (Z) and the I-Z curve lb (Z) shifted by a certain shift amount. If the sum of the straight line error and the square error of the height curve approximating the equation is large enough to affect the accuracy of height measurement, it can be determined that the linearity is poor, and the shift amount at this time is inappropriate. It can be determined that there is.
また、 本発明によるパラメータ設定方法において、 前記所定の条件が、 前記第 2の曲線を 1次式で近似し ときの近似式の傾きであって、 該近似式の傾きを判 定する過程を備えているのが好ましい。  Further, in the parameter setting method according to the present invention, the predetermined condition is a gradient of an approximate expression when the second curve is approximated by a linear expression, and a step of determining a gradient of the approximate expression is provided. Is preferred.
本発明によれば、 I— Zカーブ l a ( Z ) とこれをあるシフ ト量だけずらした I— Zカーブ l b ( Z ) とを用いて得られた高さ曲線 (第 2の曲線) の近似式が、 どの程度の傾きがあるかを対物レンズ毎に算出しておけば、 各々の高さ曲線が有 する精度を判断することができる。 そして、 算出した結果を記憶しておけば、 必 要な測定精度に合わせて最適な高さ曲線を選択できるので、 測定精度を調整 (選 択) することができる。 また、 本発明によるパラメータ設定方法において、 前記所定の条件が、 前記第According to the present invention, approximation of a height curve (second curve) obtained by using an I—Z curve la (Z) and an I—Z curve lb (Z) obtained by shifting the I—Z curve by a certain shift amount. By calculating the degree of inclination of the equation for each objective lens, the accuracy of each height curve can be determined. If the calculated result is stored, the optimum height curve can be selected in accordance with the required measurement accuracy, so that the measurement accuracy can be adjusted (selected). Further, in the parameter setting method according to the present invention, the predetermined condition may be such that:
2の曲線と前記近似式とが略一致する範囲であって、 該一致する範囲を判定する 過程を備えているのが好ましい。 即ち、 最適化された相対距離の選択を、 高さ曲 線 (第 2の曲線) とその近似式とがほぼ一致する直線部分の幅から判定する。 本発明によれば、 あるシフト量だけずらした I—Zカープ I a ( Z ) と I— Z カーブ l b ( Z ) とを用いて得られた高さ曲線の近似式と高さ曲線の直線部分が ほぼ一致する部分がどの程度の幅があるかを判定することで、 測定範囲がシフト 量に対してどの程度の割合になるかを判断することが出来る。 It is preferable that the method further comprises a step of determining a range in which the curve 2 substantially matches the approximate expression, and determining the matching range. That is, the selection of the optimized relative distance is determined from the width of the straight line portion where the height curve (the second curve) and its approximate expression almost match. According to the present invention, the approximate expression of the height curve and the linear portion of the height curve obtained by using the I—Z carp I a (Z) and the I—Z curve lb (Z) shifted by a certain shift amount By determining the width of the portion where the values almost match, it is possible to determine the ratio of the measurement range to the shift amount.
また、 本発明においては、 最適化された相対距離の選択を、 近似式の傾きと、 近似式と高さ曲線が一致する直線部分の幅との双方から判定するようにしてもよ い。  Further, in the present invention, the selection of the optimized relative distance may be determined based on both the slope of the approximate expression and the width of the straight line portion where the approximate expression matches the height curve.
このようにすれば、 本発明の作用のパランスを制御することによって、 測定精 度と測定速度のパランスをとることができる。  In this way, by controlling the balance of the operation of the present invention, it is possible to balance measurement accuracy and measurement speed.
そして、 本発明によるパラメータ設定方法は、 前記移動量 (シフト量) を順次 変化させて複数の第 2曲線を得る過程を備えているのが好ましい。  The parameter setting method according to the present invention preferably includes a step of sequentially changing the movement amount (shift amount) to obtain a plurality of second curves.
さらに、 上記において、 I一 Zカーブの取得と集光位置 Z a , Z bの相対距離 の決定はコンピュータ等を用いて自動で行われるようにするのが望ましい。 そこで、 本発明は、 上記のパラメータ設定方法を備えたプログラムを実行する システムである。  Further, in the above, it is desirable that the acquisition of the I-Z curve and the determination of the relative distance between the light condensing positions Za and Zb are automatically performed using a computer or the like. Therefore, the present invention is a system for executing a program provided with the above parameter setting method.
また、 本発明は、 上記のパラメータ設定方法を備えたプログラムを有する記録 媒体である。  Further, the present invention is a recording medium having a program provided with the above parameter setting method.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 従来の共焦点走査型光学顕微鏡の構成を概略的に示す図である。 図 2 Aは、 図 1に示す共焦点走査型光学顕微鏡のコンピュータのプロック図で ある。  FIG. 1 is a diagram schematically showing a configuration of a conventional confocal scanning optical microscope. FIG. 2A is a block diagram of a computer of the confocal scanning optical microscope shown in FIG.
図 2 Bは、 図 2 Aの記録媒体の説明図である。  FIG. 2B is an explanatory diagram of the recording medium of FIG. 2A.
図 3は、 従来の共焦点走査型光学顕微鏡において、 対物レンズと試料の相対位 置と光検出器出力の関係を示すグラフである。  FIG. 3 is a graph showing the relationship between the relative position of an objective lens and a sample and the output of a photodetector in a conventional confocal scanning optical microscope.
図 4 Aは、 倍率が同じ一つの対物レンズと試料の相対位置と光検出器出力の関 係を示すグラフである。 Figure 4A shows the relationship between the relative position of one objective lens and the sample with the same magnification and the output of the photodetector. It is a graph which shows a relationship.
図 4 Bは、 倍率が同じ他の対物レンズと試料の相対位置と光検出器出力の関係 を示すグラフである。  FIG. 4B is a graph showing the relationship between the relative position of another objective lens having the same magnification and the sample and the output of the photodetector.
図 5 A、 5 8及び5〇は、 焦点位置に対する試料を示す説明図である。  5A, 58 and 5 8 are explanatory diagrams showing the sample with respect to the focal position.
図 6 Aは、 図 5 B及び 5 Cにおける I一 Zカーブを重ねた、 対物レンズと試料 の相対位置と光検出器出力の関係を示すグラフである。  FIG. 6A is a graph showing the relationship between the relative position of the objective lens and the sample and the output of the photodetector, with the I-Z curves in FIGS. 5B and 5C superimposed.
図 6 Bは、 対物レンズと試料の相対位置と光検出器出力の差 Z和信号の関係を 示すグラフである。  FIG. 6B is a graph showing the relationship between the relative position of the objective lens and the sample and the Z-sum difference signal of the photodetector output.
図 7は、 各焦点位置に対する凹凸のある試料を示す説明図である。  FIG. 7 is an explanatory diagram showing a sample having irregularities at each focal position.
図 8は、 2枚の共焦点画像を得るときの Zステージの試料に対する位置を示す 説明図である。  FIG. 8 is an explanatory diagram showing the position of the Z stage with respect to the sample when obtaining two confocal images.
図 9 Aは、 図 8における 2枚の共焦点画像を得るときの、 対物レンズと試料の 相対位置と光検出器出力の関係を示すグラフである。  FIG. 9A is a graph showing the relationship between the relative positions of the objective lens and the sample and the photodetector output when obtaining two confocal images in FIG.
図 9 Bは、 図 8 Aにおける対物レンズと試料の相対位置と光検出器出力の差 Z 和信号の関係を示すグラフである。  FIG. 9B is a graph showing the relationship between the relative position of the objective lens and the sample in FIG. 8A and the difference Z sum signal of the photodetector output.
図 1 0 Aは、 差/和信号の直線部分の傾きが大きい場合の、 対物レンズと試料 の相対位置と光検出器出力の関係を示すグラフである。  FIG. 10A is a graph showing the relationship between the relative position of the objective lens and the sample and the output of the photodetector when the slope of the linear portion of the difference / sum signal is large.
図 1 0 Bは、 差 Z和信号の直線部分の傾きが大きい場合の、 対物レンズと試料 の相対位置と光検出器出力の差 Z和信号の関係を示すグラフである。  FIG. 10B is a graph showing the relationship between the relative position of the objective lens and the sample and the difference Z sum signal of the photodetector output when the slope of the linear portion of the difference Z sum signal is large.
図 1 1 Aは、 本発明の第 2実施例における対物レンズと試料の相対位置と光検 出器出力の関係を示すグラフである。  FIG. 11A is a graph showing the relationship between the relative position between the objective lens and the sample and the output of the photodetector in the second embodiment of the present invention.
図 1 1 Bは、 第 2実施例における対物レンズと試料の相対位置と光検出器出力 の差 和信号の関係を示すグラフである。  FIG. 11B is a graph showing the relationship between the relative position between the objective lens and the sample and the sum signal of the photodetector output in the second embodiment.
図 1 2は、 第 2実施例における試料の高さを求めるためのフローチヤ一トであ る。  FIG. 12 is a flowchart for obtaining the height of the sample in the second embodiment.
図 1 3は、 第 2実施例において、 定数の値は計算範囲に対応する差/和信号に 対して、試料の高さが一義的に決まるように設定した説明図である。図 1 1 Bは、 第 2実施例における対物レンズと試料の相対位置と光検出器出力の差/和信号の 関係を示すグラフである。 図 1 4は、 本発明の第 4実施例による高さ測定装置の回路構成を示すプロック 図である。 FIG. 13 is an explanatory diagram of the second embodiment in which the value of the constant is set so that the height of the sample is uniquely determined with respect to the difference / sum signal corresponding to the calculation range. FIG. 11B is a graph showing the relationship between the relative position of the objective lens and the sample and the difference / sum signal of the photodetector output in the second embodiment. FIG. 14 is a block diagram showing a circuit configuration of the height measuring device according to the fourth embodiment of the present invention.
図 1 5は、 第 4実施例の高さ測定装置の L U Tの出力データフォーマツトの 1 例を示す図である。  FIG. 15 is a diagram illustrating an example of an output data format of LUT of the height measuring device according to the fourth embodiment.
図 1 6は、 本発明の第 5実施例による高さ測定装置の回路構成を示すプロック 図である。  FIG. 16 is a block diagram showing a circuit configuration of the height measuring device according to the fifth embodiment of the present invention.
図 1 7 Aは、 第 5実施例における対物レンズと試料の相対位置と光検出器出力 の関係を示すグラフである。  FIG. 17A is a graph showing the relationship between the relative position of the objective lens and the sample and the output of the photodetector in the fifth embodiment.
図 1 7 Bは、 第 5実施例における対物レンズと試料の相対位置と光検出器出力 の差 Z和信号の関係を示すグラフである。  FIG. 17B is a graph showing the relationship between the relative position of the objective lens and the sample and the Z-sum difference signal of the photodetector output in the fifth embodiment.
図 1 8は、 第 5実施例におけるフレーム部の動作説明図である。  FIG. 18 is an explanatory diagram of the operation of the frame unit in the fifth embodiment.
図 1 9は、 本発明の第 6及び第 7実施例において高さ測定装置を構成する共焦 点走査型顕微鏡の概略図である。  FIG. 19 is a schematic diagram of a confocal scanning microscope constituting a height measuring device in the sixth and seventh embodiments of the present invention.
図 2 O Aは、 第 6実施例における対物レンズと試料の相対位置と光検出器出力 の関係を示すグラフである。  FIG. 2OA is a graph showing the relationship between the relative position of the objective lens and the sample and the output of the photodetector in the sixth embodiment.
図 2 0 Bは、 第 6実施例において使用する差ノ和信号の範囲を示すグラフであ る。  FIG. 20B is a graph showing the range of the difference sum signal used in the sixth embodiment.
図 2 0 Cは、 図 2 0 Bの差 Z和信号から試料の高さが得られることを示すダラ フである。  FIG. 20C is a graph showing that the height of the sample can be obtained from the difference Z sum signal of FIG. 20B.
図 2 1は、 対物レンズと試料の相対位置と光検出器の出力との関係を輝度を正 規化して示すグラフである。  FIG. 21 is a graph showing the relationship between the relative position of the objective lens and the sample and the output of the photodetector with normalized luminance.
図 2 2は、 本発明の第 8実施例によるパラメータ設定方法における演算手順を 示すフローチヤ一トである。  FIG. 22 is a flowchart showing a calculation procedure in the parameter setting method according to the eighth embodiment of the present invention.
図 2 3は、 本発明の第 9実施例によるパラメータ設定方法における演算手順を 示すフロ一チャートである。  FIG. 23 is a flowchart showing a calculation procedure in the parameter setting method according to the ninth embodiment of the present invention.
図 2 4は、 本発明の第 1 0実施例によるパラメータ設定方法における演算手順 を示すフローチャートである。  FIG. 24 is a flowchart showing a calculation procedure in the parameter setting method according to the tenth embodiment of the present invention.
図 2 5は、 本発明の第 1 0実施例によるパラメータ設定方法における測定精度 と測定速度との関係を示すグラフである。 図 26 Aは、 第 8乃至第 1 0実施例のパラメータ設定方法における試料形状と Zステージの位置を示す説明図である。 FIG. 25 is a graph showing the relationship between measurement accuracy and measurement speed in the parameter setting method according to the tenth embodiment of the present invention. FIG. 26A is an explanatory diagram showing the sample shape and the position of the Z stage in the parameter setting methods of the eighth to tenth embodiments.
図 26 Bは、 図 26 Aの測定における計測範囲の説明図である。  FIG. 26B is an explanatory diagram of the measurement range in the measurement of FIG. 26A.
図 27 Aは、 図 26 Aの試料の高さ測定をするときの対物レンズと試料の相対 位置と光検出器出力の関係を示すグラフである。  FIG. 27A is a graph showing the relationship between the relative positions of the objective lens and the sample and the photodetector output when measuring the height of the sample in FIG. 26A.
図 27 Bは、 対物レンズと試料の相対位置と光検出器出力の差/和信号の関係 を示すグラフである。  FIG. 27B is a graph showing the relationship between the relative position between the objective lens and the sample and the difference / sum signal of the photodetector output.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 1実施例 First embodiment
本実施の形態に使用する共焦点走査型顕微鏡は、 従来技術として説明した図 1 の構成と同一であるので、 同一の符号を付して説明は省略する。 また、 以下の実 施の形態に示す計算手順は、 コンピュータプログラムとして図 2 Bに示す記録媒 体 23の高さ測定プログラム 23 aとして記録されているものとする。  The confocal scanning microscope used in the present embodiment has the same configuration as that shown in FIG. 1 described as the related art, and thus the same reference numerals are given and the description is omitted. It is assumed that the calculation procedure shown in the following embodiment is recorded as a computer program as a height measurement program 23a of the recording medium 23 shown in FIG. 2B.
図 8に示すように、 試料 9の表面 9 sを挟むように設定した Zステージ 1 4の 移動間隔 (Z b— Z a) を、 I— Zカーブの半値全幅のほぼ 0. 3倍になるよう に設定して 2つの共焦点画像を得る。 このときの試料 9の高さと光検出器 1 2の 出力関系は、 図 9 Aに示すように、 それぞれ Z a、 Z bを中心位置とする I一 Z カーブになる。  As shown in Fig. 8, the movement interval (Zb-Za) of the Z-stage 14 set so as to sandwich the surface 9 s of the sample 9 becomes approximately 0.3 times the full width at half maximum of the I-Z curve. To obtain two confocal images. As shown in FIG. 9A, the height of the sample 9 and the output relation of the photodetector 12 at this time are I-Z curves centered at Za and Zb, respectively.
ここで、 Zステージ 1 4を Z a、 Z bに位置決めしたときの光検出器 1 2の出 力を、 I a、 I bとして、 差/和信号、 すなわち (l a— I b) Z (I a + I b) を計算すると、 試科の各高さにおいて、 図 9 Bに示す関係が得られる。 図 9 Bに 示すように、 光検出器 1 2の出力の差 Z和信号は、 Z a、 Z bの中点で 0となり、 その近傍で試料高さにほぼ比例する。 そこで、 この差/和信号に、 Z a、 Z bの 間隔で決まる所定値を乗ずることにより、 試料 9の高さを得ることができる。 し たがって、差 /和信号の直線部分が広いほど、試料の高さの測定範囲が広くなる。 そこで、 高さの測定範囲が最も広くなるように、 Z aと Z bの間隔を I一 Zカー ブの半値全幅のほぼ 0. 3倍に設定してある。 このときの高さの計測範囲は、 I 一 Zカーブの半値全幅のほぼ 1. 4倍となる。 第 1の実施の形態の変形例について説明する。 Here, the output of the photodetector 12 when the Z stage 14 is positioned at Za and Zb is defined as Ia and Ib, and the difference / sum signal, that is, (la—Ib) Z (I When a + I b) is calculated, the relationship shown in Fig. 9B is obtained at each height of the sample. As shown in FIG. 9B, the difference Z sum signal of the outputs of the photodetectors 12 is 0 at the midpoint of Za and Zb, and is almost proportional to the sample height near that. Therefore, the height of the sample 9 can be obtained by multiplying the difference / sum signal by a predetermined value determined by the interval between Za and Zb. Therefore, the wider the linear portion of the difference / sum signal, the wider the measurement range of the sample height. Therefore, the interval between Za and Zb is set to approximately 0.3 times the full width at half maximum of the I-Z curve so that the height measurement range is the widest. The height measurement range at this time is approximately 1.4 times the full width at half maximum of the I-Z curve. A modification of the first embodiment will be described.
Zステージ 1 4の Z a、 Z bの間隔を I一 Zカーブの半値全幅のほぼ 2倍に設 定する。 このときの試料 9の高さと光検出器 1 2の出力の間係を、 図 1 O Aに示 し、 光検出器 1 2の出力の差/和信号を図 1 0 Bに示す。 光検出器 1 2の出力の 差ノ和信号の直線部分の傾きが大きいほど、 試料高さに対する差/和信号の変化 が大きくなるので、 試料の高さ検出感度が高くなり、 高精度な測定を行うことが できる。  Set the interval between Za and Zb of Z stage 14 to almost twice the full width at half maximum of the I-Z curve. The relationship between the height of the sample 9 and the output of the photodetector 12 at this time is shown in FIG. 10A, and the difference / sum signal of the output of the photodetector 12 is shown in FIG. 10B. The greater the slope of the linear portion of the difference signal of the outputs of the photodetectors 1 and 2, the greater the change in the difference / sum signal with respect to the sample height.This increases the sample height detection sensitivity and increases the accuracy of the measurement. It can be performed.
すなわち、 Zステージ 1 4の Z a、 Z bの間隔を、 I 一 Zカーブの半値全幅の ほぼ 2倍に設定したときに、 試料の高さ検出感度が最も高くなり、 高精度な測定 を行うことができる。  In other words, when the interval between Za and Zb of the Z stage 14 is set to almost twice the full width at half maximum of the I-Z curve, the height detection sensitivity of the sample becomes the highest and high-precision measurement is performed. be able to.
なお、 Zステージ 1 4の Z a、 Z bの間隔は、 上記の値に限定されるものでは なく、 高さ測定の際に必要とする高さ範囲と測定精度に応じて、 I一 Zカーブの 半値全幅の 0 . 3倍から 2倍の間に設定することができる。  Note that the interval between Za and Zb of the Z stage 14 is not limited to the above value, but may vary depending on the height range and measurement accuracy required for height measurement. Can be set between 0.3 and 2 times the full width at half maximum of.
本実施の形態によれば、 Zステージの位置を変えて、 高さの異なる 2枚の共焦 点画像を取込み、 演算することで、 試料の表面凹凸が最大で、 I一 Zカープの半 値全幅のほぼ 1 . 4倍程度まで、 高精度に測定することができる。  According to the present embodiment, by changing the position of the Z stage and acquiring and calculating two confocal point images having different heights, the surface unevenness of the sample is maximum, and the half value of the I-Z carp is obtained. It can measure with high accuracy up to about 1.4 times the full width.
なお、 本実施の形態では、 高さ情報を差/和の 1次式で求めているが、 多項式 であれば、 より広い範囲での高さを求めることができる。  In the present embodiment, the height information is obtained by the linear expression of the difference / sum, but if it is a polynomial, the height can be obtained in a wider range.
第 2実施例 Second embodiment
図 7に示すような、 比較的大きな凹凸を持つ試科 9の表面 9 sを挟むように、 Zステージ 1 4を、 Z k と Z k+1 の間隔が I一 Zカーブの半値全幅のほぼ 0 . 8 倍になるように設定して、 Zステージ 1 4を Z 1から Z nまで順次位置決めして共 焦点画像を得る。 このときの試料 2の高さと光検出器 1 2の出力の間係は、 図 1 1 Aに示すように、 それぞれ Z kと Z k+1を中心とする I一 Zカープになる。  As shown in Fig. 7, the Z stage 14 is set so that the surface 9 s of the sample 9 having relatively large irregularities is sandwiched, and the distance between Z k and Z k + 1 is almost the full width at half maximum of the I-Z curve. The setting is made to be 0.8 times, and the Z stage 14 is sequentially positioned from Z1 to Zn to obtain a confocal image. At this time, the relationship between the height of the sample 2 and the output of the photodetector 12 is an I-Z carp centered on Z k and Z k + 1 as shown in FIG. 11A.
ここで Zステージ 1 4を Z k と Z k+1 に位置決めしたときの光検出器 1 2の出 力を I k、 I k+1 として差/和信号 ( I k+1- I k) / ( I k+1 + I k) を計算すると、 試料 9の各高さにおいて図 1 1 Bに示す関係が得られる。図 1 1 Bに示すように、 光検出器 1 2の出力の差/和信号は Z k と Z k+1 の中点で 0となり、 その近傍で 試料 9の高さにほぼ比例する。 そこで、 この差/和信号に Z k と Z k+1 の間隔で 決まる所定値を乗じ、 Zk と Zk+1 の平均値を加えると試料の高さを得ることで きる。 Here, the output of the photodetector 12 when the Z stage 14 is positioned at Z k and Z k + 1 is defined as I k and I k + 1, and the difference / sum signal (I k + 1− I k) / When (I k + 1 + I k) is calculated, the relationship shown in FIG. 11B is obtained at each height of the sample 9. As shown in FIG. 11B, the difference / sum signal of the output of the photodetector 12 becomes 0 at the midpoint between Z k and Z k + 1, and is almost proportional to the height of the sample 9 in the vicinity thereof. Therefore, the difference / sum signal is added at the interval of Z k and Z k + 1 The height of the sample can be obtained by multiplying by the determined predetermined value and adding the average value of Zk and Zk + 1.
第 2の実施の形態によれば、 Zkと Zk+1の間隔が I— Zカーブの半値全幅のほ ぼ 0. 8倍になるように設定したことにより、 図 1 1 Bの直線部分、 すなわち試 料高さの測定範囲は、 Zkと Zk+1の間隔と一致している。 このため、 Zステージ 1 4を Z l、 Z2、 ·■·、 Znに順次位置決めして共焦点画像を得る際、 任意の Zk の位置に対して、 直前の Zk-1 の位置での共焦点画像のみを一時的にコンビユー タ 1 5に格納しておけば、 上記の方法で試料の高さを測定できるので、 コンビュ ータ 1 5の画像メモリが少なくて済む。  According to the second embodiment, the interval between Zk and Zk + 1 is set to be approximately 0.8 times the full width at half maximum of the I-Z curve. The measurement range of the sample height coincides with the interval between Zk and Zk + 1. For this reason, when obtaining the confocal image by sequentially positioning the Z stage 14 at Zl, Z2, ···, and Zn, the confocal point at the position of the immediately preceding Zk-1 can be obtained for any Zk position. If only the images are temporarily stored in the computer 15, the height of the sample can be measured by the above-described method, so that the image memory of the computer 15 can be reduced.
このように高さ測定に際し、 直前の Zk-1 の位置での共焦点画像のみを一時的 に格納しておくだけで、 高さ測定を可能にするには、 Zkと Zk+1 の間隔は I— Z カーブの半値全幅の 0. 8倍に限らず、 I一 Zカーブの半値全幅の 0. 3倍 (第 1 の実施の形態を参照) ないし 0. 8倍の間であればよい。  In this way, when height measurement is performed, only the confocal image at the position of Zk-1 immediately before is temporarily stored, and in order to enable height measurement, the interval between Zk and Zk + 1 must be The width is not limited to 0.8 times the full width at half maximum of the I-Z curve, but may be 0.3 times the full width at half maximum of the I-Z curve (see the first embodiment) or 0.8 times.
試料 2の高さと光検出器 1 2の出力の差 和信号が比例するのは、 試料 2の高 さが Zkと Zk+1の間にある場合だけであるので、 Zステージ 1 2の位置が Z1力、 ら Znまで移動する際、 試料 2の高さが Zkと Zk+1の間にない場合は、 上記の差 Z和信号を計算しても試料 2の高さを正しく求めることはできない。  Since the sum signal of the height of sample 2 and the output of photodetector 12 is proportional only when the height of sample 2 is between Zk and Zk + 1, the position of Z stage 12 is When moving from Z1 force to Zn, if the height of sample 2 is not between Zk and Zk + 1, the height of sample 2 cannot be obtained correctly even if the above difference Z sum signal is calculated. .
そこで、 試料 9の高さが、 Zk と Zk+1 の間にない場合の試料の高さの求め方 を、 図 1 2のフローチャートを参照して説明する。  Therefore, a method of obtaining the height of the sample 9 when the height of the sample 9 is not between Zk and Zk + 1 will be described with reference to the flowchart of FIG.
先ず、 コンピュータ 1 5に内蔵されている Zカウンタ (図示しない。 以下同じ) の k値を初期値 1に設定し、 Zステージ 1 4を Z1 の位置に移動し、 この位置で 試料 9の共焦点画像 I ( X , y ) を取込み、 コンピュータ 1 5に内蔵されている 画像メモリ M ( X , y ) (図示しない。 以下同じ) に格納する (ステップ S l)。 次に、 Zカウンタの k値を 1増やし、 Zステージ 14を Z2の位置に移動し、 試 料 9の共焦点画像 I (x, y ) を取り込む (ステップ S 2)。 ここで、 ステップ S 2において得られた、 試料 9の各点の共焦点画像の値 I (x, y ) と、 ステップ S 1において得られた試料 9の共焦点画像の値、 すなわちメモリ Mの値 M (x, y ) の和を計算し、 定数 C 1 と大小を比較する (ステップ S 3)。 定数 C 1の値は、 図 1 3に示すように、 計算範囲に対応する差 Z和信号に対して、 試料 9の高さが 一義的に決まるように設定してある。 First, the k value of the Z counter (not shown; the same applies hereinafter) built into the computer 15 is set to the initial value 1, the Z stage 14 is moved to the position Z1, and the confocal of the sample 9 is placed at this position. The image I (X, y) is fetched and stored in the image memory M (X, y) (not shown; the same applies hereinafter) built in the computer 15 (step S1). Next, the k value of the Z counter is increased by 1, the Z stage 14 is moved to the position of Z2, and the confocal image I (x, y) of the sample 9 is captured (step S2). Here, the value I (x, y) of the confocal image of each point of the sample 9 obtained in step S2 and the value of the confocal image of the sample 9 obtained in step S1, The sum of the values M (x, y) is calculated, and the constant C1 is compared with the magnitude (step S3). As shown in Fig. 13, the value of the constant C1 is such that the height of sample 9 is higher than the difference Z sum signal corresponding to the calculation range. It is set to be determined uniquely.
ステップ S 3における共焦点画像の値 I (x, y ) とメモリ Mの値 M (x, y ) の和が、 定数 C 1以上の場合は、 上記の I (X , y ) と M (x, y ) の差/和信 号、 Z (x, y ) を計算する (ステップ S 4)。 図 1 3に示すように、 試料 9の高 さと光検出器 1 0の出力の差/和信号が比例するのは、 差/和信号が一 C 2と C 2の間にある場合であるから、 ステップ S 4で計算した差/和信号の絶対値と定 数 C 2の大小を比較する (ステップ S 5)。 そして、上記差ノ和信号の絶対値が C 2よりも小さい場合、 差 Z和信号に Zk と Zk+1 の間隔で決まる C 3を乗じ、 さ らに Zk と Zk+1 の平均値を加算して、 コンピュータ 1 5に内蔵されている高さ メモリ Z (x, y ) (図示しない。 以下同じ) に格納する (ステップ S 6)。  If the sum of the value I (x, y) of the confocal image and the value M (x, y) of the memory M in step S3 is equal to or greater than the constant C1, the above I (X, y) and M (x , Y) and Z (x, y) are calculated (step S4). As shown in Fig. 13, the difference / sum signal between the height of sample 9 and the output of photodetector 10 is proportional to the difference / sum signal between C2 and C2. Then, the absolute value of the difference / sum signal calculated in step S4 is compared with the magnitude of the constant C2 (step S5). If the absolute value of the difference sum signal is smaller than C2, the difference Z sum signal is multiplied by C3 determined by the interval between Zk and Zk + 1, and the average value of Zk and Zk + 1 is added. Then, it is stored in a height memory Z (x, y) (not shown; the same applies hereinafter) built in the computer 15 (step S6).
次いで、 共焦点画像の値 I ( X , y ) を画像メモリ M , y ) に格納する (ス テツプ S 7)。上記のステップ S 2からステップ S 6までのステップは、 Zカウン タの k値が nになるまで行う (ステップ S 8)。  Next, the value I (X, y) of the confocal image is stored in the image memory M, y) (step S7). The above steps S2 to S6 are performed until the k value of the Z counter becomes n (step S8).
以上の手順で、 計算範囲に対応する差/和信号に対して、 試料 9の高さが一義 的に決まる範囲についてのみ、 差 Z和信号を計算し、 さらに、 差 Z和信号に対し て試料 9の高さが比例する範囲についてのみ、 高さの計算結果が高さメモリ Z\ 保存される。  With the above procedure, for the difference / sum signal corresponding to the calculation range, the difference Z sum signal is calculated only for the range where the height of the sample 9 is uniquely determined, and then the sample is calculated for the difference Z sum signal. Only in the range where the height of 9 is proportional, the height calculation result is stored in the height memory Z \.
なお、 ステップ S 3において、 共焦点画像の値 I ( X , y ) と画像メモリ Mの 値 M ( x, y ) との和で、 計算範囲に対応する差/和信号に対して試料 9の高さ が一義的に決まる範囲かどうかを判断している。 しかしながら、 これに限らず、 共焦点画像の値 I ( X , y ) と画像メモリ Mの値 M (x, y ) から計算範囲に対 応する差 Z和信号に対して、 試料 9の高さが一義的に決まる範囲内であるか判断 できる条件であれば良い。  In step S3, the sum of the value I (X, y) of the confocal image and the value M (x, y) of the image memory M, and the difference / sum signal corresponding to the calculation range, Judgment is made to determine whether the height is uniquely determined. However, the present invention is not limited to this. The height of the sample 9 is calculated based on the difference Z sum signal corresponding to the calculation range based on the confocal image value I (X, y) and the value M (x, y) Any condition can be used as long as it can be determined whether or not is within a range uniquely determined.
第 3実施例 Third embodiment
第 3の実施の形態によれば、 Zステージの位置を変えて、 高さの異なる複数枚 の共焦点画像を順次取込み演算することによって、 試料の表面囬凸が最大で、 I 一 Zカーブの概略 1. 4倍程度以上の場合でも測定できるので、 高速高精度な高 さ測定を行うことができる。  According to the third embodiment, by changing the position of the Z stage and sequentially acquiring and calculating a plurality of confocal images having different heights, the surface of the sample has the largest convexity, and the I-Z curve Outline 1. Since the measurement can be performed even at about 4 times or more, high-speed and high-accuracy height measurement can be performed.
なお、 本実施の形態では、 ずらし量を移動量と一致させたが、 ずらし量を移動 量の整数倍 (2、 3、 4、 ···) とすることで、 より高精度に高さを求めることが できる。 In the present embodiment, the shift amount is made to coincide with the movement amount. The height can be determined with higher precision by setting it to an integral multiple of the quantity (2, 3, 4,...).
第 4実施例 Fourth embodiment
図 1 4は本発明の第 4実施例にかかる高さ測定装置の回路構成を示す。 この構 成は、 図 1に示す共焦点走査型光学顕微鏡の制御装置であるコンピュータ 1 5内 に設けられている。  FIG. 14 shows a circuit configuration of a height measuring apparatus according to a fourth embodiment of the present invention. This configuration is provided in a computer 15 which is a control device of the confocal scanning optical microscope shown in FIG.
AZDコンバータ 1 0 1は、 図 1に示すピンホール 1 1を通過した試料 9から の反射光量に対応した光検出器 1 2の出力信号をデジタル値として出力するもの で、 2次元走査機構 6の走査に同期したサンプリングクロック (以下、 S CLK) に応じてデジタル値に逐次変換するようになっている。 A/Dコンバータ 1 0 1 からのデジタノレの画像データはフレームバッファ 1 02と、 ルックアップテープ ル 1 03 (以下、 LUT) の一方の入力ポート Bに送られる。 フレームバッファ 1 02は、 1画面分の容量を持ち、 2次元走査機構 6の走査に同期して AZDコ ンパータ 1 0 1からのデジタルの画像データを一時的に記憶するメモリである。 フレームバッファ 102からの出力は、 LUT 1 03の他方の入力ポ一ト Aに送 られる。 LUT 1 03は、 前記 2つの入力ポート A, Bより送られた 2つの入力 値の組み合わせに対応する 1つの値を出力するもので、 表 1に示すようなテープ ルデータを記憶している。 表 1は、 分かりやすく説明するために、 例えば、 前記 2つの入力の最大値をそれぞれ 「 20」 として、 2つの入力の各組み合わせに対 して (B— A) / (A + B) の演算値を展開したテ一ブルの一例を示している。 ここで、 (B— A) / (A + B) の演算において高さ情報が一意的に決まる領域 は限られているので、 LUT 1 03には、 図示しない入力手段により前記の演算 値の有効/無効条件を与えることができるようにデータ処理が施されている。 例 えば表 2に示すように、 「UPJ 「DOWN」 「OVER」 「UNDERJ で示され たものが演算値の有効 Z無効条件を与える役割を果たすものである。 そして、 本 実施例では、 この 「UP」 「DOWN」 「OVER」 「UN D E R」 の領域を自由に 決定することができるようになつている。 この結果、 (B— A) / (B+A) の値 が所定の範囲外の場合は、 範囲情報として 「UP」 「DOWN」 「OVER」.「UN DER」 が出力されることになる。 「OVER」 を決定する条件は、 入力が飽和している場合である。 図 4 Aより 明らかなように、 一方の値が最大値のときに他方は必ずそれより小さい値を示す ので、 両方が最大値付近を取ることは無い。 よって、 Z aと Z bの中点において、 所定値 (この場合 「1 5」) を超えた場合には、 演算値を示さないように制限する この場合の所定値は、 2つの I— Zカーブの間隔で変わるので 「上閾値」 として 変更することができる。 The AZD converter 101 outputs the output signal of the photodetector 12 corresponding to the amount of reflected light from the sample 9 passing through the pinhole 11 shown in FIG. 1 as a digital value. It is designed to sequentially convert digital values according to the sampling clock (SCLK) synchronized with scanning. Digital image data from the A / D converter 101 is sent to the frame buffer 102 and one input port B of the lookup table 103 (hereinafter, LUT). The frame buffer 102 is a memory having a capacity of one screen and temporarily storing digital image data from the AZD converter 101 in synchronization with scanning by the two-dimensional scanning mechanism 6. The output from the frame buffer 102 is sent to the other input port A of the LUT 103. The LUT 103 outputs one value corresponding to a combination of two input values sent from the two input ports A and B, and stores table data as shown in Table 1. Table 1 shows, for simplicity, for example, assuming that the maximum value of the two inputs is “20”, and for each combination of the two inputs, the operation of (B—A) / (A + B) The example of the table which expanded the value is shown. Here, since the area in which the height information is uniquely determined in the calculation of (B−A) / (A + B) is limited, the LUT 103 can use the input means (not shown) to validate the calculated value. Data processing is performed so that an invalid condition can be given. For example, as shown in Table 2, “UPJ“ DOWN ”,“ OVER ”, and“ UNDERJ ”play a role of giving a valid Z invalid condition of the operation value. UP, DOWN, OVER, and UNDER can be freely determined. As a result, if the value of (B−A) / (B + A) is out of the predetermined range, “UP”, “DOWN”, “OVER”, “UN DER” will be output as range information. The condition that determines “OVER” is when the input is saturated. As is evident from Fig. 4A, when one of the values is the maximum value, the other always shows a smaller value, so that both do not take the vicinity of the maximum value. Therefore, if a predetermined value (in this case, “15”) is exceeded at the midpoint between Z a and Z b, the calculation value is limited so as not to indicate the calculated value. It can be changed as the “upper threshold” because it changes at the curve interval.
「UNDER」 を決定する条件は、 2つの入力が小さすぎる場合である。 2つ の I一 Zカーブから外れている、 即ち、 両方の入力が、 所定値 (この場合 「3」) に満たない左右端付近での演算値を示さないように制限する。 この場合の所定値 は、 計算する範囲をどの程度にしたいかで決まるので 「下閾値」 として変更する ことができる。  The condition that determines "UNDER" is when the two inputs are too small. Limit the input values that deviate from the two I-Z curves, that is, do not indicate the calculated values near the left and right ends that are less than the specified value (in this case, “3”). The predetermined value in this case can be changed as the “lower threshold value” because it is determined by how much the calculation range is desired.
「UP」 を決定する条件は、 LUT 1 03の入力ポート Aへの入力値により決 まる。 測定有効範囲の上端を決定し、 入力ポート Aへの入力値が 「下閾値」 (この 場合 「3」) に満たない場合は演算値を表示しないように制限する。  The condition for determining “UP” is determined by the input value to input port A of LUT103. Determine the upper end of the effective measurement range. If the input value to input port A is less than the “lower threshold” (in this case, “3”), limit the computed value to not be displayed.
「DOWN」 を決定する条件は、 LUT 1 03の入力ポート Bへの入力値によ り決まる。測定有効範囲の下端を決定し、入力ポート Bへの入力値が「下閾値」(こ の場合 「3」) に満たない場合は演算を制限する。 The condition for determining “DOWN” is determined by the input value to input port B of LUT103. Determine the lower end of the effective measurement range, and limit the computation if the input value to input port B is less than the “lower threshold” (in this case, “3”).
ξΖ ξΖ
Figure imgf000027_0001
S9Z0/Z0df/X3d .9S..0/Z0 OAV
Figure imgf000027_0001
S9Z0 / Z0df / X3d .9S..0 / Z0 OAV
Figure imgf000028_0001
第 3 表
Figure imgf000028_0001
Table 3
A  A
1 2 3 4 8 9 10  1 2 3 4 8 9 10
1醒 1DER DOI DOI DOI DOI DOI DOI DOI DOI DOI 顧 _ DOI DOI DOI D曜 DOI DOI D園 國 2 UNDER 匿 R 麵 DOI DOI DOI DOI DOI 國 DOI DOI DOI DOI DOI DOI DOI DOI 顧 DOI 國 3 UP UP 128 103 84 70 59 49 41 35 29 24 20 16 13 9 7 4 2 0 4 UP UP 152 128 108 93 80 70 61 54 47 41 36 32 28 24 21 18 15 13 5 UP UP 171 147 128 112 99 88 78 70 63 56 51 46 41 37 33 30 27 24 6 DP DP 185 162 143 128 114 103 93 84 77 70 64 59 54 49 45 41 38 35 7 OP UP 197 175 156 141 128 116 106 97 89 82 n 70 65 60 56 52 48 44 8 UP OP 206 185 167 152 139 128 117 108 100 93 86 80 75 70 65 61 57 54 9 UP DP 214 194 177 162 149 138 128 118 110 103 96 90 84 79 74 70 66 62 1 Awake 1DER DOI DOI DOI DOI DOI DOI DOI DOI DOI Customer_ DOI DOI DOI D Day DOI DOI D Sonokuni 2 UNDER Secret R 麵 DOI DOI DOI DOI DOI Country DOI DOI DOI DOI DOI DOI DOI DOI Customer DOI Country 3 UP UP 128 103 84 70 59 49 41 35 29 24 20 16 13 9 7 4 2 0 4 UP UP 152 128 108 93 80 70 61 54 47 41 36 32 28 24 21 18 15 13 5 UP UP 171 147 128 112 99 88 78 70 63 56 51 46 41 37 33 30 27 24 6 DP DP 185 162 143 128 114 103 93 84 77 70 64 59 54 49 45 41 38 35 7 OP UP 197 175 156 156 141 128 116 106 97 89 82 n 70 65 60 56 52 48 44 8 UP OP 206 185 167 152 139 128 117 108 100 93 86 80 75 70 65 61 57 54 9 UP DP 214 194 177 162 149 138 128 128 118 110 103 96 90 84 79 74 70 66 62
10 UP ' UP 220 201 185 171 158 147 137 128 119 112 ' 105 99 93 88 83 78 70 11 UP UP 226 208 192 178 166 155 145 136 128 120 113 107 101 96 91 86 82 77 12 UP UP 231 214 199 185 173 162 152 143 135 128 121 114 108 103 98 93 89 84 13 UP . UP 235 219 204 191 179 169 159 150 142 134 128 121 115 110 105 100 95 91 14 UP UP 239 223 209 197 185 175 165 156 148 141 134 128 122 116 111 106 101 97 15 UP UP 243 227 214 201 190 180 171 162 154 147 140 133 128 122 117 112 107 103 16 UP OP 246 231 218 206 195 185 176 167 159 152 145 139 133 醒 陋 隱 OVER OVER 17 DP UP 248 234 222 210 199 190 181 1上下72 164 157 151 144 138 OVER 隱 OVER OVER OVER 18 UP UP 251 237 225 214 203 194 185 177最演きき 169 162 155 149 143 讓 OVER OVER OVER OVER 10 UP 'UP 220 201 185 171 158 147 137 137 128 119 112' 105 99 93 88 83 78 70 11 UP UP 226 208 192 178 166 155 145 136 128 120 113 107 101 96 91 86 82 77 12 UP UP 231 214 199 185 185 173 162 152 143 135 135 128 121 114 108 103 98 93 89 84 13 UP UP 235 219 204 191 179 169 159 150 150 142 134 128 121 115 110 105 100 95 91 14 UP UP 239 223 209 197 185 175 175 165 156 148 141 134 128 122 116 111 106 101 97 15 UP UP 243 227 227 201 201 190 180 171 162 154 147 147 140 133 128 122 117 112 107 103 16 UP OP 246 231 218 206 195 185 176 167 167 159 152 145 139 133 Awakening Oki OVER OVER 17 DP UP 248 234 222 210 210 199 190 181 1 top and bottom 72 164 157 151 144 138 OVER Oki OVER OVER OVER 18 UP UP 251 237 225 225 214 203 194 185 177 177
大算いい  Great calculation
19 IIP UP 253 240 228 217 207 198 189 181 174 166 160 154 148 瞧 OVER 隱 霞 OVER 20 ϋΡ UP 255 243 231 220 211 201 193 185 178 171 164 158 152 OVER OVER OVER OVER OVER 19 IIP UP 253 240 228 217 207 198 189 189 181 174 166 166 160 154 148 瞧 OVER Oki Hikasa OVER 20 ϋΡ UP 255 243 231 220 211 201 193 185 178 171 164 158
Taking
7 »
o n そして、 図 1 5に示すように、 LUT 1 03の出力形式を 1 2 b i t とした場 合に、 図示しない比較回路を介して上記 4通りの結果を上位 4 b i tにフラグ出 力できるようにしている。 on Then, as shown in FIG. 15, when the output format of the LUT 103 is set to 12 bits, the above four results can be output to the upper 4 bits via a comparison circuit (not shown). I have.
また、 これとは別に、試料 9の高さ情報として有効な範囲での (B— A) / (A + B) の演算結果には正負の値がでるので、 デジタル回路で処理し易くするため にスケーリングを行なう。 例えば、 出力 b i t数を例えば 8 b i ΐ とした場合に は、 次式のようにスケーリングする。  Separately, the calculation result of (B-A) / (A + B) in the valid range as the height information of sample 9 has positive and negative values. Is scaled. For example, when the number of output bits is set to, for example, 8 bits, scaling is performed as in the following equation.
(Β-Α) / (Α + Β) /最大値 X 255/2 + 1 28  (Β-Α) / (Α + Β) / Maximum value X 255/2 + 1 28
これらの結果を合わせると、 LUT 1 03内のデータは表 3に示すようになる。 ここで、 「最大値」 とは、測定有効範囲の上下端が出力 b i t数での上下限に対応 するように正規化した値である。 具体的には、 表 2中の最大値に対応している。 また、 測定有効範囲外の領域のデータは、 例えば 「0」 で置き換えて試料 9の高 さ情報として出力しないようにしても良く、 任意の値で代表できる。 このような テーブルを予め入力が予測される、 光検出器 1 2から出力されるデジタル値の階 調に相当する分作成しておけば良い。  Combining these results, the data in LUT 103 is as shown in Table 3. Here, the “maximum value” is a value normalized such that the upper and lower ends of the effective measurement range correspond to the upper and lower limits in the output bit number. Specifically, it corresponds to the maximum value in Table 2. Further, the data in the area outside the effective measurement range may be replaced with, for example, “0” so as not to be output as the height information of the sample 9, and can be represented by an arbitrary value. Such a table may be created in advance corresponding to the gradation of the digital value output from the photodetector 12 whose input is predicted.
以上のように構成された本実施例によって試料 9の高さが求まる過程を説明す る。 図 5 A— 5 Cに示すように、 試料 9の表面 9 sをはさむように Zステージ 1 4を Z aと Z bの間隔で設定して共焦点画像を得るようにする。 このときの試料 9の高さと光検出器 1 2の出力との関係は図 6 Aに示すように、 それぞれ Z a , Z bを中心位置とする I一 Zカーブ I a (Z), l b (Z) になる。  A process of determining the height of the sample 9 according to the present embodiment configured as described above will be described. As shown in FIGS. 5A to 5C, the Z stage 14 is set at an interval of Za and Zb so as to sandwich the surface 9 s of the sample 9 so as to obtain a confocal image. As shown in FIG. 6A, the relationship between the height of the sample 9 and the output of the photodetector 12 at this time is, as shown in FIG. 6A, an I-Z curve Ia (Z), lb ( Z).
このような本実施例の高さ測定装置を内部に備えた共焦点走査型光学顕微鏡を 動作させると、 走査に同期して、 先ず Z a位置での共焦点画像が得られる。 図 1 4の AZDコンバータ 1 01は S CLKによって画素ごとに光検出器 1 2の出力 をデジタルデータに変換する。 変換された画像データは、 一旦フレームバッファ 1 02に格納される。 フレームバッファ 1 02で 1フレームの画像が取り込まれ ると、 Zステージ 1 4を Z b位置に移動させて次のフレームの画像の取り込みを 開始する。 このフレームの画像の取り込みが始まると同時にフレームバッファ 1 0 2に記憶された 1つ前のフレーム (Z a位置) の画像データが取り出され、 L UT 1 03には Z a , Z bの两方の位置の同一画素同士のデータが順次入力され る。 When such a confocal scanning optical microscope equipped with the height measuring device of the present embodiment is operated, a confocal image at the Za position is first obtained in synchronization with scanning. The AZD converter 101 in Fig. 14 converts the output of the photodetector 12 into digital data for each pixel by SCLK. The converted image data is temporarily stored in the frame buffer 102. When the image of one frame is captured by the frame buffer 102, the Z stage 14 is moved to the Zb position to start capturing the image of the next frame. Simultaneously with the start of the image capture of this frame, the image data of the immediately preceding frame (Za position) stored in the frame buffer 102 is taken out, and the LUT 103 receives the Za and Zb directions. Data of the same pixel at the position You.
ここで、 Zステージ 1 4を Z a,Z bに位置決めしたときの光検出器 1 2の出力 を I a, I bとして差 Z和信号 (I b— la) / (I a + I b).を計算すると、 試 料 9の各高さにおいて図 6 Bに示すような関係が得られる。図 6 Bに示すように、 光検出器 1 2の出力の差 Z和は Z a位置と Z b位置との中点で 0となり、 その近 傍で試料高さにほぼ比例するものが得られる。 そこで、 この差 Z和信号に Z a位 置と Z b位置との間隔で決まる適当な値でスケーリングすると試料 9の高さ情報 を得ることができる。  Here, the output of the photodetector 12 when the Z stage 14 is positioned at Za and Zb is Ia and Ib, and the difference Z sum signal (Ib—la) / (Ia + Ib) When. Is calculated, the relationship shown in FIG. 6B is obtained at each height of the sample 9. As shown in Fig. 6B, the difference Z sum of the outputs of the photodetectors 12 is 0 at the midpoint between the Za position and the Zb position, and a value that is almost proportional to the sample height is obtained in the vicinity. . Therefore, the height information of the sample 9 can be obtained by scaling this difference Z sum signal with an appropriate value determined by the interval between the Za position and the Zb position.
この処理に従って LUT 1 03は予め作られているので、順次入力される Z a、 Z b位置の同一画素同士のデータに対応した演算後の高さデータが直ちに 1つ決 定されることになる。 例えば、 図 5B、 5 Cに示す試料 9表面の P点からの反射 光は、 Zステージ 14を集光位置 Z a , Z bに位置決めしたとき、 光検出器 1 2、 を介してそれぞれ図 6 Aの P a , P bの値として得られ、 A/Dコンバータ 1 0 1で変換され、 一方の値はフレームバッファ 1 02を経て、 もう一方の値は直接 的に、 L UT 1 03の 2つの入力ポート A, Bに入力される。 L U T 1 03から は、 図 6 Bにおいて PLUTなる値が出力されるので、 これは Z pの位置を一意的 に指し示している。 なお、 差 Z和信号の直線部分が広いほど、 試料高さの測定有 効範囲が広くなる。 そこで、 試料高さの測定有効範囲が最も広くなるよう、 本実 施例では Z aと Z bの間隔が I—Zカーブの半値全幅の概略 0. 3倍に設定して ある。 このとき、 試料高さの測定有効範囲は I— Zカーブの半値全幅の概略 1. 4倍となる。 Since the LUT 103 is created in advance according to this processing, one piece of height data after calculation corresponding to the data of the same pixel at the sequentially input Za and Zb positions is immediately determined. . For example, the reflected light from the point P on the surface of the sample 9 shown in FIGS. 5B and 5C is transmitted through the photodetector 12 when the Z stage 14 is positioned at the focusing positions Za and Zb. It is obtained as the values of P a and P b of A and converted by the A / D converter 101. One value passes through the frame buffer 102 and the other value is directly Input to two input ports A and B. Since LUT 103 outputs the value P LUT in FIG. 6B, it uniquely indicates the position of Z p. Note that the wider the linear portion of the difference Z sum signal, the wider the effective range of the sample height measurement. Therefore, in this embodiment, the interval between Za and Zb is set to approximately 0.3 times the full width at half maximum of the I-Z curve so that the effective measurement range of the sample height is maximized. At this time, the effective measurement range of the sample height is approximately 1.4 times the full width at half maximum of the I-Z curve.
ところで、 測定有効範囲の両端部では 「Z座標の変化 Z演算値の変化」 が中央 部と比べて変化しており、 端部ほど差 /"和信号の演算データの直線性が悪くなる ので、 実際に測定に利用できる領域は狭まってしまう。 そこで、 LUT 1 03に 格納するデータに対し適当な補正をかけることで、 直線性が改善できる。 また、 実際の I一 Zカーブはきれいな対称形ではなかったり、 対物レンズによって異な つたりする。 このことも演算データの直線性を悪くする原因となるが、 同様に捕 正が可能である。 そして、 LUT 1 03への 「下閾値」 を適当に調節することに よって測定有効範囲を自由に設定できるので、 差/和の値が一意的に決まる範囲 まで拡張することも可能である。 しかもこれらの補正処理は、 I一 Zカーブから 予めテーブルデータを LUT 1 03に作成するときの作業であるので、 測定中の コンピュータ 1 5の負荷にはならず、 走査速度 ·描画速度などを落とすこともな く、 ばらつきも吸収し正確な高さ情報が直ちに得られるようにできる。 また、 2 次元走査に同期して Zステージ 1 4を繰り返し走査すれば、 直接 3次元のデータ を走査に合わせて表示させることも可能である。 By the way, at both ends of the effective measurement range, the “change in Z coordinate, the change in Z operation value” changes compared to the center, and the linearity of the difference / “sum signal operation data becomes worse toward the end. The area that can actually be used for measurement is reduced.Therefore, the linearity can be improved by applying appropriate corrections to the data stored in the LUT 103. Also, the actual I-Z curve is This may cause the linearity of the calculated data to deteriorate, but it is also possible to correct it, and set the “lower threshold” to the LUT 103 appropriately. The effective range of measurement can be set freely by adjusting, so the range where the value of difference / sum is uniquely determined It can be extended to In addition, since these correction processes are performed when preparing table data from the I-Z curve in advance in the LUT 103, they do not impose a load on the computer 15 during measurement, and lower the scanning speed, drawing speed, etc. In addition, it is possible to absorb fluctuations and obtain accurate height information immediately. Further, by repeatedly scanning the Z stage 14 in synchronization with the two-dimensional scanning, it is possible to directly display three-dimensional data in accordance with the scanning.
以上、 説明したように本実施例の高さ測定装置によれば、 試料 9の高さ計測の 精度を高めることができ、 同時に Zステージ 1 4の移動回数を少なくして、 測定 を高速化することができる。 また、 試料 9の反射率の影響を受けずに済み、 さら には、 制御装置の負荷が軽減でき、 応答性を改善すると共に測定有効範囲も広げ ることができる。  As described above, according to the height measuring apparatus of the present embodiment, the accuracy of the height measurement of the sample 9 can be increased, and at the same time, the number of movements of the Z stage 14 can be reduced to speed up the measurement. be able to. In addition, the influence of the reflectance of the sample 9 can be eliminated, and the load on the control device can be reduced, the responsiveness can be improved, and the effective measurement range can be expanded.
第 5実施例 Fifth embodiment
図 1 6は本発明の第 5実施例にかかる高さ測定装置の回路構成を示す。 本実施 例の構成は、 モニタ 806を除いて、 図 1に示す共焦点走査型光学顕微鏡の制御 装置であるコンピュータ 1 5内に設けられている。  FIG. 16 shows a circuit configuration of a height measuring apparatus according to a fifth embodiment of the present invention. The configuration of the present embodiment, except for the monitor 806, is provided in a computer 15 which is a control device of the confocal scanning optical microscope shown in FIG.
A/Dコンパータ 80 1は、 図 1に示すピンホール 1 1を通過した試料 9から の反射光量に対応した光検出器 1 2の.出力信号をデジタル値として出力するもの で、 2次元走査機構 6の走査に同期した S CLKに応じて逐次変換するようにな つている。 AZDコンバータ 801からのデジタルの画像データはフレームパッ ファ 802と、 LUT 803の一方の入力ポート Bに送られる。 フレームパッフ ァ 802は、 2画面分の容量 802 (a)、 802 (b) を持ち、 2次元走査機構 6の走査に同期して AZDコンバータ 801からのデジタルの画像データを記憶 するメモリである。 また、 フレームバッファ 802 (a)、 802 (b) は、 2次 元走査機構 6からの垂直同期信号 (以下、 VD) によって、 交互に書き込みと読 み出しが排他的に切り換わるようになつている。  The A / D converter 801 is a two-dimensional scanning mechanism that outputs the output signal of the photodetector 12 as a digital value corresponding to the amount of reflected light from the sample 9 that has passed through the pinhole 11 shown in Fig. 1. The conversion is performed sequentially according to the SCLK synchronized with the scanning of 6. The digital image data from the AZD converter 801 is sent to the frame buffer 802 and one input port B of the LUT 803. The frame buffer 802 is a memory having a capacity of two screens 802 (a) and 802 (b) and storing digital image data from the AZD converter 801 in synchronization with the scanning of the two-dimensional scanning mechanism 6. . In addition, the frame buffers 802 (a) and 802 (b) are configured so that writing and reading are exclusively switched alternately by a vertical synchronization signal (hereinafter, VD) from the two-dimensional scanning mechanism 6. I have.
読み出し側のフレームバッファ 802からの出力は、 LUT 803の他方の入 力ポート Aに送られる。 LUT 803は、 前記 2つの入力ポート A, Bより送ら れた 2つの入力値の組み合わせに対応する 1つの値を出力するもので、 本発明の 第 1の実施例と同様のテーブルデータを記憶しており、 図示しない入力手段によ り差/和の演算値の有効/無効条件を与えることができるようにデータ処理が施 されている。 そして、 LUT 803からは、 試料 9の高さ情報とともに、 測定有 効範囲に対するフラグが別途出力される。 加算制御回路 804は、 2次元走査機 構 6からの VDと LUT 803からの前記測定有効範囲に対するフラグを受け取 り、 LUT 803の出力する試料 9の高さ情報に、 後述する Zステージ 1 4の分 割移動領域ごとの情報を加算し、 描画メモリ 805への書き込みを制御するよう に構成されている。 描画メモリ 805は、 共焦点走査型光学顕微鏡の制御インタ 一フェイスや各種情報を表示するためのコンピュータ 1 2内のメモリである。 モ ニタ 806は、 描画メモリ 805の内容をオペレータに共焦点走査型光学顕微鏡 の各情報として表示し、 オペレータにより試料 9の高さ情報が視覚的に認識され るようになっている。 The output from the frame buffer 802 on the read side is sent to the other input port A of the LUT 803. The LUT 803 outputs one value corresponding to a combination of the two input values sent from the two input ports A and B, and stores the same table data as in the first embodiment of the present invention. Input means (not shown). Data processing is performed so that the valid / invalid condition of the difference / sum operation value can be given. Then, the LUT 803 separately outputs a flag for the measurement effective range together with the height information of the sample 9. The addition control circuit 804 receives the VD from the two-dimensional scanning mechanism 6 and the flag for the measurement effective range from the LUT 803, and adds the height information of the sample 9 output from the LUT 803 to the Z stage 14 described later. It is configured to add the information for each divided moving area and control writing to the drawing memory 805. The drawing memory 805 is a memory in the computer 12 for displaying a control interface of the confocal scanning optical microscope and various information. The monitor 806 displays the contents of the drawing memory 805 to the operator as each information of the confocal scanning optical microscope, so that the operator can visually recognize the height information of the sample 9.
以上のように構成された本実施例によって、 試料 9の高さを求める過程を説明 する。 図 7に示すような比較的大きな凹凸を持つ試料 9の高さ測定の場合は、 試 料 9の表面凹 ώが I一 Ζカーブによる高さ測定有効範囲からはみ出しているので、 第 4実施例のように近接する 2つの Ζステージ 1 4の位置からだけで'は全部を測 ることが出来ない。 そこで、 図 7に示すように、 試料 9の表面 9 sをはさむよう に Ζステージ 1 4の移動範囲を設定して、 Ζステージ 1 4を Z 1から Ζ ηまで等 間隔に順次位置決めして共焦点画像を得るようにする。 このときの試料 9の高さ と光検出器 1 2の出力との関係は図 1 7 Αに示すように、 それぞれ、 Z k, Z k + 1を中心位置とする I一 Zカーブ I k (Z), I k+ 1 (Z) になる。  A process of obtaining the height of the sample 9 according to the present embodiment configured as described above will be described. In the case of measuring the height of sample 9 having relatively large irregularities as shown in Fig. 7, since the surface depression of sample 9 protrudes from the effective height measurement range by the I-I curve, the fourth embodiment It is not possible to measure all of the two Ζstages 14 only from the position as close as. Thus, as shown in Fig. 7, the moving range of the stage 14 is set so as to sandwich the surface 9 s of the sample 9, and the stage 14 is sequentially positioned at equal intervals from Z 1 to Ζη to share Try to get a focused image. At this time, the relationship between the height of the sample 9 and the output of the photodetector 12 is, as shown in Fig. 17Α, the I-Z curve I k ( Z), I k + 1 (Z).
なお、 ここでは話を簡単にするため、 あらかじめ Z kと Z k + 1の間隔か、 若 しくは LUT 803への 「下閾値」 を適当に調節して、 Zステージ 14の Z k位 置と Z k + 1位置との間隔と測定有効範囲とが等しくなるようにしておくことと する。  Here, in order to simplify the explanation, the interval between Z k and Z k + 1 or the “lower threshold” to LUT 803 is appropriately adjusted in advance, and the Z k position of Z stage 14 is adjusted. It is assumed that the distance from the Z k + 1 position is equal to the effective measurement range.
このような本実施例の高さ測定装置を内部に備えた共焦点走査型光学顕微鏡を 動作させると、 図 1 8に示すように走査に同期してまず Z 1位置での共焦点画像 ①が得られる。 図 1 6の AZDコンパータ 80 1は S CLKによって画素ごとに 光検出器 1 2の出力をデジタルデータに変換する。 変換された画像データは、 一 旦フレームバッファ 802 (a) に格納される„ フレームバッファ 802 (a) で 1フレームの画像が取り込まれると、 Zステ ージ 1 4を Z 2位置に移動させて次のフレームの画像②の取り込みを開始する。 このフレームの画像の取り込みが始まると同時にフレームバッファ 802 (a) と 8 02 (b) とが切り換わり、 フレームバッファ 802 (a) は読み出しに転 じ、 記憶された 1つ前のフレーム (Z 1位置) の画像データ①'が取り出され、 LUT 803には Z 1, Z 2の両方の位置の同一画素同士のデータが順次入力さ れる。 また、 切り換わったフレームバッファ 802 (b) には Z 2位置の画像デ 一タ②が同時に格納される。 When a confocal scanning optical microscope equipped with such a height measuring device of this embodiment is operated, a confocal image (1) at the Z1 position is first synchronized with scanning as shown in Fig. 18. can get. The AZD converter 801 in FIG. 16 converts the output of the photodetector 12 into digital data for each pixel by SCLK. The converted image data is temporarily stored in the frame buffer 802 (a). When an image of one frame is captured by the frame buffer 802 (a), the Z stage 14 is moved to the Z2 position and the capture of the image ② of the next frame is started. As soon as the image of this frame starts to be captured, the frame buffer 802 (a) and the frame buffer 802 (b) are switched, and the frame buffer 802 (a) starts reading and stores the previous frame (Z 1 The image data ① ′ at the position) is taken out, and data of the same pixel at both positions Z 1 and Z 2 are sequentially input to the LUT 803. The switched frame buffer 802 (b) stores the image data at the Z2 position at the same time.
このようにして、 Zステージ 14の移動に同期して、 以降のフレームはフレー ムバッファ 802 ( a ), 802 (b) を交互に切り換えて、 現在のフレームの画 像データを記憶させながら、 現在のフレームの画像データと 1つ前のフレームの 画像データを 「② と③」、 「③ と④」 …と LUT 8 03へ入力していく。 例え ば図 7の Q点における LUT 803から高さデータが出力される過程は第 4実施 例の図 5 B叉は 5 Cの P点における LUT 1 03から高さデータが出力される過 程と同じである。 このようにして、 Zステージ 1 4を Z 1から Z nまで等間隔に 順次位置決めしながら各区間ごとに試料 9の高さ情報が得られる。  In this manner, in synchronization with the movement of the Z stage 14, the subsequent frames alternately switch the frame buffers 802 (a) and 802 (b) and store the current frame image data while storing the current frame image data. The image data of the frame and the image data of the previous frame are input to the LUT 803 as “② and ③”, “③ and ④”…. For example, the process of outputting height data from LUT 803 at point Q in FIG. 7 is the same as the process of outputting height data from LUT 103 at point P in FIG. 5B or 5C in the fourth embodiment. Is the same. In this way, the height information of the sample 9 can be obtained for each section while the Z stage 14 is sequentially positioned at equal intervals from Z1 to Zn.
ところで、 Zステージ 1 4を Z k, Z k + 1に位置決めしたときの光検出器 1 2の出力を I k、 I k + 1として差/和信号 ( I k + 1 - I k) / ( I k + 1 + I k) を計算すると、 試料 9の各高さにおいて図 1 7 Aに示すような関係が得ら れるが、 あくまで各区間ごとでの高さ情報でしかない。 そこで、 この差 Z和信号 に Z k位置と Z k+ 1位置との間を表現するための b i t数で決まる適当な値に Z k位置までの移動回数を乗じたものを加算すれば、 全区間に渡って連続した試 料 9の高さ情報を得ることができる。 つまり、 走査が開始されてからの Zステー ジ 1 4の移動回数とフレームの枚数とは対応関係があるので、 加算制御回路 80 4は VDを力ゥントし、 区間を 8 b i tで表現すれば Z 1 , Z 2間には 「256 X 0J、 Z 2 , Z 3間には 「256 X 1」、 ···、 Z k , Z k+ 1間には 「256 X (k一 1)」 を LUT 803出力の高さデータに加えるようにする。 また、現在の 区間で高さが得られない画素に関しては、 描画メモリ 805への書き込みを禁止 する。 これによつて描画メモリ 805には高さの得られた画素についてのみ高さ データが記憶されることになる。 By the way, when the Z stage 14 is positioned at Zk, Zk + 1, the output of the photodetector 12 is Ik, Ik + 1, and the difference / sum signal (Ik + 1-Ik) / ( When I k + 1 + I k) is calculated, the relationship shown in Fig. 17A is obtained at each height of the sample 9, but it is only height information for each section. Therefore, if the sum of the difference Z sum signal and the appropriate value determined by the number of bits for expressing between the Z k position and the Z k + 1 position multiplied by the number of movements to the Z k position is added, The height information of sample 9 can be obtained continuously over a period of time. In other words, since the number of movements of the Z stage 14 since the start of scanning has a corresponding relationship with the number of frames, the addition control circuit 804 controls the VD, and if the section is represented by 8 bits, the Z LUT of `` 256 X 0J '' between 1 and Z 2, `` 256 X 1 '' between Z 2 and Z 3, `` 256 X (k-1) '' between Z k and Z k + 1 It is added to the height data of 803 output. Also, writing to the drawing memory 805 is prohibited for pixels for which a height cannot be obtained in the current section. As a result, the drawing memory 805 has a height only for the pixel whose height is obtained. The data will be stored.
実際に高さ情報を連続させるには、 図 1 6の LUT 803から出力された 4 b i tの判定フラグのうち 「UP」 「DOWN」 に注目する。 ある画素の高さ情報に 「UP」 が付いているという場合は、 例えば図 7において Z kと Z k+ 1の領域 を測定しているときの R点の情報が該当する。 R点は、 図 1 7A、 17 Bからも 明らかなように 「UP」 領域にあり、 高さ情報はそのような領域では 「0」 で置 き換えられているので 「256 X (k - 1 ) + 0」 が計算されるが、 「UP」 が付 いているので描画メモリ 805への書き込みが禁止される。 : 点の高さが得られ るのは Z k+ 1 と Z k + 2の領域での図 1 7 Aの R a '、 R b 'に相当する位置 であり、 そのとき加算制御回路 804からは 「256 x k」 が加えられる。 ここ ではフラグが消えるので、 R点は 「25 6 X k+R」 なる値が描画メモリ 805 に書き込まれる。 つまり、 図 7の Q点は 「25 6 X (k - 1 ) +Q」 の高さであ り、 R点は 「 256 X k+R」 であるので Qく Rの高さ関係が再現されることに なる。伹し、 「UP」 のフラグの場合には、描画メモリ 805への書き込みを禁止 しなくても、 以降の高さデータが求まったところで正しく上書きされるので問題 にはならない。  In order to actually make the height information continuous, pay attention to “UP” and “DOWN” among the 4 bit determination flags output from the LUT 803 in FIG. When “UP” is attached to the height information of a certain pixel, for example, the information of the point R when measuring the area of Z k and Z k + 1 in FIG. 7 corresponds. Point R is in the “UP” area, as is clear from FIGS. 17A and 17B, and the height information is replaced by “0” in such an area, so that “256 X (k-1) ) + 0 ”is calculated, but writing to the drawing memory 805 is prohibited because“ UP ”is added. : The point height is obtained at the positions corresponding to R a ′ and R b ′ in FIG. 17A in the region of Z k + 1 and Z k + 2. "256 xk" is added. Here, since the flag disappears, the point R is written into the drawing memory 805 with a value of “256 X k + R”. In other words, the Q point in Fig. 7 has a height of "256 X (k-1) + Q" and the R point has a height of "256 X k + R". It will be. However, in the case of the “UP” flag, there is no problem even if the writing to the drawing memory 805 is not prohibited, since the height data is correctly overwritten when the subsequent height data is obtained.
逆に 「DOWN」 がフラグに付いている場合、 加算制御回路 804は描画メモ リ 805への書き込みを必ず禁止しなくてはならない。 これは前記の Q点と R点 の見方を入れ換えて考えればよく、 Z k + l ,Z k + 2の領域から見れば Q点は Conversely, when “DOWN” is attached to the flag, the addition control circuit 804 must prohibit writing to the drawing memory 805. This can be considered by exchanging the viewpoints of the Q point and the R point, and from the region of Z k + l and Z k + 2, the Q point is
「DOWN」 となる。 Z kと Z k+ 1の領域で既に Q点は高さが求まっているが、 加算制御回路 8 04によって Z k + 1, Z k + 2の領域での Q点の高さデータ"DOWN". The height of the Q point has already been found in the Z k and Z k + 1 regions, but the addition control circuit 804 uses the height data of the Q point in the Z k + 1 and Z k + 2 regions.
Γ 0 J に Γ 256 X k j が加えられことになる。 その場合、 Γ 256 X (k一 1) + Q」 く Γ 256 X k + 0 J となるので、 この値を描画メモリ 805に書き込ん ではならないからである。 Γ 256 X k j is added to Γ 0 J. In this case, Γ256 X (k−1) + Q ”」 Γ256 X k + 0 J, so this value must not be written to the drawing memory 805.
このようにして、 本実施例では、 Z 1から Z nまで Zステージ 14が移動しな がら新しく高さが求まった画素から描画メモリ 805に高さデータが書き込まれ て行き、 1度高さが決定された画素は上書きされることは無い。 そして図 7に示 すような比較的大きな凹凸を持つ試料 9の高さ測定においても、 補正処理や範囲 の判定、 区間の接続処理などが測定中のコンピュータ 1 5の負荷にはならず、 走 査速度 ·描画速度などを落とすこともなく、 ばらつきも吸収し正確な高さ情報が 直ちに得られる。 また、 2次元走査に同期して Zステージ 1 4を繰り返し走査す れば、 直接 3次元のデータを走査に合わせてモニターに表示させることも可能で める。 In this manner, in the present embodiment, height data is written into the drawing memory 805 from the pixel whose height has been newly determined while the Z stage 14 moves from Z1 to Zn, and the height once increases. The determined pixel is not overwritten. Also, in the height measurement of the sample 9 having relatively large irregularities as shown in Fig. 7, the correction processing, range determination, section connection processing, etc. do not become a load on the computer 15 during measurement, and Accurate height information can be obtained immediately without reducing the inspection speed, drawing speed, etc., absorbing variations. Further, by repeatedly scanning the Z stage 14 in synchronization with the two-dimensional scanning, it is possible to directly display three-dimensional data on a monitor in synchronization with the scanning.
以上、 説明したように本実施例の高さ測定装置によれば、 試料 9の高さ計測の 精度を高めることができ、 同時に Zステージ 1 4の移動回数を少なくして、 測定 を高速化することができる。 また、 試料 9の反射率の影響を受けずに済み、 さら には、 制御装置の負荷が軽減でき、 応答性を改善すると共に測定有効範囲も広げ ることがきる。  As described above, according to the height measuring apparatus of the present embodiment, the accuracy of the height measurement of the sample 9 can be increased, and at the same time, the number of movements of the Z stage 14 can be reduced to speed up the measurement. be able to. In addition, the influence of the reflectivity of the sample 9 is not required, and the load on the control device can be reduced, the responsiveness can be improved, and the effective measurement range can be extended.
図 1 9は本発明の第 6及び第 7の各実施例で使用する共焦点走査型顕微鏡の基 本構成を示す。 これらの各実施例で使用する共焦点走査型顕微鏡の基本構成は図 FIG. 19 shows the basic configuration of a confocal scanning microscope used in each of the sixth and seventh embodiments of the present invention. The basic configuration of the confocal scanning microscope used in each of these examples is
1に示す従来の共焦点走査型顕微鏡の構成と同一である。 よって、 基本構成及び 作用の説明は省略する。 各実施例の高さ測定装置は、 共焦点走査型顕微鏡のコン ピュータ 1 5内に設けられた高さ演算手段 1 5 aと輝度演算手段 1 5 bの構成に 特徴がある。 This is the same as the configuration of the conventional confocal scanning microscope shown in FIG. Therefore, description of the basic configuration and operation is omitted. The height measuring device of each embodiment is characterized by the configuration of the height calculating means 15a and the luminance calculating means 15b provided in the computer 15 of the confocal scanning microscope.
第 6実施例 Sixth embodiment
第 6実施例では、 高さ演算手段 1 5 aには、 予め求めておいた I一 Zカーブを 図 2 OAに示すように間隔 dだけシフトして、 図 20 Bに示すようにその差/和 ( I - I ') / ( I + I ') を計算して得られた情報が記憶されている。 次に、 図 8に示したように、 Zステージ 14を試料 9の表面 9 sをはさむように間隔をあ けた焦点位置 Z a, Z bにそれぞれ位置決めして、 2枚の共焦点画像を得る。 このとき高さ演算部 1 5 aでは、 Zステージ 14を焦点位置 Z a ,Z bに位置決 めしたときの光検出器 1 2の出力 I a, l bより、 試料の各点毎の差/和信号( I a- I b )/ (I a + I b) を計算する。 すると、 図 20 Cに示すように、 各点毎 に Zすなわち、 試料 9の高さが得られる。  In the sixth embodiment, the previously calculated I-Z curve is shifted by an interval d as shown in FIG. 2OA, and the difference / Information obtained by calculating the sum (I−I ′) / (I + I ′) is stored. Next, as shown in FIG. 8, two confocal images are obtained by positioning the Z stage 14 at the focal positions Za and Zb spaced apart so as to sandwich the surface 9 s of the sample 9. . At this time, the height calculator 15a calculates the difference / point for each point of the sample from the output Ia, lb of the photodetector 12 when the Z stage 14 is positioned at the focal position Za, Zb. Calculate the sum signal (Ia-Ib) / (Ia + Ib). Then, as shown in FIG. 20C, Z for each point, that is, the height of the sample 9 is obtained.
次に、 輝度演算手段 1 5 bでは、 得られた試料 9の高さと、 焦点位置 Z a, Z bのいずれか一方、 例えば、 焦点位置 Z a、 との相対高さ Δ Z aを演算する。 さ らに、図 2 1に示すように輝度が正規化された I _ Zカーブを予め記憶しておき、 この I— Zカーブに、 相対高さ Δ Z aを代入しスケーリングすることで、 輝度 i aが求められる。 よって、 試料 9の実際の輝度のピーク値は、 I P E A K == 1 X I a / i aにより得ることが出来る。 Next, the brightness calculating means 15b calculates the relative height ΔZa between the obtained height of the sample 9 and one of the focal positions Za and Zb, for example, the focal position Za. . Furthermore, as shown in FIG. 21, an I_Z curve with normalized luminance is stored in advance, and the relative height ΔZa is substituted into this I−Z curve to perform scaling. i a is required. Therefore, the peak value of the actual luminance of the sample 9 can be obtained by I PEAK == 1 XIa / ia.
ここで、 I一 Zカーブは、 例えば、 「T. R. Corle,G. S. Kino,"Confocal Scanning Optical Microscopy and Related Imaging Systems "ACADEMICPRESS 1996」 によ れば、 次式(1)で表される。 理論値としては、 これを用いればよい。  Here, the I-Z curve is expressed by the following equation (1) according to, for example, “TR. Corle, GS Kino,“ Confocal Scanning Optical Microscopy and Related Imaging Systems ”ACADEMICPRESS 1996”. This can be used as a theoretical value.
Figure imgf000037_0001
Figure imgf000037_0001
ただし、 However,
-2 ¾ - 2 ¾
":屈折率  ": Refractive index
-" sinfl :閧口数 また、 試料 9として平面ミラーを用いて、 Zステージ 1 4を微小量づっ動かし て、 共焦点画像を取得するようにすれば、 高さ計測装置を構成する対物レンズ等 との組み合わせ毎に I一 Zカーブの実測値を得ることが出来るので、 収差等の影 響も排除することが可能となる。  -"sinfl: number of ports Also, if a flat mirror is used as the sample 9 and the Z stage 14 is moved by a very small amount to acquire a confocal image, the objective lens etc. which constitute the height measuring device can be obtained. Since the actual measured value of the I-Z curve can be obtained for each combination of, it is possible to eliminate the influence such as aberration.
第 7実施例 Seventh embodiment
第 7実施例では、 第 6実施例における輝度演算手段 1 5 bが、 ルックアップテ 一ブルを備えて構成されている。 ルックアップテーブルは、 理論値又は、 実測値 から作成され、 (Δ Ζ、 I ) の 1つの組み合わせに対し、 1つの輝度値が選択され るようにテーブルデータが格納されている。 これによれば、 輝度演算手段 1 5 b では、 (Δ Ζ、 I ) を求めることにより、ルックアップテーブルを介して瞬時に実 際の輝度ピーク値を得ることが出来る。  In the seventh embodiment, the luminance calculation means 15b in the sixth embodiment is provided with a look-up table. The lookup table is created from theoretical values or measured values, and stores table data so that one luminance value is selected for one combination of (ΔΖ, I). According to this, the luminance calculating means 15b can instantaneously obtain the actual luminance peak value via the look-up table by obtaining (ΔΖ, I).
変形例 Modified example
以上の説明では、 本発明の高さ測定装置を構成する共焦点走査型顕微鏡の基本 的構成を図 1に示したが、 本発明の高さ測定装置は、 これに限らず各種の共焦点 走査型顕微鏡に適用することができる。  In the above description, the basic configuration of the confocal scanning microscope constituting the height measuring device of the present invention is shown in FIG. 1. However, the height measuring device of the present invention is not limited to this, and various types of confocal scanning can be used. It can be applied to a type microscope.
例えば、 対物レンズ 8による集束光を試料 9の表面に沿って相対的に走査させ る走査機構として光軸に垂直な面内で試料 9を移動させる XYステージを用いて も良い。 また、 円盤上にスパイラル状に複数の微小開口を設けた N i p k o wデ イスクを髙速回転させる構成であっても良い。 このとき、 前記 N i p k 0 wディ スクが対物レンズの集光位置と共役な位置に配置される微小開口を兼ね、 光検出 器として CCD等の 2次元画像センサが用いられる。 さらには 2次元光走査機構 に代えて、 1次元光スキャナによって対物レンズの集束光を試料の 1ライン上で 走査し、 試料の断面形状を測定する構成であっても良い。 For example, the focused light from the objective lens 8 is relatively scanned along the surface of the sample 9. An XY stage that moves the sample 9 in a plane perpendicular to the optical axis may be used as the scanning mechanism. Further, a configuration may be adopted in which a Nipkow disk having a plurality of minute openings spirally formed on a disk is rotated at a low speed. At this time, the Nipkow disk also serves as a minute aperture arranged at a position conjugate to the condensing position of the objective lens, and a two-dimensional image sensor such as a CCD is used as a photodetector. Further, instead of the two-dimensional optical scanning mechanism, a configuration may be employed in which the focused light of the objective lens is scanned on one line of the sample by a one-dimensional optical scanner to measure the cross-sectional shape of the sample.
また、 対物レンズ 8の集光位置と試料 9の位置を相対的に移動させる移動機構 とて試料 9の位置を移動させる Zステージ 1 4に変えて対物レンズ 8を移動する 機構を用いても良い。 その他、 上記の構成に限らず、 各種の共焦点顕微鏡に本発 明を適用することができる。  Further, a mechanism for moving the objective lens 8 in place of the Z stage 14 for moving the position of the sample 9 may be used as a moving mechanism for relatively moving the focus position of the objective lens 8 and the position of the sample 9. . In addition, the present invention is not limited to the above configuration, and can be applied to various confocal microscopes.
なお、 上述した実施の形態では、 対物レンズの集光位置と共役な位置に微小開 口を有した部材としてピンホールを配置し、 ピンホールを通過した光を検出器で 検出するようにしていたが、 共役な位置に配置される微小開口は、 光を通過させ る孔以外に、 孔に相当する部分をミラーのような反射特性を有するものからなる 微小開口にすることも可能である。  In the above-described embodiment, the pinhole is disposed as a member having a minute opening at a position conjugate with the condensing position of the objective lens, and light passing through the pinhole is detected by the detector. However, the micro-apertures arranged at conjugate positions can be micro-apertures made of a material having a reflection characteristic such as a mirror at a portion corresponding to the hole, in addition to the hole through which light passes.
第 8実施例 Eighth embodiment
図 22は本発明の第 8実施例にかかるパラメータ設定方法における演算手順を 示すフローチャートである。 本実施例のパラメータ設定方法では、 図 22に示す ような手順にそって、 測定精度を求め、 その測定精度から焦点位置 Z aと焦点位 置 Z bとの間隔を設定する。  FIG. 22 is a flowchart showing a calculation procedure in the parameter setting method according to the eighth embodiment of the present invention. In the parameter setting method according to the present embodiment, measurement accuracy is obtained according to a procedure as shown in FIG. 22, and an interval between the focal position Za and the focal position Zb is set based on the measurement accuracy.
具体的には、 まず、 ミラーなどの反射率の高い試料の表面で、 測定に使用する 対物レンズの第 1曲線として I— Zカーブ I a (Z) を取得する (ステップ S 1 )c 次に、 取得した I— Zカーブ I a (Z) を高さ方向 Zにコンピュータ内の計算上、 ある量 Aだけシフトさせて (ステップ S 4)、 I— Zカーブ l b (Z) = I a (Z + A) を算出する (ステップ S 5)。 次に、 それらの I一 Zカーブの差 Z和を求め る演算 { l a (Z) - I a (Z+A)} / { l a (Z) + I a (Z+A)} を行つ て第 2曲線として高さ曲線を算出する (ステップ S 6)。 次に、 この高さ曲線の近 似式 (一次式) を、 最小自乗法等を用いて導出する (ステップ S 7)。 高さ曲線の近似式を導出後、 高さ曲線の直線性について判定する (ステップ S 8 )。 この判定の一例として、 Z aと Z bとの中点近傍において、 高さ曲線と高さ 曲線の近似式との誤差の自乗合計が著しく大きな値 (測定精度に影響がある値) となっているか否かで判定する。 ここで、 高さ曲線と高さ曲線の近似式との誤差 の自乗合計値が大きい場合は直線性が悪くなるので、 このときのシフト量は不適 当とし、 後述のステップ S 9, S 1 0の処理は行わずに後述のステップ S 1 1の 処理を行う。 Specifically, first, on the surface of a highly reflective sample such as a mirror, obtain the I-Z curve Ia (Z) as the first curve of the objective lens used for measurement (step S1) c The calculated I—Z curve I a (Z) is shifted in the height direction Z by a certain amount A in the computer calculation (step S 4), and the I—Z curve lb (Z) = I a (Z + A) is calculated (step S5). Next, perform the operation {la (Z)-I a (Z + A)} / {la (Z) + I a (Z + A)} to find the difference Z sum of those I-Z curves. A height curve is calculated as the second curve (step S6). Next, an approximation expression (primary expression) of the height curve is derived using a least square method or the like (step S7). After deriving the approximate expression of the height curve, the linearity of the height curve is determined (step S8). As an example of this judgment, the square sum of the error between the height curve and the approximation formula of the height curve becomes a significantly large value (a value that affects the measurement accuracy) near the midpoint between Za and Zb. Is determined based on whether the Here, if the sum of the squares of the error between the height curve and the approximation formula of the height curve is large, the linearity is deteriorated. Therefore, the shift amount at this time is inappropriate, and the steps S9 and S10 described later The processing of step S11 described below is performed without performing the processing of.
ここで、 差 Z和信号の直線部分が広いほど、 試料高さの計測範囲が広くなる。 このときの試料 9の高さと光検出器 1 2の出力との関係は図 9 Aに示すように なり、 差/和信号は図 9 Bに示すようになる。  Here, the wider the linear portion of the difference Z sum signal, the wider the measurement range of the sample height. At this time, the relationship between the height of the sample 9 and the output of the photodetector 12 is as shown in FIG. 9A, and the difference / sum signal is as shown in FIG. 9B.
また、 差 Z和信号の直線部分の傾きが大きいほど、 試料高さに対する差/和信 号の変化が大きくなり、 試料高さ検出の感度が高くなり、 高精度な測定を行うこ とができる。 このときの試料 9の高さと光検出器 1 2の出力との関係は図 1 O A に示すようになり、 差/和信号は図 1 0 Bに示すようになる。  Also, as the slope of the linear portion of the difference Z sum signal increases, the change of the difference / sum signal with respect to the sample height increases, the sensitivity of sample height detection increases, and highly accurate measurement can be performed. At this time, the relationship between the height of the sample 9 and the output of the photodetector 12 is as shown in FIG. 10A, and the difference / sum signal is as shown in FIG. 10B.
次に、 近似式の傾きが最低限要求される精度を満たす傾き aよりも大きいか否 かを判断する (ステップ S 9 )。 なお、 この判断に先立ち、 最低限要求される精度 を導き出すことが可能な傾きの値 aを対物レンズの種類別に予め設定しておく。 近似式の傾きが最低限要求される精度を満たす傾き aよりも大きい場合には、 そのときのシフト量 Aと近似式の傾きをメモリに蓄積する (ステップ S 1 0 )。 次に、 近似式の傾きが、 測定精度に対して計測範囲が小さすぎない、 すなわち 先行技術における高さ測定より高精度 ·高速で測定できる最大の傾きの値 bより も大きいか否かを判断する。 なお、 この判断に先立ち、 傾きの値 bを対物レンズ の種類別に予め設定しておく。 近似式の傾きが傾き bより小さい場合は、 I一 Z 力一ブ I a ( Z ) を高さ方向 Zに計算上ある量 A + 1だけシフトした I一 Zカーブ I b 1 ( Z ) = I a ( Z + A + 1 ) の差ノ和から高さ曲線を算出し (ステップ S 3 〜S 6 )、同様に高さ曲線の直線性と高さ曲線の近似式の傾きを判定する。 これを 繰り返し行い、 近似式の傾きが傾き bより大きい値である場合には、 演算を終了 する。 Next, it is determined whether or not the slope of the approximate expression is larger than the slope a that satisfies the minimum required accuracy (step S9). Prior to this determination, a tilt value a that can derive the minimum required accuracy is set in advance for each type of objective lens. If the gradient of the approximate expression is larger than the gradient a that satisfies the minimum required accuracy, the shift amount A at that time and the gradient of the approximate expression are stored in the memory (step S10). Next, it is determined whether the slope of the approximation formula is not too small for the measurement accuracy, that is, larger than the maximum slope value b that can be measured with higher accuracy and higher speed than the height measurement in the prior art. I do. Prior to this determination, the tilt value b is set in advance for each type of objective lens. If the slope of the approximation formula is smaller than the slope b, the I-Z curve I b 1 (Z) is obtained by shifting the I-Z force Ia (Z) in the height direction Z by a certain amount A + 1. A height curve is calculated from the difference sum of Ia (Z + A + 1 ) (steps S3 to S6), and similarly, the linearity of the height curve and the slope of the approximate expression of the height curve are determined. This is repeated, and if the slope of the approximate expression is larger than the slope b, the calculation is terminated.
最後に、 測定に要求される測定精度を選択し (ステップ S 1 2 )、先に算出した 高さ曲線の近似式の傾きから判断して (ステップ S 1 3)、最適な Z aと Z bとの 間隔を設定することが出来る (ステップ S 1 4)。 Finally, select the measurement accuracy required for the measurement (step S1 2), and calculate the Judging from the slope of the approximate expression of the height curve (step S13), the optimum interval between Za and Zb can be set (step S14).
このとき、 対物レンズの種類毎に予め、 近似式の傾きと測定精度との関係を定 義付けておき、 測定精度の判定をコンピュータによって行うのが望ましい。  At this time, it is desirable that the relationship between the slope of the approximate expression and the measurement accuracy is defined in advance for each type of objective lens, and the measurement accuracy is determined by a computer.
また、 I一 Zカーブのシフト量 Aも対物レンズの種類毎に定義しておくことが 望ましい。 '  It is also desirable that the shift amount A of the I-Z curve be defined for each type of objective lens. '
このような演算手順を備えた本実施例のパラメータ設定方法を備えた顕微鏡に おいて、 図 5 A— 5 Cに示すように試料 9の表面 9 sをはさむように、 図 1に示 す Zステージ 1 4を、 Z aと Z bとの間隔を上述のように測定条件に最適化され た値にして共焦点画像を得る。 このときの試料 9の高さと光検出器 12の出力と の関係は図 9 Aに示すように、 それぞれ、 焦点位置 Z a, Z bを中心位置とする I— Zカーブ l a (Z), l b (Z) になる。  In a microscope equipped with the parameter setting method of the present embodiment having such a calculation procedure, the surface 9 s of the sample 9 is sandwiched as shown in FIGS. In the stage 14, the interval between Za and Zb is set to a value optimized for the measurement conditions as described above, and a confocal image is obtained. As shown in FIG. 9A, the relationship between the height of the sample 9 and the output of the photodetector 12 at this time is an I-Z curve la (Z), lb with the focal positions Za and Zb as the center positions, respectively. (Z).
ここで Zステージ 14を Z a, Z bに位置決めしたときの光検出器 1 2の出力 を I a , I bとして差/和信号 ( l a— I b) / (I a + I b) を計算すると、 試 料 9の各高さにおいて図 9 Bに示すような関係が得られる。図 9 Bに示すように、 光検出器 1 2の出力の差 Z和は Z a位置と Z b位置との中点で 0となり、 その近 傍で試料高さにほぼ比例するものが得られる。 そこでこの差 Z和信号に高さ曲線 の近似式の傾きを乗ずることによって高さを得ることが出来る。  Here, the difference / sum signal (la-Ib) / (Ia + Ib) is calculated with the outputs of the photodetectors 12 when the Z stage 14 is positioned at Za and Zb as Ia and Ib. Then, a relationship as shown in FIG. 9B is obtained at each height of the sample 9. As shown in Fig. 9B, the difference Z sum of the outputs of the photodetectors 12 is 0 at the middle point between the Za position and the Zb position, and a value that is almost proportional to the sample height is obtained in the vicinity. . Therefore, the height can be obtained by multiplying the difference Z sum signal by the slope of the approximate expression of the height curve.
本実施例のパラメータ設定方法によれば、 高さ測定の際に要求される測定精度 に応じて、 Z aと Z bとの間隔を設定することができる。  According to the parameter setting method of the present embodiment, the interval between Za and Zb can be set according to the measurement accuracy required for height measurement.
第 9実施例 Ninth embodiment
図 23は本発明の第 9実施例にかかるパラメータ設定方法における演算手順を 示すフローチャートである。 本実施例のパラメータ設定方法では、 図 23に示す ような手順にそって、 計測範囲 (測定速度) から焦点位置 Z aと焦点位置 Z bと の間隔を設定する。  FIG. 23 is a flowchart showing a calculation procedure in the parameter setting method according to the ninth embodiment of the present invention. In the parameter setting method of the present embodiment, the interval between the focal position Za and the focal position Zb is set from the measurement range (measurement speed) according to the procedure shown in FIG.
具体的には、 まず、 ミラーなどの反射率の高い試料の表面で、 測定に使用する 対物レンズの第 1曲線として I— Zカーブ I a (Z) を取得する (ステップ S 1 5)。 次に、 取得した I— Z力一ブ I a (Z) を高さ方向 Zにコンピュータ内の計 算上、 ある量 Aだけシフトさせて (ステップ S 1 8)、 I一 Zカーブ l b (Z) = I a (Z+A) を算出する (ステップ S 1 9)。 次に、 それらの I一 Zカーブの差 /和を求める演算 { l a (Z) ~ I a (Z+A)} / { l a (Z) + 1 a (Z+A)} を行って第 2曲線として高さ曲線を算出する (ステップ S 20)。 次に、 この高さ 曲線の近似式 (一次式) を、 最小自乗法等を用いて導出する (ステップ S 2 1)。 高さ曲線の近似式を導出後、 まず、 高さ曲線の直線性について判定する (ステ ップ S 22)。 この判定の一例として、 Z aと Z bとの中点近傍において、 高さ曲 線と高さ曲線の近似式との誤差の自乗合計が著しく大きな値 (測定精度に影響が ある値) となっているか否かで判定する。 ここで、 髙さ曲線と高さ曲線の近似式 との誤差の自乗合計値が大きい場合は直線性が悪くなるので、 このときのシフト 量は不適当とし、 後述のステップ S 23〜S 25の処理は行わずに後述のステツ プ S 26の処理を行う。 Specifically, first, an I-Z curve Ia (Z) is obtained as the first curve of the objective lens used for measurement on the surface of a sample having a high reflectance such as a mirror (step S15). Next, the obtained I-Z force Ia (Z) is shifted in the height direction Z by a certain amount A in the computer calculation (step S18), and the I-Z curve lb (Z ) = Calculate I a (Z + A) (step S 19). Next, the operation {la (Z) ~ I a (Z + A)} / {la (Z) + 1 a (Z + A)} to calculate the difference / sum of those I-Z curves A height curve is calculated as a curve (step S20). Next, an approximate expression (linear expression) of the height curve is derived using a least squares method or the like (step S21). After deriving the approximate expression of the height curve, first, the linearity of the height curve is determined (step S22). As an example of this determination, the square sum of the error between the height curve and the approximation formula of the height curve is a remarkably large value (a value that affects the measurement accuracy) near the midpoint between Za and Zb. It is determined by whether or not there is. Here, if the sum of the squares of the error between the height curve and the approximation formula of the height curve is large, the linearity is deteriorated, so that the shift amount at this time is inappropriate, and the following steps S23 to S25 The processing in step S26 described below is performed without performing the processing.
ここで、 差 Z和信号の直線部分が広いほど、 試料高さの計測範囲が広くなる。 このときの試料 9の高さと光検出器 1 2の出力との関係は図 9 Aに示すようにな り、 差/和信号は図 9 Bに示すようになる。  Here, the wider the linear portion of the difference Z sum signal, the wider the measurement range of the sample height. The relationship between the height of the sample 9 and the output of the photodetector 12 at this time is as shown in FIG. 9A, and the difference / sum signal is as shown in FIG. 9B.
また、 差 Z和信号の直線部分の傾きが大きいほど、 試料高さに対する差 Z和信 号の変化が大きくなり、 試料高さ検出の感度が高くなり、 高精度な測定を行うこ とができる。 このときの試料 9の高さと光検出器 1 2の出力との関係は図 1 OA に示すようになり、 差 Z和信号は図 1 0 Bに示すようになる。  Also, as the slope of the linear portion of the difference Z sum signal increases, the change of the difference Z sum signal with respect to the sample height increases, the sensitivity of sample height detection increases, and highly accurate measurement can be performed. The relationship between the height of the sample 9 and the output of the photodetector 12 at this time is as shown in FIG. 1OA, and the difference Z sum signal is as shown in FIG. 10B.
次に計測範囲について考える。 ここで計測範囲とは、 高さ曲線の直線部分、 す なわち高さ曲線と高さ曲線の近似式とがほぼ一致する範囲である。 そこで、 高さ 曲線と高さ曲線の近似式との誤差の自乗が精度に影響が出ない最大の値となる高 さ曲線の高さ範囲を算出する (ステップ S 23)。 これを演算上の計測範囲とする。 そして、 算出した計測範囲が、 最低限要求される精度を満たす計測範囲 cより も狭いか否かを判断する (ステップ S 24)。 なお、 この判断に先立ち、 最低限要 求される精度を満たす計測範囲 cを対物レンズの種類別に予め設定しておく。 算出した計測範囲が、 計測範囲じよりも狭い場合には、 シフト量と近似式の傾 きと計測範囲をメモリに蓄積する (ステップ S 25)。  Next, the measurement range will be considered. Here, the measurement range is a straight line portion of the height curve, that is, a range in which the height curve and the approximate expression of the height curve substantially match. Therefore, the height range of the height curve where the square of the error between the height curve and the approximate expression of the height curve does not affect the accuracy is calculated (step S23). This is set as a measurement range in calculation. Then, it is determined whether or not the calculated measurement range is smaller than the measurement range c that satisfies the minimum required accuracy (step S24). Prior to this determination, a measurement range c that satisfies the minimum required accuracy is set in advance for each type of objective lens. If the calculated measurement range is smaller than the measurement range, the shift amount, the inclination of the approximate expression and the measurement range are stored in the memory (step S25).
次に、 算出した計測範囲が、 精度に対して計測範囲が小さすぎない、 すなわち 先行技術における高さ測定より高精度 .高速で測定できる最小の計測範囲 dより も広いか否かを判断する (ステップ S 26)。 なお、 この判断に先立ち、 計測範囲 dを対物レンズの種類別に予め設定しておく。 Next, the calculated measurement range is not too small for the accuracy, that is, higher than the height measurement in the prior art. It is determined whether or not is also wide (step S26). Prior to this determination, the measurement range d is set in advance for each type of objective lens.
算出した計測範囲が、 計測範囲 dよりも広い場合には、 I— Zカーブ l a (Z) を高さ方向 Zに計算上ある量 A +1だけシフ トした I— Z力一ブ I b i (Z) = I a (Z + A+1) の差/和から髙さ曲線を算出し (ステップ S 1 7〜S 20)、 同 様に高さ曲線の直線性と計測範囲を判定する。 これを繰り返し行い、 算出した計 測範囲が、 計測範囲 dより狭い場合には、 演算を終了する。 If the calculated measurement range is wider than the measurement range d, the I—Z curve la (Z) is shifted by a certain amount A +1 in the height direction Z in the height direction Z. A length curve is calculated from the difference / sum of Z) = Ia (Z + A + 1 ) (steps S17 to S20), and the linearity of the height curve and the measurement range are similarly determined. This operation is repeated, and if the calculated measurement range is smaller than the measurement range d, the calculation ends.
最後に、測定に要求される測定速度を選択し (ステップ S 27)、先に算出した 高さ曲線から求めた計測範囲から判断して (ステップ S 28)、最適な Z aと Z b との間隔を設定することが出来る (ステップ S 29)。  Finally, select the measurement speed required for measurement (step S27), judge from the measurement range obtained from the height curve previously calculated (step S28), and determine the optimal Za and Zb. The interval can be set (step S29).
このとき、 対物レンズの種類毎に予め、 測定範囲と測定速度との関係を定義し ておき、 測定速度の判定をコンピュータによって行うのが望ましい。 また、 I一 Zカープのシフト量 Aも対物レンズの種類毎に定義しておくことが望ましい。 このような演算手順を備えた本実施例のパラメータ設定方法を備えた顕微鏡に おいて、 図 5 A— 5 Cに示すように試料 9の表面 9 sをはさむように、 図 1に示 す Zステージ 14を、 Z aと Z bとの間隔を上述のように測定条件に最適化され た値にして共焦点画像を得る。 このときの試料 9の高さと光検出器 1 2の出力と の関係は図 9 Aに示すように、 それぞれ、 焦点位置 Z a, Z bを中心位置とする I— Zカーブ l a (Z), l b (Z) になる。  At this time, it is desirable that the relationship between the measurement range and the measurement speed is defined in advance for each type of objective lens, and the measurement speed is determined by a computer. It is also desirable to define the shift amount A of the I-Z carp for each type of objective lens. In a microscope equipped with the parameter setting method of the present embodiment having such a calculation procedure, the surface 9 s of the sample 9 is sandwiched as shown in FIGS. In the stage 14, the confocal image is obtained by setting the interval between Za and Zb to a value optimized for the measurement conditions as described above. As shown in FIG. 9A, the relationship between the height of the sample 9 and the output of the photodetector 12 at this time is an I-Z curve la (Z), where the focal positions Za and Zb are the center positions, respectively. lb (Z).
ここで Zステージ 14を Z a, Z bに位置決めしたときの光検出器 1 2の出力 を I a, I bとして差ノ和信号 (l a— I b) / (I a + I b) を計算すると、 試 料 9の各高さにおいて図 9 Bに示すような関係が得られる。 そこでこの差/和信 号に高さ曲線の近似式の傾きを乗ずることによって高さを得ることが出来る。 本実施例のパラメータ設定方法によれば、 高さ測定の際に要求される測定速度 (測定範囲) に応じて、 Z aと Z bとの間隔を設定することができる。  Here, assuming that the outputs of the photodetectors 12 when the Z stage 14 is positioned at Za and Zb are Ia and Ib, the difference sum signal (la—Ib) / (Ia + Ib) is calculated. Then, a relationship as shown in FIG. 9B is obtained at each height of the sample 9. Therefore, the height can be obtained by multiplying the difference / sum signal by the slope of the approximate expression of the height curve. According to the parameter setting method of the present embodiment, the interval between Za and Zb can be set according to the measurement speed (measurement range) required for height measurement.
第 1 0実施例 10th embodiment
図 24は本発明の第 1 0実施例にかかるパラメータ設定方法における演算手順 を示すフローチャートである。 本実施例のパラメータ設定方法では、 図 24に示 すような手順にそって、 測定精度と計測範囲 (測定速度) から焦点位置 Z aと焦 点位置 Z bとの間隔を設定する。 FIG. 24 is a flowchart showing a calculation procedure in the parameter setting method according to the tenth embodiment of the present invention. In the parameter setting method of this embodiment, the focal position Za and the focus position are determined from the measurement accuracy and the measurement range (measurement speed) according to the procedure shown in FIG. Set the distance from the point position Zb.
具体的には、 まず、 ミラーなどの反射率の高い試料の表面で、 測定に使用する 対物レンズの第 1曲線として I _ Z力1 "プ I a (Z) を取得する (ステップ S 3 0)。 次に、 取得した I一 Zカーブ I a (Z) を高さ方向 Zにコンピュータ内の計 算上、 ある量 Aだけシフトさせて (ステップ S 3 3)、 I一 Zカーブ I b (Z) = I a (Z + A) を算出する (ステップ S 34)。 次に、 それらの I— Zカーブの差 ノ和を求める演算 { l a (Z) - I a (Z+A)} / { l a (Z) + I a (Z + A)} を行って第 2曲線として高さ曲線を算出する (ステップ S 35)。 次に、 この高さ 曲線の近似式 (一次式) を、 最小自乗法等を用いて導出する (ステップ S 36)。 高さ曲線の近似式を導出後、 まず、 高さ曲線の直線性について判定する (ステ ップ S 3 7)。 この判定の一例として、 Z aと Z bとの中点近傍において、 高さ曲 線と高さ曲線の近似式との誤差の自乗合計が著しく大きな値 (測定精度に影響が ある値) となっているか否かで判定する。 ここで、 高さ曲線と高さ曲線の近似式 との誤差の自乗合計値が大きい場合は直線性が悪くなるので、 このときのシフ ト 量は不適当とし、 後述のステップ S 38〜 S 40の処理は行わずに後述のステツ プ S 41の処理を行う。 Specifically, first, on the surface of a sample having a high reflectivity such as a mirror, an I_Z force 1 "group Ia (Z) is acquired as a first curve of an objective lens used for measurement (step S30). Next, the obtained I-Z curve I a (Z) is shifted in the height direction Z by a certain amount A by calculation in the computer (step S33), and the I-Z curve I b ( Z) = I a (Z + A) is calculated (step S34) Next, the operation for calculating the sum of the differences of the I—Z curves {la (Z) −I a (Z + A)} / Perform {la (Z) + I a (Z + A)} to calculate the height curve as the second curve (step S 35) Next, the approximate expression (primary expression) of this height curve is (Step S36) After deriving the approximate expression of the height curve, first determine the linearity of the height curve (Step S37). High near the midpoint between Za and Zb Judgment is made based on whether or not the sum of the squares of the difference between the height curve and the approximation formula of the height curve is a remarkably large value (a value that affects measurement accuracy). If the sum of the squares of the error from the approximation formula is large, the linearity will be poor, so the shift amount at this time is inappropriate, and the processing in steps S38 to S40 described below is skipped and the processing in step S Perform the process of 41.
ここで、 差ノ和信号の直線部分が広いほど、 試料高さの計測範囲が広くなる。 このときの試料 9の高さと光検出器 1 2の出力の関係は図 9 Aに示すようになり、 差ノ和信号を図 9 Bに示すようになる。  Here, the wider the linear portion of the difference sum signal, the wider the measurement range of the sample height. The relationship between the height of the sample 9 and the output of the photodetector 12 at this time is as shown in FIG. 9A, and the difference sum signal is as shown in FIG. 9B.
また、 差/和信号の直線部分の傾きが大きいほど、 試料高さに対する差 Z和信 号の変化が大きくなり、 試料高さ検出の感度が高くなり、 高精度な測定を行うこ とができる。 このときの試料 9の高さと光検出器 1 2の出力との関係は図 1 OA に示すようになり、 差/和信号は図 1 0 Bに示すようになる。  Also, as the slope of the linear portion of the difference / sum signal is greater, the change of the difference Z sum signal with respect to the sample height is greater, the sensitivity of sample height detection is higher, and highly accurate measurement can be performed. The relationship between the height of the sample 9 and the output of the photodetector 12 at this time is as shown in FIG. 1OA, and the difference / sum signal is as shown in FIG. 10B.
次に、 近似式の傾きが最低限要求される精度を満たす傾き aを満たしているか 否かを判断する (ステップ S 38)。 なお、 この判断に先立ち、 最低限要求される 精度を導き出すことが可能な傾きの値 aを対物レンズの種類別に予め設定してお 近似式の傾きが最低限要求される精度を満たす傾き aよりも大きい場合には、 次に計測範囲について考え、 高さ曲線と近似式の誤差の自乗が精度に影響が出な い最大の値となる高さ曲線の高さ範囲を算出する (ステップ S 39)。 これを演算 上の計測範囲とする。 そして、 条件を満たすシフ ト量と近似式の傾きと算出した 計測範囲をメモリに蓄積する (ステップ S 40)。 Next, it is determined whether or not the slope of the approximate expression satisfies the slope a that satisfies the minimum required accuracy (step S38). Prior to this determination, the slope value a that can derive the minimum required accuracy is set in advance for each type of objective lens, and the slope of the approximate expression is calculated from the slope a that satisfies the minimum required accuracy. If is also large, then consider the measurement range, and the square of the error between the height curve and the approximation does not affect the accuracy. The height range of the height curve having the maximum value is calculated (step S39). This is the measurement range for calculation. Then, the shift amount satisfying the condition, the slope of the approximate expression, and the calculated measurement range are stored in the memory (Step S40).
次に、 算出した計測範囲が、 精度に対して計測範囲が小さすぎない、 すなわち 先行技術における高さ測定より高精度 ·高速で測定できる最小の計測範囲 dより も広いか否かを判断する (ステップ S 41)。 なお、 この判断に先立ち、 計測範囲 dを対物レンズの種類別に予め設定しておく。  Next, it is determined whether or not the calculated measurement range is not too small for the accuracy, that is, whether the calculated measurement range is wider than the minimum measurement range d that can be measured with higher accuracy and higher speed than the height measurement in the prior art ( Step S 41). Prior to this determination, the measurement range d is set in advance for each type of objective lens.
算出した計測範囲が、 計測範囲 dよりも広い場合には、 I一 Zカーブ l a (Z) を高さ方向 Zに計算上ある量 A +1だけシフトした I— Zカーブ I b (Z) I a (Z +A+1) の差 Z和から高さ曲線を算出し (ステップ S 31〜S 35)、 同様 に高さ曲線の直線性と近似式の傾きを判定する。 これを繰り返し行い、 算出した 計測範囲が、 計測範囲 dより狭い場合には、 演算を終了する。 If the calculated measurement range is wider than the measurement range d, I-Z curve I b (Z) I—Z curve la (Z) shifted by a certain amount A +1 in the height direction Z A height curve is calculated from the difference Z sum of a (Z + A + 1 ) (steps S31 to S35), and similarly, the linearity of the height curve and the slope of the approximate expression are determined. This operation is repeated, and if the calculated measurement range is smaller than the measurement range d, the calculation is terminated.
最後に、測定に要求される測定精度と測定速度を選択し (ステップ S 42)、 先 に算出した高さ曲線の近似式の傾きと高さ曲線から求めた計測範囲から判断して (ステップ S 43)、最適な Z aと Z bとの間隔を設定することが出来る (ステツ プ S 44)。  Finally, select the measurement accuracy and measurement speed required for measurement (step S42), and judge from the slope of the approximation formula of the height curve calculated previously and the measurement range obtained from the height curve (step S42). 43), the optimum distance between Za and Zb can be set (step S44).
その際、 測定精度と測定速度との関係は図 25に表されるような反比例の関係 になる。 そしてその関係は、 対物レンズ毎に異なっており、 このようなグラフを、 I - Zカーブをシフトさせることによって、 コンピュータ上でプロットすること で、測定者が要求する測定精度と測定速度とのパランスを選択することが出来る。 At that time, the relationship between the measurement accuracy and the measurement speed is inversely proportional as shown in FIG. The relationship is different for each objective lens, and such a graph is plotted on a computer by shifting the I-Z curve to obtain a balance between measurement accuracy and measurement speed required by the operator. Can be selected.
→また、 I一 Zカーブのシフト量 Aも対物レンズの種類毎に定義してあることが 望ましい。 → In addition, it is desirable that the shift amount A of the I-Z curve is defined for each type of objective lens.
このような演算手順を備えた本実施例のパラメータ設定方法を備えた顕微鏡に おいて、 図 5 A— 5 Cに示すように試料 9の表面 9 sをはさむように、 図 1に示 す Zステージ 1 4を、 Z aと Z bとの間隔を上述のように測定条件に最適化され た値にして共焦点画像を得る。 このときの試料 9の高さと光検出器 1 2の出力と の関係は図 9 Aに示すように、 それぞれ、 焦点位置 Z a, Z bを中心位置とする I一 Zカーブ l a (Z), l b (Z) になる。  In a microscope equipped with the parameter setting method of the present embodiment having such a calculation procedure, the surface 9 s of the sample 9 is sandwiched as shown in FIGS. In the stage 14, the interval between Za and Zb is set to a value optimized for the measurement conditions as described above, and a confocal image is obtained. As shown in FIG. 9A, the relationship between the height of the sample 9 and the output of the photodetector 12 at this time is, as shown in FIG. 9A, the I-Z curves la (Z), lb (Z).
ここで Zステージ 1 4を Z a, Z bに位置決めしたときの光検出器 1 2の出力 を I a , I bとして差/和信号 (l a— l b ) (I a + I b ) を計算すると、 試料 9の各高さにおいて図 9 Bに示す関係が得られる。 そこでこの差ノ和信号に 高さ曲線の近似式の傾きを乗ずることによって高さを得ることが出来る。 Here, the output of the photodetector 12 when the Z stage 14 is positioned at Za and Zb When the difference / sum signal (la-lb) (Ia + Ib) is calculated with the values of Ia and Ib, the relationship shown in FIG. 9B at each height of the sample 9 is obtained. Therefore, the height can be obtained by multiplying the difference sum signal by the slope of the approximate expression of the height curve.
本実施例のパラメータ設定方法によれば、 高さ測定の際に必要とする測定速度 (計測範囲) と測定精度に応じて、 Z aと Z bとの間隔を設定することができる。 なお、 第 8〜 1 0実施例においては、 演算はコンピュータを用いて自動で行わ れることが望ましい。 また、 第 8〜 1 0実施例において高さ曲線の近似式は、 高 さ曲線の直線部分のみを近似したものであることが望ましい。  According to the parameter setting method of the present embodiment, the interval between Za and Zb can be set according to the measurement speed (measurement range) and measurement accuracy required for height measurement. In the eighth to tenth embodiments, it is desirable that the calculation is automatically performed using a computer. In the eighth to tenth embodiments, it is desirable that the approximate expression of the height curve approximates only the straight line portion of the height curve.
変形例 Modified example
第 8— 1 0実施例では、 本発明のパラメータ設定方法が適用される共焦点走査 型顕微鏡として図 1に示すような構成のものを用いたが、 これに限らず各種の共 焦点走査型顕微鏡に適用することができる。  In the eighth to tenth embodiments, the confocal scanning microscope to which the parameter setting method of the present invention is applied has a configuration as shown in FIG. 1, but is not limited thereto and various confocal scanning microscopes are used. Can be applied to
例えば、 対物レンズ 8による集束光を試料 9の表面に沿って相対的に走査させ る走査機構として、 光軸に垂直な面内で試料 9を移動させる X Yステージを用い ても良い。 また、 円盤上にスパイラル状に複数の微小開口を設けた N i p k o w ディスクを高速回転させる構成であっても良い。 このとき、 前記 N i p k o wデ イスクが対物レンズの集光位置と共役な位置に配置される微小開口を兼ね、 光検 出器として C C D等の 2次元画像センサを用いる。 さらには、 2次元光走査機構 に変えて、 1次元光スキャナによって対物レンズの集束光を試料の 1ライン上で 走査し、 試料の断面形状を測定するような構成であっても良い。  For example, an XY stage that moves the sample 9 in a plane perpendicular to the optical axis may be used as a scanning mechanism that relatively scans the focused light by the objective lens 8 along the surface of the sample 9. Further, a configuration may be employed in which a Nip kow disk having a plurality of minute openings spirally formed on a disk is rotated at a high speed. At this time, the Nipkow disk also serves as a minute aperture arranged at a position conjugate to the condensing position of the objective lens, and a two-dimensional image sensor such as a CCD is used as a light detector. Further, instead of the two-dimensional optical scanning mechanism, a configuration may be employed in which the focused light of the objective lens is scanned on one line of the sample by a one-dimensional optical scanner to measure the cross-sectional shape of the sample.
また、 対物レンズ 8の集光位置と試科 9の位置とを相対的に移動させる移動機 構も、 試料 9の位置を移動させる Zステージ 1 4に変えて対物レンズ 8を移動す る機構を用いても良い。 その他、 上記の構成に限らず、 各種の共焦点顕微鏡に本 発明を適用することができる。  In addition, a moving mechanism that relatively moves the focusing position of the objective lens 8 and the position of the sample 9 also includes a mechanism that moves the objective lens 8 instead of the Z stage 14 that moves the position of the sample 9. May be used. In addition, the present invention is not limited to the above configuration, and can be applied to various confocal microscopes.
また、 図 2 2〜2 4に示す実施例の測定パラメータ設定方法では、 測定精度と 測定速度のパランスの選択を高さ曲線の算出の後にしたが、 選択の入力は I一 Z カーブ l b ( Z ) の算出よりも前に行ってもよく、 入力された条件を満たす高さ 曲線の近似式が算出された後すぐに結果を出力するようにしてもよい。  In the measurement parameter setting method of the embodiment shown in FIGS. 22 to 24, the selection of the balance between the measurement accuracy and the measurement speed is performed after the calculation of the height curve. ) May be performed prior to the calculation, or the result may be output immediately after the approximate expression of the height curve satisfying the input condition is calculated.
また、 上記各実施例においては、 I _ Zカーブ l a ( Z ) の取得をミラー等の 反射率が高いもので行うこととしたが、 試料 9で行ってもよい。 また、 上記実施 例において用いた a, b, c , dの値は各々の境界となる値より余裕を持ってい ることが望ましい。 また、 上記各実施例においては、 I一 Zカーブ l a (Z) と I— Zカーブ l b (Z) のシフ ト量を小さい値から大きい値に変化させたが、 大 きい値から小さい値に変化させてもよい。 In each of the above embodiments, the acquisition of the I_Z curve la (Z) is performed by using a mirror or the like. Although the measurement was performed with a high reflectivity, the measurement may be performed with the sample 9. Further, it is desirable that the values of a, b, c, and d used in the above embodiment have a margin more than the values at the boundaries. In each of the above embodiments, the shift amount of the I-Z curve la (Z) and the I-Z curve lb (Z) was changed from a small value to a large value, but the shift amount was changed from a large value to a small value. May be.
また、 上記各実施例においては、 図 5 A— 5 Cに示すように、 試料 9の表面 9 sをはさむような Z aと Z bの間隔の最適化を行ってきたが、 図 26 Aに示すよ うな比較的大きな凹凸を持つ試料 9の高さ測定にかかわる測定にも適用してよい c この際、 最適な Zkと Zk+ iとの間隔を上記各実施例と同様に測定条件を満たす ように設定して、 Zステージ 1 4を から Znまで順次位置決めして焦点画像を 得る。 ここで Zステージ 1 4を Z k, Z k+;に位置決めしたときの光検出器 1 2 の出力を I k, I k+ iとして差 Z和信号 (I k+ i_ I k) / ( I k + i+ I k) を計 算すると、 試料 9の各高さにおいて図 27 Aに示すような関係が得られる。 図 2 7 Bに示すように光検出器 1 2の出力の差 Z和は、 Z kと Z k+ iとの中点で 0と なり、 その近傍で試料高さにほぼ比例する。 そこで、 この差 Z和信号に高さ曲線 の近似式の傾きを乗じ、 Zkと Z k + iの平均値を加えると試料 9の高さを得るこ とができる。 ここで Zkと Zk + iとの間隔は、 図 26 Bに示すように、 Zk, Zk + iの計測範囲と Zk + 1, Zk + 1 + iの計測範囲とが交わるように設定しなくてはな らない。 Further, in each of the above embodiments, as shown in FIGS. 5A to 5C, the interval between Za and Zb was optimized so as to sandwich the surface 9 s of the sample 9. this height may be applied to the measurement according to the measurement c in sample 9 with O UNA relatively large irregularities indicating time, the optimal Z k and Z k + i in the same manner as in the measurement conditions and the above-described embodiments the distance set so as to satisfy, to obtain a focused image by sequentially positioned from the Z stage 1 4 to Z n. Here, the output of the photodetector 12 when the Z stage 14 is positioned at Z k , Z k + ; is defined as I k , I k + i , and the difference Z sum signal (I k + i _ I k ) / (I k + When i + I k ) is calculated, a relationship as shown in FIG. 27A is obtained at each height of the sample 9. The difference Z sum of the outputs of the optical detectors 1 2 as shown in FIG. 2 7 B becomes zero at the midpoint of the Z k and Z k + i, substantially proportional to the sample height in the vicinity. Therefore, the height of the sample 9 can be obtained by multiplying the difference Z sum signal by the slope of the approximate expression of the height curve and adding the average value of Z k and Z k + i . Here the interval between the Z k and Z k + i, as shown in FIG. 26 B, intersect the measurement range of the Z k, the measurement range of the Z k + i and Z k + 1, Z k + 1 + i Must be set as follows.
また、 ここまで高さ曲線の近似式は一次式としていたが、 一次式に限らず n次 式で近似してもよい。 この場合計測範囲は高さ曲線の直線部分に限らない。 ただ し曲線部分では精度が下がるので、係数として Z aと Z bの差 和の結果に乗ずる 際に捕正をかけるのが望ましい。 In addition, the approximation formula of the height curve has been linear expression so far, but the approximation formula is not limited to the linear expression, but may be approximated by an n-order expression. In this case, the measurement range is not limited to the linear portion of the height curve. However Shi because accuracy is lowered in the curved portion, that apply a ToTadashi when multiplied to the result of the difference between the sum of Z a and Z b as coefficients desirable.

Claims

請求の範囲 The scope of the claims
1 . 光源からの光を試料に対して集束させる対物レンズと、 1. An objective lens that focuses light from the light source on the sample,
前記集束光の光軸方向に沿って、 前記対物レンズの集光位置と前記試料の位置 を光軸方向に相対的に移動させる移動機構と、  A moving mechanism that relatively moves a condensing position of the objective lens and a position of the sample along the optical axis direction of the focused light in the optical axis direction;
前記対物レンズの集光位置と共役な位置に配置された微小開口部材と、 前記微小開口部材を通過する光の強度を検出する光検出器とを備えた高さ測定 装置において、  A height measuring device comprising: a small aperture member disposed at a position conjugate to a condensing position of the objective lens; and a photodetector for detecting an intensity of light passing through the small aperture member.
前記対物レンズの集光位置と前記試料の相対位置とを変えて 2つの光検出器の 出力を取得し、 試料各点の高さ情報を得る高さ測定機能を備えたことを特徴とす る高さ測定装置。  A height measuring function for obtaining outputs of two photodetectors by changing a focusing position of the objective lens and a relative position of the sample, and obtaining height information of each point of the sample. Height measuring device.
2 . 前記高さ測定装置は、 前記集束光を試料表面に沿って相対的に走査させ る走査機構を有する共焦点走査型顕微鏡であることを特徴とする請求項 1に記載 の高さ測定装置。  2. The height measuring device according to claim 1, wherein the height measuring device is a confocal scanning microscope having a scanning mechanism for relatively scanning the focused light along a sample surface. .
3 . 対応する各画素毎に前記光検出器の出力差を前記光検出器の出力の和で 除算し、 適当な多項式に代入することによって、 試料各点の高さ情報を得ること を特徴とする請求項 1に記載の高さ装置。  3. For each corresponding pixel, the height difference at each point of the sample is obtained by dividing the output difference of the photodetector by the sum of the outputs of the photodetectors and substituting it into an appropriate polynomial. The height device according to claim 1, wherein
4 . コンピュータが前記共焦点顕微鏡の高さ測定を制御するための制御プロ グラムを記録した記録媒体を含んでいて、 対物レンズの集光位置と試料の相対位 置とを変えて撮像した 2枚の共焦点画像から、 対応する各画素毎の差を各画素毎 の和で除算し、 適当な多項式に代入することによって、 試料各点の高さ情報を得 ることを特徴とする請求項 2に記載の高さ測定装置。  4. Two images captured by changing the focusing position of the objective lens and the relative position of the sample, including a recording medium on which a computer has recorded a control program for controlling the height measurement of the confocal microscope The height information of each point of the sample is obtained by dividing the corresponding difference of each pixel by the sum of each pixel from the confocal image of the above and substituting it into an appropriate polynomial. The height measuring device according to item 1.
5 . 光源からの光を試料に対して集束させる対物レンズと、  5. An objective lens that focuses light from the light source on the sample,
集束光を試料表面に沿って相対的に走査させる走査機構と、  A scanning mechanism for relatively scanning the focused light along the sample surface,
集束光の光軸方向に沿って、 対物レンズの集光位置と試料の位置を光軸方向に 相対的に移動させる移動機構と、  A moving mechanism for relatively moving the focus position of the objective lens and the position of the sample along the optical axis of the focused light in the optical axis direction;
対物レンズの集光位置と共役な位置に配置された微小開口部材と、  A micro-aperture member arranged at a position conjugate with the focusing position of the objective lens,
微小開口部材を通過する光の強度を検出する光検出器とを備えた試料の高さ測 定方法において、 対物レンズの集光位置と試料の相対位置を変えて 2つの光検出器の出力を取得 し、 試料各点の高さ情報を得ることを特徴とする試料の高さ測定方法。 A method for measuring the height of a sample, comprising: a photodetector for detecting the intensity of light passing through the minute aperture member; A method for measuring the height of a sample, which acquires the output of two photodetectors by changing the focusing position of the objective lens and the relative position of the sample, and obtains height information for each point of the sample.
6 . 前記高さ情報を得る多項式は、 1次式であることを特徴とする請求項 5 に記載の試料の高さ測定方法。  6. The method according to claim 5, wherein the polynomial for obtaining the height information is a linear expression.
7 . 前記 1次式に代入される計算式を得るため、  7. To get the equation to be substituted into the linear equation,
2枚の共焦点画像における対物レンズの集光位置と試料の相対位置の差は、 相 対位置一光検出器出力信号強度曲線の半値全幅の 0 . 3倍ないし 2倍であること を特徴とする請求項 6に記載の試料の高さ測定方法。  The difference between the converging position of the objective lens and the relative position of the sample in the two confocal images is 0.3 to 2 times the full width at half maximum of the relative position-one photodetector output signal intensity curve. 7. The method for measuring the height of a sample according to claim 6, wherein:
8 . 対物レンズの集光位置と試料の相対位置を一定の移動量で順次変えて複 数枚の共焦点画像を撮像し、 2枚の対物レンズの集光位置と試料の相対位置の差 からなるずらし量が上記移動量の整数倍である 2枚の共焦点画像間で対応する各 画素毎に光検出器の出力に応じて試料各点の高さ情報を得ることを特徴とする請 求項 5に記載の試料の高さ測定方法。  8. A plurality of confocal images are taken by sequentially changing the focus position of the objective lens and the relative position of the sample by a fixed amount of movement, and the difference between the focus position of the two objective lenses and the relative position of the sample is calculated. A request for obtaining height information of each point of a sample according to an output of a photodetector for each corresponding pixel between two confocal images in which a shift amount is an integral multiple of the movement amount. Item 6. The method for measuring the height of a sample according to Item 5.
9 . 光検出器の出力の差 Z和を計算し、 この計算値を所定の多項式に代入し、 その結果に 2つの光検出器の出力を取得し、 対応する各画素毎に光検出器の出力 の差/和を計算し、 この計算値に所定の多項式に代入することによって、 試料各 点の高さ情報を得ることを特徴とする請求項 8に記載の試料の高さ測定方法。 9. Calculate the difference Z sum of the outputs of the photodetectors, substitute the calculated value into a predetermined polynomial, obtain the outputs of the two photodetectors, and obtain the outputs of the photodetectors for each corresponding pixel. 9. The method for measuring the height of a sample according to claim 8, wherein the difference / sum of the outputs is calculated, and the height information of each point of the sample is obtained by substituting the calculated value into a predetermined polynomial.
1 0 . 前記移動量は、 前記 2枚の共焦点画像を得るずらし量であることを特徴 とする請求項 8に記載の試料の高さ測定方法。 10. The method according to claim 8, wherein the movement amount is a shift amount for obtaining the two confocal images.
1 1 . 前記移動量が相対位置一光検出器出力信号強度曲線の半値全幅の 0 . 3 倍ないし 0 . 8倍であることを特徴とする請求項 1 0に記載の試料の高さ測定方 法。  11. The method according to claim 10, wherein the amount of movement is 0.3 to 0.8 times the full width at half maximum of the relative position-one photodetector output signal intensity curve. Law.
1 2 . 前記光検出器からの信号を画像データとして記憶する記憶装置と複数の 入力端と少なくとも一つの出力端とを有し、 これらの入力端からの複数の入力に 対して所定の値を出力するルツクアツプテーブルとを備えた演算装置とを更に備 え、  12. A storage device for storing a signal from the photodetector as image data, a plurality of input terminals, and at least one output terminal, and a predetermined value is input to a plurality of inputs from these input terminals. An arithmetic unit having a lookup table for outputting,
前記演算装置が、 前記対物レンズの集光位置と前記所定位置の相対位置とを変 えて複数の画像データを取得する過程と、  A step in which the arithmetic unit acquires a plurality of image data by changing a focusing position of the objective lens and a relative position of the predetermined position;
前記取得した複数の画像データのうち隣接する集光位置における 2つの画像デ ータの、 一方の集光位置における画像データを前記記憶装置を介して前記ルック アップテーブルに入力すると共に、 他方の集光位置における画像データを前記ル ックアップテーブルに直接入力する過程とを備えたことを特徴とする請求項 1に 記載の高さ測定装置。 Of the plurality of image data obtained above, two Inputting the image data at one of the light-collecting positions to the look-up table via the storage device, and directly inputting the image data at the other light-collecting position to the look-up table. The height measuring device according to claim 1, wherein:
1 3. 第 1の集光位置における画像データの最小値を Ami n、 最大値を Amax、 第 2の集光位置における画像データの最小値を Bmi n、 最大値を Bma xとし、 最 小値 A m から最大値 A m a xまでの間に m個のデータ、 最小値 B mnから最大値 Bma xまでの間に n個のデータがあるとした場合、前記ルックアップテーブルが、 少なくとも次のデータ C ( i , j ) を有することを特徴とする請求項 1 2に記載 の高さ測定装置。 1 3. The minimum value of the image data and A mi n, the maximum value A max, the minimum value B mi n of the image data in the second collection point, the maximum value B ma x at the first collection point M data from the minimum value A m to the maximum value A max , the minimum value B m ! If the there are n data between the n to the maximum value B ma x, the look-up table, at least the following data C (i, j) according to claim 1 2, characterized in that it has a Height measuring device.
C ( i, j ) = (B j -A i ) / (B j +A i )  C (i, j) = (B j -A i) / (B j + A i)
但し、 i = l, 2 , 3, ·■·, m、 j = 1 , 2, 3, ···, nであって、 m, nは整 数である。 また、 Ami n A i ≤Ama x、 Bmi n≤B j ≤Bma xである。 'Here, i = 1, 2, 3, 3, m, and j = 1, 2, 3,…, n, where m and n are integers. Also, A mi n A i ≤A ma x, a B mi n ≤B j ≤B ma x . '
14. 前記演算装置は、 前記他方の集光位置における画像データを前記記憶装 置を介して前記ルックアップテーブルに入力すると共に、 前記他方の集光位置に 隣接し且つ前記一方の集光位置とは異なる別の集光位置における画像データを前 記ルックアツプテーブルに直接入力する過程と、 14. The arithmetic unit inputs the image data at the other light-collecting position to the look-up table via the storage device, and outputs the image data at a position adjacent to the other light-collecting position and the one light-collecting position. Directly inputting image data at different light condensing positions into the look-up table,
その過程における前記ルックアップテーブルからの出力に、 前記一方の集光位 置から前記他方の集光位置までの距離を加算する過程とを有することを特徴とす る請求項 1 2又は 1 3に記載の高さ測定装置。  A step of adding a distance from the one light-collecting position to the other light-collecting position to an output from the lookup table in the process. The height measuring device as described.
1 5. 前記ルックアップテーブルは、 所定の範囲を示す閾値を有し、 所定の範 囲内の場合のみ C ( i , j ) を出力することを特徴とする請求項 13に記載の高 さ測定装置。  15. The height measuring apparatus according to claim 13, wherein the lookup table has a threshold value indicating a predetermined range, and outputs C (i, j) only when the value falls within the predetermined range. .
1 6. 前記データ C ( i , j ) に所定の補正が加えられていることを特徴とす る請求項 1 3に記載の高さ測定装置。  16. The height measuring apparatus according to claim 13, wherein a predetermined correction is applied to the data C (i, j).
1 7. 前記演算装置が、 前記所定の範囲を変更する過程を備えていることを特 徴とする請求項 1 5に記載の高さ測定装置。  17. The height measuring device according to claim 15, wherein the arithmetic device includes a step of changing the predetermined range.
1 8. 前記ルックアップテーブルが、 C ( i , j ) が該所定の範囲外の場合に は、 範囲情報を出力することを特徴とする請求項 1 3に記載の高さ測定装置。 18. The height measuring apparatus according to claim 13, wherein the look-up table outputs range information when C (i, j) is outside the predetermined range.
1 9. 前記対物レンズの集光位置と前記試料との相対位置を変えて 2枚の共 焦点画像を撮像し、 それぞれの共焦点画像に対応する各画素毎に前記光検出器に よる出力の差 Z和、 又は、 除算値を計算し、 適当なスケーリングをすることによ つて試料の各点における高さ情報を得る高さ情報演算手段と、 1 9. Two confocal images are captured by changing the focusing position of the objective lens and the relative position of the sample, and the output of the photodetector is output for each pixel corresponding to each confocal image. Height information calculating means for calculating a sum of differences or a division value and obtaining height information at each point of the sample by performing an appropriate scaling; and
前記高さ情報演算手段で得た高さ情報と前記光検出器の出力と 「輝度一焦点位 置」 特性とにより、 試料各点の合焦位置での輝度値を得る輝度演算手段とを有す ることを特徴とする請求項 1に記載の高さ測定装置。  A luminance calculating means for obtaining a luminance value at the in-focus position of each point of the sample based on the height information obtained by the height information calculating means, the output of the photodetector, and the "luminance-one focus position" characteristic; The height measuring device according to claim 1, wherein
20. 前記輝度演算手段は、 「輝度-焦点位置」 特性の理論値を用いることを特 徴とする請求項 1 9に記載の高さ測定装置。  20. The height measuring apparatus according to claim 19, wherein the luminance calculating means uses a theoretical value of a “luminance-focus position” characteristic.
21. 前記輝度演算手段は、 「輝度-焦点位置」 特性の実測値を用いることを特 徴とする請求項 1 9に記載の高さ測定装置。  21. The height measuring apparatus according to claim 19, wherein the luminance calculating means uses an actual measurement value of a “luminance-focus position” characteristic.
22. 前記輝度演算手段は、前記高さ情報演算手段より得られた各点における高さ 情報と、取得した 2枚の共焦点画像のいずれか一方の位置の高さ情報より、各点のデ フォーカス量を求める除算手段と、前記デフォーカス量と、それに対応する輝度デー タを選択可能なルックアップテーブルを用いて、試料各点の合焦位置における輝度を 得ることを特徴とする請求項 1 9乃至 21のいずれかに記載の高さ測定装置。  22. The brightness calculating means calculates the data of each point from the height information at each point obtained by the height information calculating means and the height information at one of the two acquired confocal images. 2. The luminance at each in-focus position of each sample point is obtained by using a dividing means for obtaining a focus amount and a lookup table capable of selecting the defocus amount and luminance data corresponding to the defocus amount. 22. The height measuring device according to any one of 9 to 21.
23. 各点のデフォーカス量は、 2枚の共焦点画像の各点において輝度の大きい方 の位置の高さ情報より求めることを特徵とする請求項 22に記載の高さ測定装置。 23. The height measuring device according to claim 22, wherein the defocus amount of each point is obtained from height information of a position having a larger luminance at each point of the two confocal images.
24. 相対位置を示す第 1の軸と該第 1の軸に直交し光強度信号を示す第 2の 軸との座標軸で表される曲線であって、 予め取得しておいた第 1の曲線 I (Z) を、 第 1軸に沿って所定量 A移動させる過程と、 24. A curve represented by coordinate axes of a first axis indicating a relative position and a second axis orthogonal to the first axis and indicating a light intensity signal, the first curve being obtained in advance. Moving I (Z) by a predetermined amount A along the first axis;
前記所定量 A移動する前の第 1曲線 I (Z) と移動後の第 1曲線 I (Z+A) を用いて、 演算 { I (Z) 一 I (Z+A)} / { I (Z) + I (Z+A)} を行い、 第 2の曲線を得る過程と、  Using the first curve I (Z) before the movement by the predetermined amount A and the first curve I (Z + A) after the movement, an operation {I (Z) -I (Z + A)} / {I ( Z) + I (Z + A)} to obtain a second curve,
第 2曲線を所定の条件で評価する過程とを備え、  Evaluating the second curve under predetermined conditions,
前記所定量 Aの値を変えて上記各過程を行い、 所望の前記移動量 Aを得ること を特徴とするパラメータ設定方法。  A parameter setting method, wherein the above-described steps are performed by changing the value of the predetermined amount A to obtain the desired movement amount A.
25. 前記第 1の曲線 I (Z) は、 光源からの光を所定の位置に集光させる対 物レンズと、 前記所定の集光位置と共役な位置に配置された微小開口と、 前記微 小開口を通過する光の強度を検出する光検出器とを備えた構成において、 前記集 光位置近傍で対物レンズと試料との距離を光軸方向に沿つて移動させたときの相 対移動量と、 各相対位置における前記光検出器からの出力とによって得られるこ とを特徴とする請求項 2 4に記載のパラメータ設定方法。 25. The first curve I (Z) includes an objective lens for condensing light from a light source at a predetermined position, a minute aperture disposed at a position conjugate to the predetermined light condensing position, A light detector that detects the intensity of light passing through the small aperture, wherein a relative movement amount when a distance between the objective lens and the sample is moved along the optical axis direction near the light collection position. 26. The parameter setting method according to claim 24, wherein the parameter setting method is obtained based on an output from the photodetector at each relative position.
2 6 . 前記所定の条件が、 測定条件に応じて選択可能であることを特徴とする 請求項 2 4又は 2 5に記載のパラメータ設定方法。  26. The parameter setting method according to claim 24, wherein the predetermined condition is selectable according to a measurement condition.
2 7 . 前記測定条件が、 対物レンズの種類、 要求される測定速度と測定精度及 び測定試料であることを特徴とする請求項 2 6に記載のパラメ一タ設定方法。 27. The parameter setting method according to claim 26, wherein the measurement conditions are a type of an objective lens, a required measurement speed and a measurement accuracy, and a measurement sample.
2 8 . 前記所定の条件が、 前記第 2の曲線の直線性であって、 該直線性を判定 する過程を備えていることを特徴とする請求項 2 4又は 2 5に記載のパラメータ 設定方法。 28. The parameter setting method according to claim 24, wherein the predetermined condition is a linearity of the second curve, and a step of determining the linearity is provided. .
2 9 . 前記所定の条件が、 前記第 2の曲線を 1次式で近似したときの近似式の 傾きであって、 該近似式の傾きを判定する過程を備えていることを特徴とする請 求項 2 4又は 2 5に記載のパラメータ設定方法。  29. The method according to claim 29, wherein the predetermined condition is a gradient of an approximate expression when the second curve is approximated by a linear expression, and the method includes a step of determining a gradient of the approximate expression. Parameter setting method according to claim 24 or 25.
3 0 . 前記所定の条件が、 前記第 2の曲線と前記近似式とが略一致する範囲で あって、 該一致する範囲を判定する過程を備えていることを特徴とする請求項 2 9に記載のパラメータ設定方法。  30. The method according to claim 29, wherein the predetermined condition is a range in which the second curve and the approximation formula are substantially coincident with each other, and further comprising a step of determining the coincident range. Parameter setting method described.
3 1 . 移動量を順次変化させて複数の第 2曲線を得る過程を備えているこど特 徴とする請求項 2 4又は 2 5に記載のパラメータ設定方法。 '  31. The parameter setting method according to claim 24 or 25, further comprising a step of obtaining a plurality of second curves by sequentially changing the movement amount. '
PCT/JP2002/002659 2001-03-22 2002-03-20 Height measuring instrument, and method of measuring height using the same WO2002077567A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2001-082593 2001-03-22
JP2001082593A JP2002286423A (en) 2001-03-22 2001-03-22 Sample height measurement method, confocal microscope, and record medium with height measurement program of the confocal microscope recorded thereon, and the program
JP2001223992A JP2003035519A (en) 2001-07-25 2001-07-25 Height measuring device
JP2001-223992 2001-07-25
JP2001-228111 2001-07-27
JP2001228111A JP2003042720A (en) 2001-07-27 2001-07-27 Height measuring apparatus
JP2001-229114 2001-07-30
JP2001229114A JP2003043364A (en) 2001-07-30 2001-07-30 Method of setting parameter

Publications (1)

Publication Number Publication Date
WO2002077567A1 true WO2002077567A1 (en) 2002-10-03

Family

ID=27482128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002659 WO2002077567A1 (en) 2001-03-22 2002-03-20 Height measuring instrument, and method of measuring height using the same

Country Status (1)

Country Link
WO (1) WO2002077567A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107064A1 (en) * 2002-06-01 2003-12-24 オリンパス光学工業株式会社 Confocal microscope and method for measuring by confocal microscope
CN102589466A (en) * 2012-01-17 2012-07-18 浙江大学 Contour microscopic method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571931A (en) * 1991-09-17 1993-03-23 Kowa Co Solid shape measuring device
JPH0979844A (en) * 1995-09-14 1997-03-28 Nippon Telegr & Teleph Corp <Ntt> Calibration method of distance measuring sensor
JPH0996512A (en) * 1995-09-29 1997-04-08 Takaoka Electric Mfg Co Ltd Three-dimensional-shape measuring apparatus
JPH11264933A (en) * 1998-03-17 1999-09-28 Yokogawa Electric Corp Confocal device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571931A (en) * 1991-09-17 1993-03-23 Kowa Co Solid shape measuring device
JPH0979844A (en) * 1995-09-14 1997-03-28 Nippon Telegr & Teleph Corp <Ntt> Calibration method of distance measuring sensor
JPH0996512A (en) * 1995-09-29 1997-04-08 Takaoka Electric Mfg Co Ltd Three-dimensional-shape measuring apparatus
JPH11264933A (en) * 1998-03-17 1999-09-28 Yokogawa Electric Corp Confocal device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107064A1 (en) * 2002-06-01 2003-12-24 オリンパス光学工業株式会社 Confocal microscope and method for measuring by confocal microscope
CN102589466A (en) * 2012-01-17 2012-07-18 浙江大学 Contour microscopic method and device

Similar Documents

Publication Publication Date Title
US11672631B2 (en) Intraoral scanner calibration
US6141105A (en) Three-dimensional measuring device and three-dimensional measuring method
EP1610092A1 (en) Surveying instrument
JP2008048293A (en) Imaging device and method for manufacturing same
JP2008020498A (en) Automatic focus detection device
JP5942847B2 (en) Height measuring method and height measuring apparatus
US6233049B1 (en) Three-dimensional measurement apparatus
JP2010101959A (en) Microscope device
JP3789515B2 (en) Optical microscope with film thickness measurement function
CN113589506A (en) Biological microscopic vision pre-focusing device and method based on spectrum confocal principle
US6697163B2 (en) Shape measuring apparatus
JP2002131646A (en) Method and apparatus for phase compensation of position signal and detection signal in scanning microscopic method and scanning microscope
JP4863441B2 (en) Imaging apparatus and control method thereof
JP2006251209A (en) Microscope
WO2002077567A1 (en) Height measuring instrument, and method of measuring height using the same
JPH0961720A (en) Confocal scanning type optical microscope and measuring method using the microscope
JP4180322B2 (en) Confocal microscope system and computer program for parameter setting
JP3722535B2 (en) Scanning confocal microscope and measuring method using this microscope
JPH11271030A (en) Three-dimensional measuring apparatus
JP5996462B2 (en) Image processing apparatus, microscope system, and image processing method
JP4050039B2 (en) Scanning confocal microscope and its image construction method
JP4303465B2 (en) Confocal microscope
JPH1172308A (en) Method and apparatus for measurement of height
JPH10327344A (en) Image pickup device and image data correction method
JP2000278558A (en) Digital camera for microscope

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)