WO2003107064A1 - Confocal microscope and method for measuring by confocal microscope - Google Patents

Confocal microscope and method for measuring by confocal microscope Download PDF

Info

Publication number
WO2003107064A1
WO2003107064A1 PCT/JP2003/007750 JP0307750W WO03107064A1 WO 2003107064 A1 WO2003107064 A1 WO 2003107064A1 JP 0307750 W JP0307750 W JP 0307750W WO 03107064 A1 WO03107064 A1 WO 03107064A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
light intensity
sample
luminance
measurement
Prior art date
Application number
PCT/JP2003/007750
Other languages
French (fr)
Japanese (ja)
Inventor
藤本 洋久
北原 章広
北 信浩
渡部 秀夫
Original Assignee
オリンパス光学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002177472A external-priority patent/JP3960862B2/en
Priority claimed from JP2002263033A external-priority patent/JP2004101831A/en
Priority claimed from JP2002272246A external-priority patent/JP4391731B2/en
Application filed by オリンパス光学工業株式会社 filed Critical オリンパス光学工業株式会社
Publication of WO2003107064A1 publication Critical patent/WO2003107064A1/en
Priority to US11/015,076 priority Critical patent/US20050122577A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control

Definitions

  • the present invention relates to a confocal microscope for irradiating a sample with light and measuring surface information of the sample from the reflected light, and a measuring method using the confocal microscope.
  • a confocal microscope irradiates a sample with point-like illumination, focuses light from the sample, for example, transmitted light or reflected light, on the confocal stop, and then reduces the light intensity transmitted through the confocal stop.
  • the surface information of the sample is obtained by detecting with a photodetector.
  • the point illumination is scanned on the sample surface by various methods, and surface information of a wide range of the sample is obtained from the obtained light intensity.
  • FIG. 19 shows an example of a configuration of a conventional confocal microscope.
  • a confocal microscope In this confocal microscope, light emitted from a light source 71 passes through a beam splitter 72, and then enters a two-dimensional scanning mechanism 74 through a reflecting mirror 73. Two-dimensional scanning is performed. This two-dimensionally scanned light is condensed by an objective lens 75 and is irradiated on a sample 77 placed on a sample table 76.
  • the light reflected from the surface of the sample 77 is guided to the reproduction objective lens 75, passes through the two-dimensional scanning mechanism 74 and the reflecting mirror 73, and is incident on the beam splitter 72. This reflected light is guided to the reflected light path of the beam splitter 72, is bent toward the imaging lens 78, and is focused on the confocal stop 79.
  • the confocal stop 79 is arranged at a position conjugate with the objective lens 75, and the light only at the focal point of the sample 77 is Only to the photodetector 80.
  • the photodetector 80 detects the light intensity (hereinafter, detection value) of the light only at this light collecting point.
  • the sample stage 76 is provided on the Z stage 81, and is controlled to move in the optical axis direction by the Z stage 81.
  • the processing control section 82 is composed of a computer and the like, and controls each section of the microscope such as the Z stage 81, the two-dimensional scanning mechanism 74 and the optical detector 80 according to a preset control program. Drive control is performed, and the operating state and operation instructions are displayed on the moeta 83.
  • the focusing position of the objective lens 75 described above is at a position optically conjugate with the confocal stop 79, and the sample 77 is at the focusing position of the objective lens 75.
  • the reflected light from the sample 77 is focused on the confocal stop 79 and passes through the confocal stop 79.
  • the sample 77 is located at a position deviated from the condensing position by the objective lens 75, the reflected light from the sample 77 is not condensed on the confocal stop 79 and almost passes therethrough. There is nothing to do.
  • the relationship between the relative position (Z) of the objective lens 75 and the sample 77, which is called I-Z force obtained by such a configuration, and the detection value (I) output from the photodetector 80 is as follows. As shown in FIG. 20, when the sample 77 is located at the light condensing position Z 0 of the objective lens 75, this detection value becomes the maximum. As the relative position between the objective lens 75 and the sample 77 moves away from the light condensing position Z0, the detection value of the photodetector 80 has a characteristic of sharply decreasing.
  • the processing control unit 82 scans the focal point two-dimensionally by the two-dimensional scanning mechanism 74 and irradiates it onto the sample 77, and the detected value of the photodetector 80 is two-dimensionally Image synchronized with running mechanism 7 4 An image (confocal image) obtained by optically slicing the sample 77 was acquired.
  • the sample 77 is moved in the optical axis direction by the Z stage 81, and the confocal image is acquired by scanning the two-dimensional scanning mechanism 74 at each position, and the photodetector 80 is detected at each point on the sample 77.
  • the height information of the sample 77 is obtained by detecting the position of the Z stage 81 at which the detection value of the sample 77 becomes maximum.
  • the height of the sample 77 can be measured by generating a confocal image.
  • the width of the Z stage 81 to be moved once that is, the width of the detection step (or the movement pitch) is reduced.
  • the number of measurements accounts for the majority of the time it takes to detect the focal position Z 0.
  • the height of the sample 77 is not reduced without reducing the detection step width of the Z stage 81.
  • a measurement method has been proposed to increase the accuracy of the measurement.
  • the measurement method here is based on the position Z 0 of the Z stage 81, which is the maximum, and the detection values (light intensity) from the photodetector 80 at three points before and after the position.
  • (1) By approximating the Z curve with a quadratic curve, the position of the Z stage 81 where the detection value of the photodetector 80 becomes the maximum is obtained with the accuracy equal to or less than the moving pitch of the conventional Z stage 81, and the height information is obtained. It has gained.
  • the I-Z carp is steep near the converging position of the objective lens 75 as shown in FIG.
  • the Z-stage 81 it is necessary to move the Z-axis to the correct position in accordance with the instructions from the processing control unit 82 to obtain an accurate approximate curve.
  • the error becomes large. Therefore, it is necessary to drive the Z stage 81 with high precision and high resolution. Is a burden on workers.
  • the measurement conditions for finding the maximum position of the Z stage 81 that is, the number of detected light intensity values used for approximation, Whether a similar curve is used or the width of the light-condensing position and the detection step (relative movement pitch) between the sample must be set by the user. It is necessary to specify a curve and a relative movement pitch.
  • this I-Z curve has different settings depending on the magnification of the objective lens 75 and the like, it is not easy to select the optimum relative movement pitch.
  • the measurement conditions differ depending on whether the height of the sample is measured at high speed or whether the measurement is performed with high accuracy.However, the technology disclosed in the above publication does not consider the measurement conditions. Not.
  • the contrast generally varies based on the non-uniform reflectivity of the sample surface, and a portion where the detected light intensity is insufficient or too strong is likely to be mixed.
  • the detection range of the photodetector 80 may exceed the detection range of a white circle shown by Fig. 21C.
  • the detection value exceeding the detection range is the maximum value regardless of the actual value. In the case of the range, the detection value is indicated by the black circle (center) replaced by.
  • the approximate quadratic curve (solid line shown in Fig. 21C) obtained using these detected values is different from the actual I-Z carp (dotted line shown in Fig. 21C). Imax, which should be originally estimated from the approximated quadratic curve obtained, exceeds the assumed maximum value, and Zo is shifted by Zerr. If any of these three detection values indicates the minimum value or the maximum value of the range that the detection value of the photodetector 80 can take, an approximate quadratic curve cannot be obtained.
  • the purpose of the present invention is to achieve high speed under optimum measurement conditions with a simple configuration.
  • Another object of the present invention is to provide a confocal microscope capable of calculating an approximate expression with high precision and realizing acquisition of a confocal image, and a measuring method using the confocal microscope.
  • the present invention converges and irradiates light from a light source onto a sample, and captures reflected light from the sample; and an optical axis of the light.
  • a moving mechanism for relatively moving the focus position of the objective lens and the position of the sample along a direction; a confocal stop disposed at a position conjugate to the focus position of the objective lens;
  • a photodetector for detecting the intensity of light passing through the confocal stop, a measuring unit for detecting a relative position between the converging position of the objective lens and the sample, and a converging position of the objective lens.
  • the relative position of the sample is changed, and the light intensity information indicates based on a plurality of light intensity information including the maximum light intensity value of the light intensity detected by the light detector and the position information detected by the measurement unit.
  • the maximum value of the change curve and the relative position to give it are estimated, and this estimation
  • the maximum value and the relative position of the light intensities, reflected luminance information and high - providing a configured confocal microscope between Is information and the processing control unit for generating a confocal image.
  • an objective lens, a confocal stop arranged at a position conjugate to a focusing position of the objective lens, and a relative distance between the sample and the objective lens are changed.
  • a light detecting unit that discretely acquires light intensity information that has passed through the confocal point aperture at that time; a relative distance estimating unit that estimates the relative distance that obtains maximum light intensity information based on the light intensity information; , The magnification of the objective lens and the light intensity corresponding to each measurement mode for acquiring the height information
  • the luminance at a plurality of positions is measured while changing the relative position between the sample and the objective lens at predetermined intervals, and the measurement is performed at the plurality of positions.
  • the effect of noise was evaluated using luminance data at at least three consecutive points including the maximum luminance described above,
  • the present invention provides a confocal microscope-based measurement method for calculating an approximate curve based on the above-mentioned noise evaluation result and calculating a peak position of brightness.
  • FIG. 1 is a diagram showing a configuration of a confocal microscope according to a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the processing operation of FIG. 1 for generating a confocal image in a confocal microscope.
  • FIG. 3 is a diagram showing a configuration of a confocal microscope according to a second embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of a confocal microscope according to a third embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing the measurement condition data in the third embodiment.
  • FIG. 6 is a diagram showing a setting screen in the third embodiment. is there.
  • FIG. 7 is a diagram showing a schematic configuration of a confocal microscopy system applied to a height measuring method according to a fourth embodiment of the present invention.
  • FIG. 8 is a flowchart for explaining a height measuring method according to the fourth embodiment.
  • FIG. 9 is a characteristic diagram for describing the height measuring method according to the fourth embodiment.
  • FIG. 10 is a diagram showing a configuration of a confocal microscope according to a fifth embodiment of the present invention.
  • FIG. 11 is a diagram showing the relationship (I-Z curve) between the relative position (Z) between the focusing position of the objective lens and the sample and the output (I) of the photodetector in the fifth embodiment. It is.
  • FIGS. 12A, 12B, and 12C are diagrams illustrating examples of outputs of the photodetectors at three extracted Z positions in the fifth embodiment.
  • FIGS. 13A, 13B, and 13C are diagrams showing an example of the shape of the sample in the fifth embodiment, and FIG. 13B is based on the acquired luminance.
  • FIG. 13C shows an example of a displayed luminance image (two-dimensional image).
  • FIG. 13C shows an example of a height image (three-dimensional image) displayed based on the acquired luminance and height.
  • FIG. 14 is a diagram showing the measurement range in the Z direction set by the user.
  • FIG. 15 is a diagram showing an example of a data format according to the sixth embodiment of the present invention.
  • Fig. 16A is a diagram showing an example of a luminance image (two-dimensional image) displayed according to the value of each flag of bit numbers 12 to 14;
  • Fig. 1 FIG. 6B is a diagram showing an example of a height image (three-dimensional image) displayed according to the value of each flag of bit numbers 12 to 14.
  • FIG. 17 A shows the luminance image shown in Fig. 16 A together with the ratio of the measurement points colored in each color to the total, and is displayed.
  • FIG. 7B is a diagram showing the height image shown in FIG. 16B and the ratio of the measurement points colored in each color to the whole, together with the height image shown in FIG. 16B.
  • FIG. 18 is a diagram showing a display example of a measurement result in the sixth embodiment.
  • FIG. 19 is a diagram showing a configuration of a conventional confocal microscope.
  • FIG. 20 is shown to explain the processing operation of generating a conventional confocal image.
  • FIG.-21A to 21D are diagrams showing examples of the output of the photodetector at the acquired three Z positions.
  • FIG. 1 is a diagram schematically showing a configuration of a confocal microscope according to a first embodiment of the present invention.
  • the reflected light reflected at the condensing point on the surface of the sample 7 is guided again to the objective lens 5, and enters the beam splitter 2 via the two-dimensional scanning mechanism 4 and the reflecting mirror 3.
  • the beam splitter 2 guides the reflected light to a reflected light path, and is focused on a confocal stop 9 by an imaging lens 8.
  • the confocal stop 9 is arranged at a position conjugate with the objective lens 5 and cuts the reflected light of the sample 7 from a point other than the focal point, and detects only the reflected light from the focal point of the photodetector 1. Pass through to 0.
  • the photodetector 10 detects, as a detection signal, the light intensity of the condensing point that has passed through the confocal stop 9, and sends the detection signal to a processing control unit 11 including a CPU and the like. Send out.
  • the condensing position of the objective lens 5 is located at a position optically conjugate with the confocal stop 9. For this reason, when the sample 7 is located at the position converged by the objective lens 5, the reflected light from the sample 7 is converged on the confocal stop 9 and passes through the confocal stop 9. When the sample 7 is located at a position deviated from the condensing position by the objective lens 5, the reflected light from the sample 7 is not converged on the confocal stop 9 but spreads. Therefore, only a small amount passes through the confocal aperture 9.
  • the sample stage 6 is mounted on a Z stage 12, and the movement of the sample stage 6 in the optical axis direction is controlled by the Z stage 12.
  • a measuring device 13 such as a glass scale, which constitutes a measuring means, is arranged on the optical axis so as to face each other.
  • the measuring device 13 allows the objective lens 5 and the sample 7 to be measured.
  • the movement pitch in the Z direction which is a relative position, is detected. Then, this measuring instrument 13
  • the detection signal is output to the processing control unit 11.
  • the relationship between the reading (Z>) of the measuring device 13 and the output (I) of the photodetector 10 indicates that the sample 7 has an objective lens 5 like an I-Z carp shown in FIG.
  • the output of the photodetector 10 is maximized when it is at the focal position Z0 of the objective lens 13.
  • the reading (Z) of the measuring device 13 is obtained from the focal position Z0 of the objective lens 5
  • the output of the photodetector 10 has a characteristic of sharply decreasing as the relative position between the light-collecting position and the sample 7 is moved in the direction away from each other.
  • a Z stage 12, a two-dimensional scanning mechanism 4, and a photodetector 10 are connected to the processing control unit 11 together with the measuring device 13. Based on the output, each part of the microscope such as the Z stage 12 and the two-dimensional scanning mechanism 4 is driven and controlled in accordance with a control program stored in advance. At this time, the processing control unit 11 displays the operation screen on the monitor 14.
  • the processing control unit 11 drives and controls the two-dimensional scanning mechanism 4 to two-dimensionally scan the focal point on the sample 7 and outputs the output of the photodetector 10.
  • the processing control unit 11 drives and controls the two-dimensional scanning mechanism 4 to two-dimensionally scan the focal point on the sample 7 and outputs the output of the photodetector 10.
  • the processing control unit 11 stores a luminance and height calculation program in advance. In this brightness and calculation program, approximate curves are set according to the I-Z carp for each objective lens 5. Have been.
  • the processing control unit 11 starts the measurement of the measuring device 13, moves the Z stage 12 at the determined moving pitch ⁇ Z within the measurement range, and moves the Z stage 12 at each Z relative position accompanying the movement. Then, each sliced confocal image is generated.
  • the light intensity information is the value on the I-Z curve indicated by the black circle shown in Fig. 2 and compared at each point. For example, the maximum intensity was obtained (Zm, Imax). Then, the values before and after (Zm ⁇ Zf, I ′) and (Zm + ⁇ Zb, I ′′) are extracted. From these three points, the luminance and relative intensity of the surface of the sample 7 are determined based on the approximate curve. Is obtained with a resolution equal to or greater than the moving pitch ⁇ Z The processing control unit 11 generates a confocal image based on the luminance and relative height information of the surface of the sample 7 estimated in this manner.
  • the movement pitch ⁇ Z of the Z stage 12 is actually measured by the measuring device 13, accurate movement operation is not required as in the past, and the detection position is detected at equal intervals for each movement pitch. Since there is no need to dispose them, high-precision images can be generated even with a simple moving mechanism. If the detection positions are not arranged at equal intervals, correct the measurement according to the arrangement to ensure the desired measurement accuracy.
  • the measuring device 13 for detecting the amount of movement is arranged to face the Z stage 12.
  • the measuring device 13 detects the relative position between the condensing position of the objective lens 5 and the sample 7. Based on the detected relative position information and a plurality of pieces of light intensity information including the maximum light intensity value of the light intensity, a maximum value of a change curve indicated by the light intensity information and a relative position at which the change curve is given are estimated.
  • This estimated light intensity A confocal image is generated using the maximum value of the degree and the relative position as reflected luminance information and height information.
  • the focusing position of the objective lens 5 is obtained. It is not necessary to move the position of the sample 7 and the position of the sample 7 with high precision, and the number of movements of the Z stage 12 can be kept to a minimum, so that quick calculation can be performed.
  • the movement performance of the Z stage 12 is affected.
  • the movement mechanism for controlling the movement of the Z stage 12 can be simplified.
  • the measuring device 13 is formed of a glass scale.
  • the present invention is not limited to this, and a measuring device such as a laser interferometer for measuring various lengths may be used. Configure using-It is possible.
  • the sample 7 is moved in the Z direction (the direction of the optical axis) so as to be relatively moved between the sample 7 and the objective lens 5.
  • the present invention is not limited to this, and it is possible to move the entire microscope with respect to the sample 7 or to move the objective lens 5 relatively with respect to the sample 7. In the configuration, substantially the same effect can be obtained.
  • the confocal microscope of the first embodiment According to this, a high-precision confocal image can be easily acquired easily with a simple configuration.
  • the approximation curve is assumed to be a quadratic curve, and the number of calculation points is assumed to be three.
  • the present invention is not limited to this. Instead, various calculation methods can be configured according to the device characteristics and the like.
  • FIG. 3 the same components as those shown in FIG. 1 described above are denoted by the same reference numerals, and description thereof will be omitted.
  • two measuring devices 21 and 22 are arranged approximately symmetrically with respect to the optical axis of the objective lens 5 at intervals L, and these measuring devices 21 and 2 are arranged. 2 is configured to measure the relative position between the condensing position of the objective lens 5 and the sample 7. ⁇ In this configuration, the measured values of the two measuring devices 21 and 22 arranged approximately symmetrically with a distance L from the optical axis of the objective lens 5 are averaged, and the reflected luminance and A height dimension is obtained, and a confocal image is generated in the same manner based on the averaged reflection luminance and height dimension.
  • the movement pitch in the Z direction can be measured by the two measuring instruments, and the configuration is simple and simple. Thus, a highly accurate confocal image can be obtained.
  • FIG. 4 is a diagram schematically showing a configuration of a confocal microscope according to the third embodiment.
  • components shown in FIG. 4 those that are the same as the components shown in FIG. 1 described above are given the same reference numerals, and descriptions thereof will be omitted.
  • the processing control unit 11 controls the operation of the two-dimensional scanning mechanism 4 and the Z-stage 12, and acquires the light intensity information discretely by taking in the output of the photodetector 10.
  • the brightness and height calculation are performed.
  • the processing control section 11 has a height information calculation section 32.
  • the height information calculation section 32 performs brightness and height calculations as described later, and thus responds to each measurement mode for acquiring the magnification and height information of the objective lens 5.
  • a measurement condition data memory 31 for storing the measurement condition data of the light intensity information is provided.
  • the height information calculation unit 32 reads the measurement condition data from the measurement condition data memory 31 and changes the relative distance between the sample 7 and the objective lens 5 according to the measurement condition data. Obtain the height information of sample 7.
  • FIG. 5 is a schematic diagram showing an example of the measurement condition data stored in the measurement condition data memory 31.
  • the measurement condition data stores, for example, 10 ⁇ , 20 ⁇ , 50 ⁇ , and 100 ⁇ as the magnification of the objective lens 5, and each measurement mode corresponds to the magnification of the objective lens 5.
  • Mode for example, high speed mode and fine mode It is remembered.
  • the high-speed mode is a mode in which the measurement time of the height information of the sample 7 is prioritized
  • the fine mode is a mode in which the measurement accuracy of the height information of the sample 7 is prioritized.
  • the high-speed mode and the fine mode include an approximate curve for estimating height information from each light intensity information corresponding to the magnification of the objective lens 5 and the measurement mode, respectively.
  • Each data of the number of calculation points for extracting information and the moving pitch ⁇ Z for changing the relative distance are stored.
  • the approximate curve stores a quadratic curve in the high-speed mode, the Gaussian curve in the fine mode, three points in the high-speed mode, and five points in the fine mode. Is stored.
  • the moving pitch ⁇ Z is different from the moving speed ⁇ Z for the high-speed mode and the fine mode at each magnification of the objective lens 5, for example, the high-speed mode for the objective lens 5 having a magnification of 10 times.
  • 10 m is memorized, and 5 ⁇ m etc. are recorded for the fine mode.
  • the processing control unit 11 displays the confocal image of the sample 7 on the monitor 14 and displays an operation screen (not shown) for acquiring height information of the sample 7 together with the confocal image.
  • the processing control unit 11 executes the luminance and height calculation program to obtain, for example, the magnification of the objective lens 5 as shown in FIG.
  • the setting screen for selecting between 2 ⁇ , 20 ⁇ , 50 ⁇ , and 100 ⁇ and the measurement mode (for example, high speed mode, fine mode) is displayed on the monitor 14 screen. It has the function of displaying.
  • the operation of the confocal microscope configured as described above will be described.
  • the light beam emitted from the light source 1 passes through the beam splitter 2, is reflected by the mirror 3, and enters the two-dimensional scanning mechanism 4.
  • the two-dimensional scanning mechanism 4 two-dimensionally scans light beams incident from the first and second optical scanners 4a and 4b.
  • the light beam two-dimensionally scanned by the two-dimensional scanning mechanism 4 is incident on the objective lens 5 through each of the lenses 33 and 34.
  • the light beam incident on the objective lens 5 is converged by the objective lens 5 and is scanned on the surface of the sample 7.
  • the light reflected on the surface of the sample 7 passes through the optical path opposite to the optical path incident on the sample 7, that is, passes through the objective lens 5 and the lenses 3 4 and 3 3 in order, and is further two-dimensionally scanned.
  • Re-enters beam splitter 2 through mechanism 4 and mirror 3.
  • the light that has re-entered the beam splitter 2 is reflected by the beam splitter 2 and condensed on a confocal stop 9 by an imaging lens 8.
  • the photodetector 10 receives the light beam that has passed through the confocal stop 9 and outputs an electric signal thereof.
  • the processing control unit 11 captures the output of the photodetector 10 in synchronization with the two-dimensional scanning mechanism 4, images the sample image of only a specific height of the sample 7, and optically converts the sample 7
  • the sliced confocal image is obtained and displayed on the monitor i4.
  • the processing control unit 11 displays an operation screen for obtaining the height information of the sample 7 on the monitor 14 together with the confocal image.
  • the user observes the confocal image on the motor 14 screen while viewing the operation screen on the same screen. Perform the above operation to set the measurement range while moving the Z stage 12 in the optical axis direction. This measurement range is stored in a memory in the processing control unit 11.
  • the processing control unit 11 receives the operation of the user, and performs the magnification of the objective lens 5 as shown in FIG. 4 (for example, 10 ⁇ , 20 ⁇ , 50 ⁇ , 100 ⁇ ).
  • the setting screen for selecting the measurement mode and selecting the measurement mode (for example, high-speed mode, fine mode) is displayed on the monitor 14 screen.
  • the user operates on the setting screen to select the objective lens 5 magnification (for example, 10 times) used for measuring the height information of the sample 7, and then to change the measurement mode (for example, high-speed mode). Selected.
  • setting the magnification of the objective lens 5 is not limited to the operation on the setting screen shown in Fig. 6; for example, if the magnification of the objective lens 5 has already been set on the microscope setting screen, this setting will be performed again. There is no need to make selections on the screen.
  • the light intensity information at a certain point is, for example, the value of a black circle on the I-Z carp shown in FIG.
  • the height information calculation unit 32 calculates the light intensity information sequentially acquired for each movement pitch ⁇ Z and the light intensity information already acquired as the maximum. Compare. As a result of this comparison, the light intensity information with the higher light intensity is changed as the maximum light intensity information. Such a comparison operation is sequentially repeated each time light intensity information is taken in, and the light intensity information having the maximum light intensity is obtained as a result. At this time, the height information Z (m) of the Z stage 12 and the maximum light intensity I max are obtained.
  • the height information calculation unit 32 calculates the Z stay at the height Z (m) — ⁇ Z, Z (m) + ⁇ Z before and after the height information Z (ra) at which the maximum light intensity is reached.
  • the height information and the light intensity information of each of the elements 1 and 2 are obtained from the light intensity information obtained by sequentially acquiring ⁇ Z (m) — ⁇ Z, I ' ⁇ and ⁇ Z (m) + ⁇ Z, I ⁇ . Extract.
  • the height information calculation unit 32 selects a quadratic curve as an approximate curve from the measurement condition data memory 31 shown in FIG.
  • the height information calculation unit 32 generates the height information and the light intensity information ⁇ Z (m), Imax ⁇ , ⁇ Z (m) — ⁇ Z, I of the stage 12 extracted earlier. ' ⁇ , Two
  • the height information calculation unit 32 similarly compares the light intensity information for each of the moving pitches ⁇ ⁇ ⁇ that are sequentially acquired, and sequentially obtains the light having the maximum light intensity. Intensity information is obtained, and height information Z (m) of the Z stage 12 at this time and maximum light intensity I max are obtained.
  • the height information calculation unit 21 calculates the height Z (m ⁇ 2) ⁇ ⁇ Z, Z (m) — ⁇ at each of two points before and after the height information Z (m) at which the maximum light intensity is reached.
  • the height information calculation unit 32 selects a Gaussian curve as an approximate curve from the measurement condition data memory 31 shown in FIG.
  • the Gaussian curve can approximate the I-Z curve more accurately than the quadratic curve.
  • the height information calculation unit 32 calculates the height information and light intensity of the five points already extracted.
  • the brightness and relative height of the surface of the sample 7 can be obtained with a resolution of the moving pitch ⁇ Z or more.
  • the fine mode since the number of calculation points is five and the approximate curve is a Gaussian curve, the height information of the sample 7 can be obtained with higher accuracy.
  • the Z stage 12 is moved by the movement pitch ⁇ in accordance with the measurement condition data of the above, and the maximum light intensity information is obtained based on the light intensity information of each operation point discretely acquired for each movement pitch ⁇ Z.
  • the height information of sample 7 is obtained from the height of Z stage 12 corresponding to this maximum light intensity information, measurement of the light intensity information and height information of sample 7 is performed on Z stage 12. It can be performed at high speed with fewer movements.
  • the user can set the objective lens 5 magnification (eg, 10 ⁇ , 20 ⁇ , 50 ⁇ , 100 ⁇ ) and measurement mode (eg, high speed mode, fine mode) required for measurement.
  • the light intensity information and height information of the sample 7 can be measured using the optimum measurement conditions for the objective lens 5 and the measurement mode, that is, the approximate curve, the number of calculation points, and the movement pitch. .
  • the brightness and the relative height of the surface of the sample 7 can be obtained with a resolution of the moving pitch ⁇ or more, and the light intensity information of the sample 7 can be obtained in the high-speed mode. And the height information can be measured in a short time, and the height information of the sample 7 can be obtained with high accuracy in the fine mode.
  • magnification of the objective lens 5 and the measurement mode are set on the setting screen shown in Fig. 6, the magnification of the objective lens 5 desired by the user and the measurement conditions optimal for the measurement mode are automatically set.
  • the light intensity information and height information of sample 7 can be measured.
  • the high-speed mode and the fine mode can be selected and set as the measurement mode.
  • the present invention is not limited to this. It is also possible to select and set various modes for measuring the height information of the sample 7 between the intermediate mode (1) and the sample (7).
  • the approximate curve in addition to the quadratic curve and the Gaussian curve, other curves may be used, and the number of calculation points may be different from that of the confocal microscope. Various changes may be made accordingly.
  • the confocal microscope is not limited to the configuration shown in FIG. 4; for example, the convergent light is converged by the objective lens 5 along the surface of the sample 7.
  • an XY stage that moves the sample 7 in a plane perpendicular to the optical axis may be used as the scanning mechanism that performs the scanning.
  • a one-dimensional optical scanner may be used to scan the convergent light of the objective lens 5 one line over the sample 7 to measure the cross-sectional shape of the sample 7.
  • a mechanism for moving the objective lens 5 may be used instead of the movement by the Z stage 12. Then, the objective lens 5 and the sample 7 may be relatively moved.
  • a configuration may be adopted in which a Nipkow disk provided with a plurality of fine holes in a spiral shape in a disk is rotated at a high speed.
  • the Nipkow disk also serves as a microhole arranged at a position conjugate with the condensing position of the objective lens 5, and a two-dimensional image sensor using, for example, a CCD or the like is used as the photodetector 10.
  • a confocal microscope various confocal diaphragms 9 were placed at positions conjugate to the focusing position of the objective lens 5, and the relative distance between the sample 7 and the objective lens 5 was changed relatively.
  • the light intensity information that has passed through the confocal aperture at this time is obtained discretely, the relative distance at which the maximum light intensity information is obtained is estimated based on the light intensity information, and this relative distance is used as the height information of sample 7. If it does, it applies to all of them.
  • height information can be obtained at high speed under optimum measurement conditions.
  • FIG. 7 is a diagram showing a schematic configuration of a system including a confocal microscope applied to the height measuring method according to the fourth embodiment.
  • surface information is acquired by scanning the sample two-dimensionally using the optical system of the confocal scanning optical microscope.
  • the confocal microscope 41 shown in FIG. 7 reflects the scanning laser light emitted from the laser light source 4 2 at the mirror 4 3 and enters the scanning mechanism 45 via the half mirror 44. .
  • the scanning mechanism 45 is connected to a processing control unit 47 composed of a computer or the like via a scanning control unit 46.
  • the scanning mechanism 45 is connected to the scanning control unit 46 in response to an instruction from the processing control unit 47.
  • Drive control is performed based on the output scanning control signal P 1.
  • the scanning mechanism 45 focuses the scanning laser beam on the sample 50 on the stage 49 via the objective lens 48 set in the revolver 47 based on the scanning control signal P1. In this state, a scanning laser beam is scanned in the XY direction on the sample 50 in the same manner as one raster scan.
  • the reflected light reflected from the sample 50 by the scanning of the sample with the scanning laser light is guided to the half mirror 44 via the objective lens 48 and the scanning mechanism 45, and the half mirror 4 The light is reflected by 4 to the light detector 51 side.
  • the light reflected by the half mirror 44 passes through a confocal stop 52 arranged at a position conjugate to the converging position of the objective lens 48, and then enters the photodetector 51.
  • the photodetector 51 converts the incident reflected light into an electric signal corresponding to the amount of the reflected light and performs image processing. Output to slot 54.
  • the image processing unit 54 incorporates, for example, an image memory 54a composed of 512 pixels ⁇ 512 pixels ⁇ 8 bits (256 gradations).
  • the image memory 54a is connected to the photodetector 51, and stores the electric signal output from the photodetector 51. Further, the image memory 54a is configured to control the movement of the stage 49 in the Z direction (that is, the optical axis direction of the scanning laser beam) to scan the scanning laser beam in the Z direction. Movement control circuit 53 is connected. A count value obtained by counting the number of movements of the stage 49 based on the signal output from the Z-direction movement control circuit 53 is stored in the image memory 54a.
  • the stage 49 is controlled to move by a predetermined amount in the Z direction based on the Z control signal P 2 output from the Z direction movement control circuit 53 according to an instruction from the processing control unit 47. At this time, the amount of movement (movement pitch) per stage 49 is controlled by the processing control unit 47.
  • the setting of the measurement range, the setting of the amount of movement of the stage 49 within each measurement range, the image display, and the control of the microscope system are performed on the monitor 48 connected to the processing control unit 47. Set by the user while looking at the screen.
  • the minute spot condensed on the sample 50 is controlled by the processing control unit 47. Scan in XY direction. At the same time, at each measurement point (X, y), the stage 49 is controlled to move in the Z direction to control the focus on the sample 50. I will do it. At this time, whether or not the sample 50 is in focus is determined while checking the image displayed on the moeta 48.
  • the processing control unit 47 sets the measurement range L of the sample 50 and the position Z0 of the stage 49 where the measurement starts, and then moves the stage 49 in the Z scanning for each movement of the stage 49.
  • the number of movements N of the stage 49 is determined according to the relationship L / ⁇ N. Since the count value of the number of movements of the stage 49 is stored in the image memory 54a, the number of movements N of the stage 49 is the gradation of the image memory 54a. Limited to the number 2 5 5 or less.
  • steps S2 to S9 are as follows. Perform the initial settings at the start of measurement (step S2). As a concrete initial setting, after moving the Z stage to Z o, resetting the power counter (substituting 0 for k), taking the initial luminance value I 0, value of 0 is stored in the maximum brightness value M c. In the following, only the movement pitch by moving the Z stages, the counter value k with i ink Li main emission Tosuru, Komu takes luminance I k (stearyl class tap S 3).
  • the luminance I k is compared with the value of the maximum luminance value M c (step S 4). If I k is larger than M c (YES), I k is set to M c and the previous luminance is set to M c.
  • the two previous luminances L 2 are stored in M A ; L, the previous luminance L 2 is stored in M A2 , and k is stored in M d (step S5), and the process proceeds to step S8.
  • step S8 the immediately preceding luminance L i is stored in the immediately preceding luminance L 2 , and the luminance I k is stored in the immediately preceding luminance L i.
  • step S9 it is determined whether or not the counter value has reached the end value N (step S9).
  • the counter value reaches the same value (YES)
  • the brightness sampling and the five points around the maximum value are determined.
  • the extraction is completed. If the counter value has not reached the end value, the process returns to step S3, and the same processing is repeated.
  • the I—Z curve is then transformed into two curves using the data Ma 2 , M ai , M c , M bl , and M b 2 of the five points before and after the maximum luminance.
  • the coefficients of the approximation formula are calculated by the least squares method from the luminance data at five points.
  • the magnitude of the influence of noise is determined according to the second order coefficient a of the approximation formula obtained in step S10 (step S11).
  • step S 11 when the coefficient a obtained by the calculation is negative (a is less than 0 (YES)), as shown in the five-point approximate curve of sample A shown in FIG. Since the quadratic curve is upwardly convex, the I-Z carp can be approximated from the force.
  • Step S 12 when the coefficient a is not negative but positive in the judgment of Step S 11 (NO), a five-point approximation of sample B is obtained. It is convex downward like a curve, and becomes a straight line when it is 0. In such a case, the extracted five points of data show the I-Z force due to the noise. This indicates that the curve could not be approximated.
  • the coefficient a indicates the spread width of the I-Z carp, and becomes the smallest when the sample is a mirror surface (the width of the I-Z carp becomes narrower).
  • the threshold for judging the noise effect is about 1 Z2, which is the coefficient a for a mirror surface (about 0). It may be.
  • the coefficient a may be obtained by actually measuring the I-Z carp of the mirror surface, or by calculating from the NA and the wavelength of the optical system.
  • step S10 the calculation up to the peak position is performed.
  • step S11 when the calculated peak position is within the range of ⁇ 1 ⁇ 2 ⁇ , the step is performed.
  • step S12 use the peak position calculated in step S10, and In this case, the peak position may be obtained by the procedure after step S13. Note that since it is inevitable that noise is superimposed on the sampled luminance, the standard of step S11 may be slightly widened, and may be set to earth or ⁇ 2 ⁇ .
  • the maximum value of the luminance and N points before and after the maximum value of the luminance are extracted in step S10.
  • the number of extracted points need only be 3 or more, and is not limited to 3 points or 5 points. Absent.
  • step S11 the influence of the noise is evaluated to be large in step S11 (NO)
  • the re-extraction of the luminance data in step SI3 is performed based on the luminance extracted in step S10.
  • Step-up S 1 luminance I ls 1 2 at all positions of the Z Hashi ⁇ range, ... when the power sale by storing I n the Note Li, when sampled in g of luminance (Step-up S 1) Noise reduction and faster sampling, as well as a constant number of luminances used to calculate the peak position regardless of the magnitude of the effect of noise. The degree of freedom in re-extracting luminance data increases.
  • the height measuring method uses a confocal microscope. First, the brightness at a plurality of positions is measured while changing the relative positions of the sample and the objective lens at predetermined intervals. Of the multiple luminances obtained, the effect of noise is evaluated using luminance data at at least three consecutive positions including before and after the maximum luminance. Based on the result of this noise evaluation, an approximate curve is obtained, and the luminance peak position is calculated.
  • the approximate curve when obtaining an approximate curve, if the effect of noise is small, the approximate curve is used using the luminance data at at least three consecutive points including the maximum luminance. If the effect of noise is large, an approximate curve is calculated using luminance data excluding the luminance data at least adjacent to the position of the maximum luminance from the measured luminance data. Ask.
  • the width of the approximate expression is used as a noise evaluation criterion.
  • three points at the center and both ends are used among the five extracted points.
  • the fourth embodiment even if the shape of the I-Z carp changes due to the surface shape of the sample, it is used for calculating the coefficient of the approximate expression without changing the step of Z.
  • the coefficients of the approximation of the I-z curve without increasing the number of I and suppressing the effects of noise, the height can be measured quickly and accurately.
  • Fig. 10 shows a configuration example of a system including a confocal point microscope according to the fifth embodiment of the present invention.
  • this system the same reference numerals are used for the components that are the same as the components shown in Fig. 1. And the description is omitted.
  • the processing control unit 11 includes a CPU, a ROM, a RAM, and the like.
  • the CPU reads and executes a microscope control program stored in the ROM.
  • the condensing position of the objective lens 5 is optically conjugate with the confocal stop 9, and when the sample 7 is at the condensing position of the objective lens 5, the reflected light from the sample 7 is common.
  • the light is focused on the focus stop 9 and passes through the confocal stop 9, but if the sample 7 is shifted from the focus position by the objective lens 5, the reflection from the sample 7 will occur.
  • Light does not converge on confocal aperture 9 and does not pass through confocal aperture 9.
  • Fig. 11 shows the relationship (I-Z curve) between the relative position (Z) of the focus position of the objective lens 5 and the sample 7 and the output (I) of the photodetector 10 at this time.
  • the maximum light intensity value at which the output of the photodetector 10 is originally maximum and the Z position of the Z stage 12 that gives the maximum light intensity value are estimated, and the estimated maximum light intensity The value and the Z position that gives it are acquired as luminance (luminance information) and height (height information).
  • the maximum light intensity Iraax and the position Zo of the Z stage 12 that gives it are estimated from the obtained approximated quadratic curve, and the estimated value is obtained.
  • I max and Z o are obtained as brightness and height.
  • the output value of the photodetector 10 is inappropriate for obtaining the approximate quadratic curve. Does not calculate the approximated quadratic curve or estimate the maximum light intensity value and the ⁇ position to give it from the approximated quadratic curve. And the like are obtained.
  • the range that can be obtained as the output value of the photodetector 10 is 0 to 495 (12 bits), and the aforementioned inappropriate value Is set to 0 or 495, and the above-mentioned arbitrary maximum light intensity value is taken as the output value of the photodetector 10.
  • the low light intensity value is assumed to be 0, and an arbitrary Z position is assumed to be 0, which is the minimum value of the measurement range in the height direction.
  • FIG. 12A is a diagram showing an example of the output of the photodetector 10 at the three extracted Z positions.
  • the photodetector 10 was detected because the measurement conditions were improperly set. This is obtained when the output of the sample 7 becomes small, or when the reflectivity of the measurement point on the surface of the sample 7 is lower than the others.
  • Fig. 12B describes the processing performed when one of the outputs of the photodetector 10 at the three Z positions described above is saturated and the value is 495. This will be described as an example. In this example, contrary to the example shown in Fig. 12A, when the output of the photodetector 10 becomes large or the reflectance of the measurement point on the surface of the sample 7 becomes different. It can be obtained if the price is higher than the others.
  • FIG. 13A is a diagram showing an example of the shape of the sample 7, and a part of the surface has a high reflection surface portion and a low reflection surface portion.
  • FIG. 13B is a diagram showing an example of a luminance image (two-dimensional image) displayed based on the acquired luminance. The black portion of FIG. 13B indicates the portion where the luminance is 0.
  • FIG. 13C is a diagram showing an example of a height image (three-dimensional image) displayed based on the acquired luminance and height. The black portion of FIG. 13C indicates a portion where the brightness and the height are ⁇ , and is actually displayed as a hollow portion with a hole.
  • FIG. 12C Another example in which one of the outputs of the photodetector 10 at the three extracted Z positions described above is 0 will be described using FIG. 12C as an example.
  • FIG. 1 2 C is the photodetector 1 at the three extracted Z positions.
  • FIG. 9 is a diagram showing an example of an output of 0.
  • the user sets the Z scanning range of Fig. 14 as the measurement range in the Z direction as shown in Fig. 14.
  • this is an example in which the S 3 surface of the surface of the sample 7 is close to the lower limit position of the measurement range.
  • one of the light intensity information at the three Z positions to be extracted cannot be acquired at a predetermined measurement point on the S3 surface, as shown in Fig. 12C. There is a fear.
  • Fig. 12C there is a fear.
  • the output of the photodetector 10 at the measurement start position in the Z direction has reached the maximum, so the output of the photodetector 10 at the previous Z position cannot be obtained. It will be. Therefore, even if the output of the photodetector 1 at the Z position is the value indicated by the white circle in Fig. 12C, it cannot actually be obtained, so that at the Z position
  • the output of the photodetector 10 is regarded as 0 indicated by a black circle.
  • the approximate quadratic curve is not obtained, or the approximate Processing is performed so as to obtain 0 as the luminance and height without estimating the maximum light intensity value and the Z position at which it is given from the quadratic curve.
  • FIG. 13B For example, the image shown in FIG. 13B is displayed.
  • Fig. L3B is obtained and, contrary to the example shown in Fig. L2C, the measurement range in the Z direction is set by the user.
  • the SI surface of the surface of sample 7 shown in Fig. 14 was close to the upper limit position of the measurement range, an approximate quadratic curve was obtained at a predetermined measurement point on the S1 surface.
  • the same processing is performed.
  • the output of the photodetector 10 at three Z positions for obtaining the approximate quadratic curve is an inappropriate value due to the measurement range in the Z direction set by the user.
  • the measurement point whose luminance and height are 0 is displayed in an image based on the luminance and height acquired for each measurement point on the surface of the sample 7 so as to be visually distinguishable. Therefore, according to the fifth embodiment, as described above, according to the fifth embodiment, the user is required to determine which measurement point on the surface of the sample 7 is inaccurate data, or as described above. Since the brightness and height of sample 7 can be measured by obtaining an approximate quadratic curve that is assumed to be a Z curve, in that measurement, the number of movements of the Z stage-12 is reduced to speed up the processing. be able to.
  • the output value of the photodetector 10 at the three Z positions is the minimum value (for example, 0) or the maximum value (for example, 40995) of the range that the output of the photodetector 10 can take.
  • the value is inappropriate for obtaining the approximate quadratic curve. If the values are inappropriate, an approximate quadratic curve is not obtained, or the maximum light intensity value and the Z position at which it is given are not estimated from the approximate quadratic curve. Will be replaced with a specific value (for example, 0). Therefore, in the present embodiment, the brightness image or the height image is displayed. In this case, it is possible to notify the user of the accurate / inaccurate measurement result in a distinguishable manner, and to notify whether or not appropriate measurement condition setting has been performed.
  • the configuration of the system including the confocal microscope according to the sixth embodiment is the same as the configuration shown in FIG. 10 in the fifth embodiment described above, except that the output of the photodetector 10 is different.
  • the data format when digitally processed by the processing control unit 11 is different.
  • FIG. 15 is a diagram showing an example of a data format according to the present embodiment.
  • the data length is composed of, for example, 16 bits
  • the 12-bit data of bit numbers 0 to 11 indicates information on luminance and height (luminance height data).
  • the remaining four bits of bit numbers 12 to 15 indicate the condition flag (capture information).
  • the condition flag indicates that the output of the photodetector 10 at the three Z positions extracted to obtain the approximated quadratic curve was not determined when one of the outputs was judged to be an inappropriate value. This is a flag for notifying the reason for obtaining an appropriate value.
  • the bit of bit number 15 shows a flag indicating whether or not the determination is made.
  • the bit of bit number 14 indicates a flag indicating that the measurement range is insufficient in the Z direction (Z scanning range is insufficient). 13 it of bit number 13 indicates a flag indicating excessive light intensity as the reason. Bits 1 and 2 have the reason for lack of light. Indicates the flag.
  • an approximate quadratic curve is obtained even if there are inappropriate values in the outputs at the three Z positions as described above. From this approximate quadratic curve, the maximum light intensity value and the Z position at which it is provided are estimated, and the estimated maximum light intensity value and the Z position at which the intensity value is obtained are obtained as luminance and height.
  • the flags of bits 15 and 12 described above are flagged, and the information on the luminance and the height is determined by an approximate quadratic curve that is inappropriate due to insufficient light quantity.
  • Information to the effect that the data is obtained is recorded together with information on luminance and height.
  • the flags of bits 15 and 13 described above are flagged, and the information on the luminance and the height is obtained by an approximate quadratic curve that is inappropriate due to excessive light quantity.
  • one of the outputs of the photodetector 10 is inappropriate at the three Z positions extracted to obtain the approximate quadratic curve due to the lack of the measurement range in the Z direction. Is determined to be a reasonable value.
  • the flags of the bits 15 and 14 mentioned above are set, and the information on the luminance and the height is converted to an inappropriate approximation quadratic curve due to insufficient measurement range in the Z direction. Information indicating that the data is obtained is recorded together with information on the luminance and the height.
  • the above processing is performed for each measurement point on the surface of the sample 7 and the brightness and height of each measurement point are acquired. Subsequently, an image based on the brightness and height is displayed on the monitor 14. Is displayed.
  • the processing control unit 11 checks the flag of the bit number 15 bit of the 16-bit data described above for each measurement point on the surface of the sample 7. Checks each flag of bit number 14 to 12 of the data indicating that it is valid, and performs processing to display the flag according to the value of each flag. .
  • the measurement point at which 16-bit data with the bit number 12 bit (light quantity insufficient) was set is blue, and the bit number 13 bit (excess light quantity) flag is
  • the measurement point at which the set 16-bit data was obtained is red, and the measurement at which the 16-bit data with the bit number 14 bit (measuring range insufficiency in the Z direction) is set is obtained.
  • the points are colored yellow and displayed on monitor 14.
  • FIGS. 16A and 16B show an example of an image displayed according to the value of each flag of such bit numbers 12 to 14.
  • Fig. 16A shows an example of a brightness image (two-dimensional image) displayed based on luminance
  • Fig. 16B shows the height displayed according to luminance and height.
  • An example of an image (three-dimensional image) is shown and described.
  • the areas 6 3 (63 a, 63 b) colored blue are indicated by the bits (light quantity shortage) of bit number 12.
  • the measurement points at which the 16-bit data with the flag set are obtained are shown.
  • the area 64 (64a, 64b, 64c) colored red is 16-bit data with the bit 13 bit (excessive light) flag set. Shows the measurement points obtained.
  • the area 63 indicates the area where the light quantity is insufficient
  • the area 64 indicates the area where the light quantity is excessive
  • the area 62 indicates the area where the measurement range in the Z direction is insufficient.
  • the measurement points at which the unreliable data (brightness and height) are obtained are color-coded and colored. This makes it possible to determine whether unreliable data has been acquired.
  • the ratio of the measurement points colored in each color to the whole can also be configured to display the ratio of the colored pixels to the total pixels).
  • FIGS. 17A and 17B are examples of display screens on which such display is performed.
  • FIGS. 17A and 17B correspond to FIGS. 16A and 16B, respectively, and FIG. 17A is used together with the luminance image shown in FIG. 16A.
  • FIG. 9 is a diagram showing the ratio of the measurement points colored in each color to the entirety, which are displayed.
  • Fig. 17B is a diagram showing the height image shown in Fig. 16B and the ratio of the measurement points colored by the respective colors to the whole, which are shown.
  • the luminance image or the height image displayed on the monitor 14 includes the flag of the bit numbers 12 to 14 described above.
  • the measurement points that are colored and displayed are included.
  • the measurement result of the part to be measured will be unreliable data. Become. In this case, when the measurement result is displayed, a mark for notifying that the measurement result is low-reliability data is also displayed.
  • FIG. 18 is a diagram showing a display example of the prediction result.
  • the “number” indicates that the measurement is for the specified part corresponding to the number.
  • the “accuracy” is a mark indicating whether or not the measurement result is data with low reliability.
  • the “accuracy” power S “X” the data is low reliability. Indicates that the data is not unreliable when it is " ⁇ ”.
  • “Height” and “width” indicate the height and width as the measurement result of the part to be measured.
  • the measurement is performed.
  • the results show that the data is unreliable.
  • a portion selected as the measurement target portion is displayed in a colored form. If a certain measurement point is included, the measurement may be prohibited and a warning may be displayed on the monitor 14 to notify the user. As a result, the measurement results of other measurement target parts are This makes it possible to prevent the user from using measurement results that may include large errors.
  • the number of movements of the Z stage 12 can be reduced and the processing speed can be increased.
  • the output value of the photodetector 10 is inappropriate for obtaining an approximate quadratic curve
  • information about the luminance and height at the measurement point is included in the capture information (for example, the bit number described above). 13 to 15 flags) are added. As a result, it is possible to notify the user of an accurate / inaccurate measurement result in a distinguishable manner, and to notify the user whether or not appropriate measurement condition setting has been performed. it can.
  • the output values of the three photodetectors 10 for obtaining the approximate quadratic curve are the minimum value (for example, 0) of the range that the outputs of the photodetectors 10 can take, or When the value was the maximum value (for example, 4,095), the processing was performed without obtaining the approximate quadratic curve, or without estimating the maximum intensity value and the Z position to give it from the approximate quadratic curve.
  • the output value of the photodetector 10 is not limited to the minimum value or the maximum value in the range, but may be a threshold value considering noise. For example, if any of these three output values is below or above the threshold, i.e., the light intensity range ⁇ from the minimum value of the range to the threshold, or its When the light intensity is within the light intensity range from the maximum value to the threshold value, the processing is performed without calculating the approximate quadratic curve or estimating the maximum intensity value and the Z position that gives it from the approximate quadratic curve. It may be done.
  • one of the values of the output of the photodetector 10 at the three Z positions extracted for obtaining the approximate quadratic curve is inappropriate for obtaining the approximate quadratic curve.
  • the brightness and height were replaced with 0 as a specific value, but the specific value is not limited to 0, but other values. May be.
  • the user can set the luminance and height on an image displayed based on the information on luminance and height.
  • the reason why the luminance and the height of the pixel are 0 for example, lack of light amount
  • the information indicated by the bits of bit numbers 12 to 15 added to the information on luminance and height is added.
  • Information other than the above may be added. For example, when any one of the bit numbers 12 to 14 and the bit number 15 are flagged, an advice to resolve the reason why the flag was set is set.
  • information about the added device may be added, and the information about the added device may be displayed on the monitor 14 together with the image.
  • bit number 1 2 (light quantity is insufficient) and 1 5
  • the it flag is set, information indicating that the sensitivity of the photodetector 10 is recommended is added as information to the advisor, and the advisor is added together with the image. It will be displayed on Moeta 14. Also, other help information may be added.
  • the number of bits for adding the information is small. If not, use a known data compression technique to embed the information in the information on luminance and height (the above-mentioned 12-bit data of bit numbers 0 to 11). May be. In this way, the information can be added without increasing the memory capacity.
  • the sensitivity of the photodetector 10 is set to AGC (auto gain control) so that information on the brightness and height of the measurement point determined as described above can be obtained normally. To obtain the information on brightness and height again, or correct the measurement range set by the user in the Z direction and reacquire information on brightness and height. You may do it.
  • AGC auto gain control
  • any of the outputs of the photodetector 10 at the three Z positions extracted to obtain the approximate quadratic curve If any of these values are inappropriate, similar to the fifth embodiment, no approximate quadratic curve is obtained, or the maximum light intensity value and the Z position at which it is given are not estimated from the approximate quadratic curve. Further, the processing may be performed so as to obtain 0 as the luminance and the height.
  • the approximate quadratic curve is obtained based on the output of the photodetector 10 at three Z positions.
  • the light detection at three or more Z positions is performed.
  • it may be determined based on the output of the container 10.
  • the system is configured as shown in FIG. 10, but the configuration is not limited thereto and may be another configuration.
  • a scanning mechanism that relatively scans the focused light from the objective lens 5 along the surface of the sample 7, which is a configuration of a confocal optical microscope included in the system, is perpendicular to the optical axis.
  • An XY stage or the like that moves the sample 7 in a suitable plane may be used.
  • a configuration may be used in which a Nipkow disk provided with a plurality of spiral minute openings on a disk is rotated at a high speed.
  • the Nipkow disk also serves as a micro aperture disposed at a position conjugate to the light-collecting position of the objective lens 5, and a two-dimensional image sensor such as a CCD is used instead of the photodetector 10.
  • a configuration is used in which the focused light of the objective lens 5 is scanned on one line of the sample 7 by a one-dimensional optical scanner to measure the cross-sectional shape of the sample 7. You can use it 0
  • the focusing position of the objective lens 5 and the position of the sample 7 are relatively As the moving mechanism for moving, a mechanism for moving the position of the objective lens 5 may be used instead of the Z stage 12 for moving the position of the sample 7.
  • Et al of the measuring instrument 1 3 for directly detecting the amount of movement of the Do Z stage 1 2 I I described in the first embodiment in the configuration of another embodiment (F i g. 4, F ig. 7 and Fig. 10) can be easily applied, and the relative position between the light-collecting position of the objective lens 5 and the sample 7 can be detected using the measuring device 13. . Therefore, also in these other embodiments, the luminance and the height of the sample 7 are acquired based on the relative position information (movement information of the Z stage 12) detected by the measuring device 13 to obtain the objective 7 It is not necessary to move the focusing position of the lens 5 and the position of the sample 7 with high precision, and the number of movements of the Z stage 12 can be kept to a minimum, thereby enabling quick calculation.
  • the confocal microscope of the present invention and the measuring method using the confocal microscope have been described in detail.
  • the present invention is not limited to the items described in each of the above-described embodiments.
  • various improvements and changes may be made without departing from the spirit of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Microscoopes, Condenser (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A confocal microscope and a method for measuring by confocal microscope in which one or a plurality of measuring units for detecting a moving amount is disposed oppositely to a Z stage for mounting a sample, maximum value of a variation curve represented by light intensity information and a relative position imparting it are estimated based on relative positional information obtained by detecting the relative position of the condensing position of an objective lens and the sample by means of the measuring unit, and a plurality of pieces of light intensity information including a maximum light intensity value, and then a confocal image is created using the maximum light intensity value and the relative position thus estimated as reflection luminance information and height information.

Description

明 細 書  Specification
共焦点顕微鏡及び、 この共焦点顕微鏡によ る測定方法 Confocal microscope and measuring method using this confocal microscope
技術分野 Technical field
本発明は、 試料に光を照射して、 その反射光から試料の表 面情報を測定する共焦点顕微鏡及びこの共焦点顕微鏡による 測定方法に関する。  The present invention relates to a confocal microscope for irradiating a sample with light and measuring surface information of the sample from the reflected light, and a measuring method using the confocal microscope.
背景技術 Background art
一般に、 共焦点顕微鏡は、 試料へ点状照明を照射し、 試料 からの光、 例えば、 透過光又は反射光を共焦点絞り上に集光 させた後、 この共焦点絞り を透過する光強度を光検出器で検 出する こ と によ って、 試料の表面情報を取得する。 この点状 照明を種々 の方法によ り試料面上で走査させて、 得られた光 強度から試料の広い範囲の表面情報を取得している。  In general, a confocal microscope irradiates a sample with point-like illumination, focuses light from the sample, for example, transmitted light or reflected light, on the confocal stop, and then reduces the light intensity transmitted through the confocal stop. The surface information of the sample is obtained by detecting with a photodetector. The point illumination is scanned on the sample surface by various methods, and surface information of a wide range of the sample is obtained from the obtained light intensity.
F i g . 1 9 は、 従来の共焦点顕微鏡の一構成例を示す。 こ の共焦点顕微鏡において、 光源 7 1 から出射された光は、 ビ 一ムスプリ ッ タ 7 2 を透過 した後、 反射鏡 7 3 を介-して 2次 元走査機構 7 4 に入射されて、 2次元走査される。 この 2次 元走査される光は、 対物レンズ 7 5 によ り集光され、 試料台 7 6 上に載置された試料 7 7 へ照射される。  FIG. 19 shows an example of a configuration of a conventional confocal microscope. In this confocal microscope, light emitted from a light source 71 passes through a beam splitter 72, and then enters a two-dimensional scanning mechanism 74 through a reflecting mirror 73. Two-dimensional scanning is performed. This two-dimensionally scanned light is condensed by an objective lens 75 and is irradiated on a sample 77 placed on a sample table 76.
こ の試料 7 7 の表面からの反射光は、 再ぴ対物レンズ 7 5 に導かれて 2次元走査機構 7 4、 反射鏡 7 3 を経て、 ビーム スプリ ッタ 7 2 へ入射される。 この反射光は、 ビームスプリ ッタ 7 2 の反射光路に導かれて結像レンズ 7 8側へ曲げられ、 共焦点絞り 7 9 上に集光される。 共焦点絞り 7 9 は、 対物レ ンズ 7 5 と共役な位置に配され、 試料 7 7 の集光点のみの光 だけを光検出器 8 0 へ通過させる。 光検出器 8 0 は、 こ の集 光点のみの光の光強度 (以下、 検出値) を検出する。 The light reflected from the surface of the sample 77 is guided to the reproduction objective lens 75, passes through the two-dimensional scanning mechanism 74 and the reflecting mirror 73, and is incident on the beam splitter 72. This reflected light is guided to the reflected light path of the beam splitter 72, is bent toward the imaging lens 78, and is focused on the confocal stop 79. The confocal stop 79 is arranged at a position conjugate with the objective lens 75, and the light only at the focal point of the sample 77 is Only to the photodetector 80. The photodetector 80 detects the light intensity (hereinafter, detection value) of the light only at this light collecting point.
こ の試料台 7 6 は、 Z ス テージ 8 1 上に設け られ、 こ の Z ステージ 8 1 によって光軸方向に移動制御される。 また処理 制御部 8 2 は、 コ ン ピュータ等からな り 、 予め設定された制 御プロ グラムに従って、 Z ステージ 8 1、 2次元走査機構 7 4及ぴ光検出器 8 0 等の顕微鏡各部をそれぞれ駆動制御し、 その動作状態や操作のための指示をモエタ 8 3 に表示する。  The sample stage 76 is provided on the Z stage 81, and is controlled to move in the optical axis direction by the Z stage 81. The processing control section 82 is composed of a computer and the like, and controls each section of the microscope such as the Z stage 81, the two-dimensional scanning mechanism 74 and the optical detector 80 according to a preset control program. Drive control is performed, and the operating state and operation instructions are displayed on the moeta 83.
前述した対物レンズ 7 5 によ る集光位置は、 共焦点絞り 7 9 と光学的に共役な位置にある こ と で、 試料 7 7 が対物レ ン ズ 7 5 によ る集光位置にある場合、 試料 7 7 からの反射光が 共焦点絞り 7 9 上に集光され、 該共焦点絞り 7 9 を通過する。 そ して、 試料 7 7が対物レンズ 7 5 によ る集光位置から外れ た位置にある場合には、 試料 7 7 からの反射光が共焦点絞り 7 9 上に集光されず、 ほとんど通過する こ とがない。  The focusing position of the objective lens 75 described above is at a position optically conjugate with the confocal stop 79, and the sample 77 is at the focusing position of the objective lens 75. In this case, the reflected light from the sample 77 is focused on the confocal stop 79 and passes through the confocal stop 79. When the sample 77 is located at a position deviated from the condensing position by the objective lens 75, the reflected light from the sample 77 is not condensed on the confocal stop 79 and almost passes therethrough. There is nothing to do.
こ の よ う な構成によ り 得られる I一 Z力 ブと称する対物 レンズ 7 5 と試料 7 7 の相対位置 ( Z ) と光検出器 8 0 から 出力 された検出値 ( I ) の関係は、 F i g . 2 0 に示すよ う に 試料 7 7 が対物レ ンズ 7 5 の集光位置 Z 0に有る場合、 こ の 検出値が最大と なる。 こ の集光位置 Z 0から対物レ ンズ 7 5 と試料 7 7 の相対位置が離れるに従って、 光検出器 8 0 の検 出値が急峻に低下する特性がある。  The relationship between the relative position (Z) of the objective lens 75 and the sample 77, which is called I-Z force obtained by such a configuration, and the detection value (I) output from the photodetector 80 is as follows. As shown in FIG. 20, when the sample 77 is located at the light condensing position Z 0 of the objective lens 75, this detection value becomes the maximum. As the relative position between the objective lens 75 and the sample 77 moves away from the light condensing position Z0, the detection value of the photodetector 80 has a characteristic of sharply decreasing.
こ の特性を利用 して、 処理制御部 8 2 は、 2次元走査機構 7 4 によって集光点を 2次元走査して試料 7 7上に照射し、 光検出器 8 0 の検出値を 2次元走查機構 7 4 に同期して画像 化して試料 7 7 を光学的にスライス した画像 (共焦点画像) を取得している。 Utilizing this characteristic, the processing control unit 82 scans the focal point two-dimensionally by the two-dimensional scanning mechanism 74 and irradiates it onto the sample 77, and the detected value of the photodetector 80 is two-dimensionally Image synchronized with running mechanism 7 4 An image (confocal image) obtained by optically slicing the sample 77 was acquired.
また、 Z ステージ 8 1 で試料 7 7 を光軸方向に移動させ、 各位置で 2次元走査機構 7 4 を走査して共焦点画像を取得し 試料 7 7 上の各点で光検出器 8 0 の検出値が最大になる Zス テージ 8 1 の位置を検出する こ と によ り 、 試料 7 7 の高さ情 報を取得する。  Further, the sample 77 is moved in the optical axis direction by the Z stage 81, and the confocal image is acquired by scanning the two-dimensional scanning mechanism 74 at each position, and the photodetector 80 is detected at each point on the sample 77. The height information of the sample 77 is obtained by detecting the position of the Z stage 81 at which the detection value of the sample 77 becomes maximum.
そ して、 試料 7 7 の各点で光検出器 8 0 の検出値の最大値 を重ねて表示する こ と によ り 、 全ての面にピン ト の合った画 像が取得される。  Then, by superimposing and displaying the maximum value of the detection value of the photodetector 80 at each point of the sample 77, an image in which all surfaces are in focus is obtained.
この共焦点顕微鏡では、 共焦点画像を生成する こ とで、 試 料 7 7 の高さ を計測する こ とができ る。 この際に測定精度を 高めよ う とする と、 Z ステージ 8 1 を移動させる 1 回当 り移 動させる幅すなわち、 検出ステ ップ幅 (又は、 移動ピッチ) を小さ く する ため、 こ の検出の測定回数が集光位置 Z 0検出 までにかかる時間大半を占めている。  With this confocal microscope, the height of the sample 77 can be measured by generating a confocal image. At this time, in order to increase the measurement accuracy, the width of the Z stage 81 to be moved once, that is, the width of the detection step (or the movement pitch) is reduced. The number of measurements accounts for the majority of the time it takes to detect the focal position Z 0.
これを改善する もの と して、 例えば、 特開平 0 9— 0 6 8 4 1 3号公報では、 Z ステージ 8 1 の検出ステ ップ幅を狭く する こ と な く 、 試料 7 7 の高さ計測の精度を高める よ う に し た測定方法が提案されている。 こ こでの測定方法は、 最大と なる Zステージ 8 1 の位置 Z 0、 及ぴその前後の位置での計 3 点の光検出器 8 0 からの検出値 (光強度) に基づいて、 I 一 Zカーブを 2次曲線で近似して、 光検出器 8 0 の検出値が 最大と なる Z ステージ 8 1 の位置を従来の Z ステージ 8 1 の 移動ピッチ以下の精度で求め、 高さ情報を得ている。 例えば、 3 つの検出値が、 F i g. 2 1 Aで示す黒丸のよ う に得られた とする。 これら 3つの検出値を用いて求めた近似 2次曲線 (近似 した I 一 Zカープ) ( F i g . 2 1 Aで示す実 線) は、 実際の I 一 Z カーブ ( F i g . 1 2 Aの点線) と実用 範囲でほぼ等 しく なる と想定でき、 その近似 2次曲線から光 検出器 8 0 の検出値が最大と な る最大値 I ma x と 、 その時 の Z ス テージ 8 1 の位置 Z o を正 し く 推定する こ と ができ る。 In order to improve this, for example, in Japanese Patent Application Laid-Open No. 09-068413, the height of the sample 77 is not reduced without reducing the detection step width of the Z stage 81. A measurement method has been proposed to increase the accuracy of the measurement. The measurement method here is based on the position Z 0 of the Z stage 81, which is the maximum, and the detection values (light intensity) from the photodetector 80 at three points before and after the position. (1) By approximating the Z curve with a quadratic curve, the position of the Z stage 81 where the detection value of the photodetector 80 becomes the maximum is obtained with the accuracy equal to or less than the moving pitch of the conventional Z stage 81, and the height information is obtained. It has gained. For example, suppose that three detection values are obtained as indicated by the black circles shown in FIG. 21A. The approximated quadratic curve (approximate I-Z carp) (solid line shown in Fig. 21A) obtained using these three detected values is the actual I-Z curve (Fig. (Dotted line), it can be assumed that it is almost equal in the practical range, and from the approximate quadratic curve, the maximum value I max at which the detection value of the photodetector 80 becomes the maximum, and the position Z of the Z stage 81 at that time o can be estimated correctly.
しかし、 前述した特開平 9 一 6 8 4 1 3 号公報による測定 方法においては、 I 一 Z カープは、 F i g . 2 0 に示すよ う に 対物レ ンズ 7 5 の集光位置近傍で急峻に変化するため、 Z ス テージ 8 1 を光軸方向に駆動する際には、 処理制御部 8 2 力 らの指示に従って Z軸を正確な位置に動かさなければ、 正確 な近似曲線が得られないとい う 問題がある。 特に光強度の検 出値の数を 3 点な ど少なく する場合には、 誤差が大き く なる ため、 Z ス テージ 8 1 の駆動制御を高精度、 且つ高分解能で 駆動 しなけ らばな らず、 作業者に と って負担と なっている。  However, according to the measurement method described in Japanese Patent Application Laid-Open No. Hei 9-68413, the I-Z carp is steep near the converging position of the objective lens 75 as shown in FIG. When driving the Z-stage 81 in the optical axis direction, it is necessary to move the Z-axis to the correct position in accordance with the instructions from the processing control unit 82 to obtain an accurate approximate curve. There is a problem. In particular, when the number of light intensity detection values is reduced to three points, for example, the error becomes large. Therefore, it is necessary to drive the Z stage 81 with high precision and high resolution. Is a burden on workers.
また Z軸における相対移動ピッチが固定された状態であつ た場合には、 I 一 Zカーブのピーク付近における検出値の変 化が少ない部分をサンプリ ングするためノ イ ズが大き く 影響 する。 また重要ではない Z ステージ 8 1 の位置 (広が り 部 分) からの検出値に対しても演算処理を行 う ため、 データ点 数が多く 、 近似 2次曲線を算出する こ と に時間を要している。  When the relative movement pitch in the Z axis is fixed, noise is greatly affected because a portion where the detected value does not change much near the peak of the I-Z curve is sampled. In addition, since arithmetic processing is performed on the detection value from the position (spread portion) of the unimportant Z stage 81, the number of data points is large, and it takes time to calculate the approximate quadratic curve. I need it.
また、 最大と なる Z ステージ 8 1 の位置を求めるための計 測条件、 すなわち近似に用いる光強度検出値の数、 どんな近 似曲線を用いるのか、 集光位置と試料との検出ステ ップの幅 (相対移動ピッチ) をユーザが設定する必要があ り 、 例えば 光強度検出値の数を 3点、 近似曲線を 2次曲線を指定した り 、 相対移動ピッチ等を指定しなければな らない。 In addition, the measurement conditions for finding the maximum position of the Z stage 81, that is, the number of detected light intensity values used for approximation, Whether a similar curve is used or the width of the light-condensing position and the detection step (relative movement pitch) between the sample must be set by the user. It is necessary to specify a curve and a relative movement pitch.
こ の I 一 Zカーブは、 対物レンズ 7 5 の倍率等によ り 異な る設定と なるため、 最適な相対移動ピッチを選択するのも容 易でない。 さ らに、 試料の高さ を高速で計測する力 又は高 い精度で計測するかによ り 計測条件が異なって しま う が、 上 記公報で開示されている技術では計測条件については考慮さ れていない。  Since this I-Z curve has different settings depending on the magnification of the objective lens 75 and the like, it is not easy to select the optimum relative movement pitch. In addition, the measurement conditions differ depending on whether the height of the sample is measured at high speed or whether the measurement is performed with high accuracy.However, the technology disclosed in the above publication does not consider the measurement conditions. Not.
また通常、 試料表面の反射率の不均一に基づき コン ト ラス トの強弱が発生し、 検出される光強度が不足していた り 強す ぎた り する部分が混在 しやすい。  In addition, the contrast generally varies based on the non-uniform reflectivity of the sample surface, and a portion where the detected light intensity is insufficient or too strong is likely to be mixed.
例えば、 F ig. 2 1 B の黒丸に示すよ う に光強度が不足 し ていた時には、 3つの Z位置での光検出器 8 0 の検出値の う ちの 1 つが最小値である 0 を示す場合がある。 これら 3 つの 光検出器 8 0 の検出値を用いて求めた近似 2次曲線 ( F ig. 2 I B ) で示す実線) は、 実際の I 一 Z カーブ ( F ig. 2 1 Bで示す点線) と異なって しまい、 求めた近似 2次曲線から 本来推定さ れるべき I max と Z 0 は、 それぞれ I err 、 Z errだけずれた値となる。  For example, when the light intensity is insufficient as shown by the black circle in Fig. 21B, one of the detection values of the photodetector 80 at the three Z positions indicates a minimum value of 0. There are cases. The approximated quadratic curve (solid line shown by Fig. 2 IB) obtained using the detection values of these three photodetectors 80 is the actual I-Z curve (dotted line shown by Fig. 21 B) Therefore, I max and Z 0, which should be estimated from the approximated quadratic curve, are shifted by I err and Z err respectively.
反対に、 光強度が強すぎた時には、 例えば、 F i g. 2 1 C で示す白丸の検出値のよ う に光検出器 8 0 の検出 レンジを越 えて しま う場合がある。 検出レンジを越えた検出値は、 実際 の値と は関係な く 最大値である 4 0 9 5 (但し、 1 2 b i t レンジの場合) に置き換え られた黒丸 (中央) で示す検出値 と なる。 これらの検出値を用いて求めた近似 2次曲線 ( F ig. 2 1 C で示す実線) は、 実際の I 一 Z カープ ( F ig. 2 1 C で示す点線) と異なる。 求めた近似 2次曲線から本来推定さ れる べき I max は、 想定する最高値を越えて しま い、 Z o は Z errだけずれた値と なる。 また、 これらの 3 つの検出値 が、 いずれも光検出器 8 0 の検出値の取り う る範囲の最小値 或いは最大値を示した場合には、 近似 2次曲線を求める こ と が出来ない。 Conversely, when the light intensity is too high, for example, the detection range of the photodetector 80 may exceed the detection range of a white circle shown by Fig. 21C. The detection value exceeding the detection range is the maximum value regardless of the actual value. In the case of the range, the detection value is indicated by the black circle (center) replaced by. The approximate quadratic curve (solid line shown in Fig. 21C) obtained using these detected values is different from the actual I-Z carp (dotted line shown in Fig. 21C). Imax, which should be originally estimated from the approximated quadratic curve obtained, exceeds the assumed maximum value, and Zo is shifted by Zerr. If any of these three detection values indicates the minimum value or the maximum value of the range that the detection value of the photodetector 80 can take, an approximate quadratic curve cannot be obtained.
また、 予め設定される Z ステージ 8 1 の走査範囲の両端に 近い部分では、 例えば、 F i g. 2 1 D の黒丸に示 したよ う に、 2つの検出ィ直しか得られていない場合もある。  Also, in the portion near the both ends of the scanning range of the Z stage 81 set in advance, for example, as shown by the black circle in FIG. is there.
た と え、 欠落した 1 つの検出値を適当に捕って (例えば、 F ig. 2 1 Dの 白丸) 、 近似 2次曲線 ( F ig. 2 1 Dで示す実 ) を求めた と しても、 実際の I 一 Z カーブ ( F ig. 2 1 D の点線) と一致しているかはわからない。 従って、 適当に補 つた検出値によ って推定される I max と Z 0 は、 い力 よ う にも変化して しまい正しい値を推定する こ と ができない。  For example, even if one missing detection value is appropriately captured (for example, a white circle in FIG. 21D) and an approximate quadratic curve (the actual shown in FIG. 21D) is obtained, It is not known whether it matches the actual I-Z curve (dotted line in Fig. 21D). Therefore, Imax and Z0 estimated by appropriately supplemented detection values change so much that a correct value cannot be estimated.
このよ う に、 近似した I — Zカーブに基づいて高さ測定を 行った場合には、 得られた輝度情報及ぴ高さ情報に、 F ig. 2 1 B〜 2 1 D等に示したよ う な不確かな計測結果が含まれ る虞が有り 、 それが含まれたと してもユーザはそれを知る術 が無い。 Ni will this Yo, approximate I -. When performing height measurement based on the Z curve, the obtained luminance information及Pi height information, F i g 2 1 B~ 2 1 shown in D such as Such an uncertain measurement result may be included, and even if it is included, the user has no way of knowing it.
発明の開示 Disclosure of the invention
本発明の 目的は、 簡易な構成によ り 最適な計測条件で高速 且つ高精度に近似式を算出 し、 共焦点画像の取得を'実現し得 る共焦点顕微鏡及び、 こ の共焦点顕微鏡による測定方法を提 供する こ と である。 The purpose of the present invention is to achieve high speed under optimum measurement conditions with a simple configuration. Another object of the present invention is to provide a confocal microscope capable of calculating an approximate expression with high precision and realizing acquisition of a confocal image, and a measuring method using the confocal microscope.
本発明は、 上記目的を達成するために、 光源からの光を試 料に対して集光させて照射し、 該試料からの反射光を取 り 込 む対物レ ンズと 、 上記光の光軸方向に沿って上記対物レ ンズ の集光位置と上記試料の位置を相対的に移動させる移動機構 と、 上記対物レ ンズの集光位置と共役な位置に配置される共 焦点絞り と、 こ の共焦点絞り を通過する光の強度を検出する 光検出器と、 上記対物レ ンズの集光位置と上記試料との相対 位置を検出する測定部と、 上'記対物レ ンズの集光位置と上記 試料の相対位置を変化させ、 上記光検出器で検出 した光強度 の最大光強度値を含む複数の光強度情報と上記測定部で検出 した位置情報と に基づいて、 上記光強度情報が示す変化曲線 の最大値と 、 それを与える相対位置を推定し、 こ の推定した 光強度の最大値と相対位置を、 反射輝度情報と高-さ情報と し て共焦点画像を生成する処理制御部とで構成される共焦点顕 微鏡を提供する。  In order to achieve the above object, the present invention converges and irradiates light from a light source onto a sample, and captures reflected light from the sample; and an optical axis of the light. A moving mechanism for relatively moving the focus position of the objective lens and the position of the sample along a direction; a confocal stop disposed at a position conjugate to the focus position of the objective lens; A photodetector for detecting the intensity of light passing through the confocal stop, a measuring unit for detecting a relative position between the converging position of the objective lens and the sample, and a converging position of the objective lens. The relative position of the sample is changed, and the light intensity information indicates based on a plurality of light intensity information including the maximum light intensity value of the light intensity detected by the light detector and the position information detected by the measurement unit. The maximum value of the change curve and the relative position to give it are estimated, and this estimation The maximum value and the relative position of the light intensities, reflected luminance information and high - providing a configured confocal microscope between Is information and the processing control unit for generating a confocal image.
さ らに本発明は、 対物レ ンズ と 、 上記対物レ ンズの集光位 置に対して共役な位置に配置された共焦点絞り と、 上記試料 と上記対物レンズと の相対距離を変化させた と きの上記共焦 点絞 り を通過した光強度情報を離散的に取得する光検出部と 、 これら光強度情報に基づいて最大光強度情報を得る上記相対 距離を推定する相対距離推定部と 、 上記対物 レ ンズの倍率及 ぴ上記高さ情報を取得する各測定モー ドに応 じた上記光強度 情報の計測条件データ を有し、 こ の計測条件データに従って 上記試料と上記対物レンズと の相対距離を変化させて上記試 料の高さ情報を取得する高さ情報演算部と を具備する共焦点 顕微鏡を提供する。 Further, in the present invention, an objective lens, a confocal stop arranged at a position conjugate to a focusing position of the objective lens, and a relative distance between the sample and the objective lens are changed. A light detecting unit that discretely acquires light intensity information that has passed through the confocal point aperture at that time; a relative distance estimating unit that estimates the relative distance that obtains maximum light intensity information based on the light intensity information; , The magnification of the objective lens and the light intensity corresponding to each measurement mode for acquiring the height information A confocal point having information measurement condition data, and having a height information calculation unit for acquiring height information of the sample by changing a relative distance between the sample and the objective lens according to the measurement condition data. Provide a microscope.
また、 共焦点走査型光学顕微鏡を用いた測定方法であって、 試料と対物レンズと の相対位置を所定の間隔で変化させなが ら、 複数の位置における輝度を測定し、 上記複数の位置にお ける輝度の測定結果の う ち、 上記最大輝度を含む連続した少 なく と も 3 点の位置における輝度データを用いてノ イ ズの影 響を評価し、  Also, in the measurement method using a confocal scanning optical microscope, the luminance at a plurality of positions is measured while changing the relative position between the sample and the objective lens at predetermined intervals, and the measurement is performed at the plurality of positions. Among the luminance measurement results, the effect of noise was evaluated using luminance data at at least three consecutive points including the maximum luminance described above,
上記ノ イ ズの評価結果に基づいて、 近似曲線を求めて、 輝 度の ピーク位置を計算する共焦点顕微鏡によ る測定方法を提 供する。  The present invention provides a confocal microscope-based measurement method for calculating an approximate curve based on the above-mentioned noise evaluation result and calculating a peak position of brightness.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
F ig. 1 は、 本発明の第 1 の実施形態に係る共焦点顕微鏡 の構成を示す図である。  FIG. 1 is a diagram showing a configuration of a confocal microscope according to a first embodiment of the present invention.
F ig. 2 は、 F ig. 1 の共焦点顕微鏡における共焦点画像を 生成する処理動作を説明するための図である。  FIG. 2 is a diagram for explaining the processing operation of FIG. 1 for generating a confocal image in a confocal microscope.
F ig. 3 は、 本発明の第 2 の実施形態に係る共焦点顕微鏡 の構成を示す図である。  FIG. 3 is a diagram showing a configuration of a confocal microscope according to a second embodiment of the present invention.
F ig. 4 は、 本発明の第 3 の実施形態に係る共焦点顕微鏡 の構成を示す図である。  FIG. 4 is a diagram showing a configuration of a confocal microscope according to a third embodiment of the present invention.
F ig. 5 は、 第 3 の実施形態における計測条件データ を摸 式に示す図である。  FIG. 5 is a diagram schematically showing the measurement condition data in the third embodiment.
F ig. 6 は、 第 3 の実施形態における設定画面を示す図で ある。 FIG. 6 is a diagram showing a setting screen in the third embodiment. is there.
F ig. 7 は、 本発明の第 4 の実施形態に係る高 さ測定方法 に適用される共焦点顕微システムの概略構成を示す図である。  FIG. 7 is a diagram showing a schematic configuration of a confocal microscopy system applied to a height measuring method according to a fourth embodiment of the present invention.
F ig. 8 は、 第 4 の実施形態における高さ測定方法につい て説明するためのフ ローチヤ一トである。  FIG. 8 is a flowchart for explaining a height measuring method according to the fourth embodiment.
F ig. 9 は、 第 4 の実施形態における高さ測定方法につい て説明するための特性図である。  FIG. 9 is a characteristic diagram for describing the height measuring method according to the fourth embodiment.
F ig. 1 0 は、 本発明の第 5 の実施形態に係る共焦点顕微 鏡の構成を示す図である。  FIG. 10 is a diagram showing a configuration of a confocal microscope according to a fifth embodiment of the present invention.
F ig. 1 1 は、 第 5 の実施形態における対物レンズの集光 位置と試料と の相対位置 ( Z ) 及び、 光検出器の出力 ( I ) の関係 ( I 一 Z カーブ) を示した図である。  FIG. 11 is a diagram showing the relationship (I-Z curve) between the relative position (Z) between the focusing position of the objective lens and the sample and the output (I) of the photodetector in the fifth embodiment. It is.
F ig. 1 2 A、 1 2 B、 1 2 Cは、 第 5 の実施形態におい て、 それぞれ抽出された 3 つの Z位置での光検出器の出力の 例を示す図である。  FIGS. 12A, 12B, and 12C are diagrams illustrating examples of outputs of the photodetectors at three extracted Z positions in the fifth embodiment.
F ig. 1 3 A、 1 3 B、 1 3 Cは、 第 5 の実施形態におい て、 試料の形状の一例を示 した図、 F ig. 1 3 B は、 取得さ れた輝度に基づいて表示された輝度画像 ( 2次元画像) の一 例を示 した図、 F ig. 1 3 Cは取得された輝度及び高さ に基 づいて表示された高さ画像 (三次元画像) の一例を示した図 である。  FIGS. 13A, 13B, and 13C are diagrams showing an example of the shape of the sample in the fifth embodiment, and FIG. 13B is based on the acquired luminance. FIG. 13C shows an example of a displayed luminance image (two-dimensional image). FIG. 13C shows an example of a height image (three-dimensional image) displayed based on the acquired luminance and height. FIG.
F ig. 1 4 は、 ユーザによ り 設定された Z方向の測定範囲 を示した図である。  FIG. 14 is a diagram showing the measurement range in the Z direction set by the user.
F ig. 1 5 は、 本発明の第 6 の実施形態に係るデータ フ ォ 一マ ツ ト の一例を示した図である。 F ig. 1 6 Aは、 ビッ ト番号 1 2 〜 1 4 の b i t の各フ ラ グの値に応 じて表示された輝度画像 ( 2次元画像) の一例を 示 した図、 F ig. 1 6 B は、 ビッ ト番号 1 2 〜 1 4 の b i t の各フ ラ グの値に応 じて表示された高さ画像 (三次元画像) の一例を示した図である。 FIG. 15 is a diagram showing an example of a data format according to the sixth embodiment of the present invention. Fig. 16A is a diagram showing an example of a luminance image (two-dimensional image) displayed according to the value of each flag of bit numbers 12 to 14; Fig. 1 FIG. 6B is a diagram showing an example of a height image (three-dimensional image) displayed according to the value of each flag of bit numbers 12 to 14.
F ig. 1 7 Aは、 F ig. 1 6 Aに示した輝度画像と共にそれ ぞれの色で着色されている測定点の全体に占める割合が示さ れて表示された図、 F ig. 1 7 B は、 F ig. 1 6 B に示した高 さ画像と共にそれぞれの色で着色されている測定点の全体に 占める割合が示された図である。  Fig. 17 A shows the luminance image shown in Fig. 16 A together with the ratio of the measurement points colored in each color to the total, and is displayed. FIG. 7B is a diagram showing the height image shown in FIG. 16B and the ratio of the measurement points colored in each color to the whole, together with the height image shown in FIG. 16B.
F ig. 1 8 は、 第 6 の実施形態における計測結果の表示例 を示した図である。  FIG. 18 is a diagram showing a display example of a measurement result in the sixth embodiment.
F ig. 1 9 は、 従来の共焦点顕微鏡の構成を示す図である。 FIG. 19 is a diagram showing a configuration of a conventional confocal microscope.
F ig. 2 0 は、 従来の共焦点画像を生成する処理動作を説 明するために示すである。 FIG. 20 is shown to explain the processing operation of generating a conventional confocal image.
- F i g. - 2 1 A〜 2 1 Dは、 取得した 3 つの Z位置での光検 出器の出力の例を示す図である。  -Fig.-21A to 21D are diagrams showing examples of the output of the photodetector at the acquired three Z positions.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明によ る実施形態について詳細に説明する。  Hereinafter, embodiments according to the present invention will be described in detail.
F ig. 1 は、 本発明の第 1 の実施形態に係る共焦点顕微鏡 の構成を概略的に示す図である。  FIG. 1 is a diagram schematically showing a configuration of a confocal microscope according to a first embodiment of the present invention.
この共焦点顕微鏡において、 光源 1 から出射された光は、 ビームスプリ ッ タ 2 を透過 した後、 反射鏡 3 を経て 2次元走 查機構 4 に入射される。 この 2次元走査機構 4 によ り 2次元 走査された光は、 対物レンズ 5 によ り 集光され、 試料台 6 に 載置された試料 7 に照射される、 In this confocal microscope, light emitted from a light source 1 passes through a beam splitter 2 and then enters a two-dimensional scanning mechanism 4 via a reflecting mirror 3. The light two-dimensionally scanned by the two-dimensional scanning mechanism 4 is condensed by an objective lens 5 and is converged on a sample stage 6. Irradiate the placed sample 7,
この試料 7表面の集光点で反射した反射光は、 再び対物レ ンズ 5 に導かれて 2次元走査機構 4、 反射鏡 3 を経てビーム スプリ ッタ 2へ入射される。 この ビームスプリ ッタ 2 は、 こ の反射光を反射光路に導き、 結像レンズ 8 によって共焦点絞 り 9 上へ集光される。 共焦点絞り 9 は、 対物レンズ 5 と共役 な位置に配置されてお り 、 試料 7 の集光点以外からの反射光 をカ ッ ト し、 集光点からの反射光のみを光検出器 1 0 へ通過 させる。 こ の光検出器 1 0 は、 共焦点絞り 9 を通過した集光 点の光強度を検出信号と して検出 し、 C P U等を含むコ ンビ ユ ータで構成される処理制御部 1 1 へ送出する。  The reflected light reflected at the condensing point on the surface of the sample 7 is guided again to the objective lens 5, and enters the beam splitter 2 via the two-dimensional scanning mechanism 4 and the reflecting mirror 3. The beam splitter 2 guides the reflected light to a reflected light path, and is focused on a confocal stop 9 by an imaging lens 8. The confocal stop 9 is arranged at a position conjugate with the objective lens 5 and cuts the reflected light of the sample 7 from a point other than the focal point, and detects only the reflected light from the focal point of the photodetector 1. Pass through to 0. The photodetector 10 detects, as a detection signal, the light intensity of the condensing point that has passed through the confocal stop 9, and sends the detection signal to a processing control unit 11 including a CPU and the like. Send out.
こ こで、 対物レンズ 5 による集光位置は、 共焦点絞り 9 と 光学的に共役な位置にある。 こ のため試料 7 が対物レンズ 5 によ る集光位置にあった場合には、 試料 7 からの反射光は、 共焦点絞り 9 上に集光されて、 共焦点絞り 9 を通過する。 そ して、 試料 7·が対物レンズ 5 によ る集光位置からずれた位置 にある場合には、 該試料 7 からの反射光が共焦点絞り 9上に 集光されず広がった状態と な り 、 共焦点絞り 9 を僅かしか通 過する こ と がない。  Here, the condensing position of the objective lens 5 is located at a position optically conjugate with the confocal stop 9. For this reason, when the sample 7 is located at the position converged by the objective lens 5, the reflected light from the sample 7 is converged on the confocal stop 9 and passes through the confocal stop 9. When the sample 7 is located at a position deviated from the condensing position by the objective lens 5, the reflected light from the sample 7 is not converged on the confocal stop 9 but spreads. Therefore, only a small amount passes through the confocal aperture 9.
また試料台 6 は、 Z ステージ 1 2 に搭載され、 この Z ステ ージ 1 2 によって光軸方向に移動制御される。 Z ステージ 1 2 には、 測定手段を構成する、 例えばガラススケール等の測 定器 1 3 が、 その光軸上に対向配置され、 この測定器 1 3 に よ り 、 対物レンズ 5 と試料 7 の相対位置である Z方向の移動 ピッチが検出される。 そ して、 この測定器 1 3 は、 得られた 検出信号を処理制御部 1 1 へ出力する。 The sample stage 6 is mounted on a Z stage 12, and the movement of the sample stage 6 in the optical axis direction is controlled by the Z stage 12. On the Z stage 12, a measuring device 13 such as a glass scale, which constitutes a measuring means, is arranged on the optical axis so as to face each other. The measuring device 13 allows the objective lens 5 and the sample 7 to be measured. The movement pitch in the Z direction, which is a relative position, is detected. Then, this measuring instrument 13 The detection signal is output to the processing control unit 11.
測定器 1 3 の読み取 り 値 ( Z〉 は、 光検出器 1 0 の出力 ( I ) と の関係が、 例えば、 F i g . 2 に示す I 一 Z カープの よ う に試料 7 が対物 レンズ 5 の集光位置 Z 0にある場合、 光 検出器 1 0 の出力が最大と なる。 そ して、 この測定器 1 3 の 読み取 り 値 ( Z ) は、 集光位置 Z 0から対物レンズ 5 の集光 位置と試料 7 と の相対位置が離間する方向に移動されるにし たがって光検出器 1 0 の出力が急激に低下される特性を有す る。  The relationship between the reading (Z>) of the measuring device 13 and the output (I) of the photodetector 10 indicates that the sample 7 has an objective lens 5 like an I-Z carp shown in FIG. The output of the photodetector 10 is maximized when it is at the focal position Z0 of the objective lens 13. The reading (Z) of the measuring device 13 is obtained from the focal position Z0 of the objective lens 5 The output of the photodetector 10 has a characteristic of sharply decreasing as the relative position between the light-collecting position and the sample 7 is moved in the direction away from each other.
また、 処理制御部 1 1 には、 Z ステージ 1 2 、 2次元走查 機構 4及び光検出器 1 0 が測定器 1 3 と と もに接続され、 光 検出器 1 0及び測定器 1 3 の出力に基づいて、 予め記憶され た制御プロ グラムに したがって Z ステージ 1 2及び 2 次元走 査機構 4等の顕微鏡各部を駆動制御する。 この際、 処理制御 部 1 1 は、 その操作画面をモユタ 1 4 に表示する。  Further, a Z stage 12, a two-dimensional scanning mechanism 4, and a photodetector 10 are connected to the processing control unit 11 together with the measuring device 13. Based on the output, each part of the microscope such as the Z stage 12 and the two-dimensional scanning mechanism 4 is driven and controlled in accordance with a control program stored in advance. At this time, the processing control unit 11 displays the operation screen on the monitor 14.
このよ う な構成によ-り、 処理制御部 1 1 は、 2 次元走査機 構 4 を駆動制御して集光点を試料 7上に 2次元走査し、 その 光検出器 1 0の出力を 2次元走查機構 4 に同期 して画像化処 理する こ と によ り 、 試料 7 のある特定の高さのみを画像化し て、 試料 7 を光学的にス ラ イス した画像 (共焦点画像) を生 成する。 この画像は、 モニタ 1 4 に前述した操作画面と合わ せて表示される。  With such a configuration, the processing control unit 11 drives and controls the two-dimensional scanning mechanism 4 to two-dimensionally scan the focal point on the sample 7 and outputs the output of the photodetector 10. By performing imaging processing in synchronization with the two-dimensional scanning mechanism 4, only a certain height of the sample 7 is imaged, and an image obtained by optically slicing the sample 7 (confocal image ) Is generated. This image is displayed on the monitor 14 together with the operation screen described above.
即ち、 処理制御部 1 1 には、 予め輝度及び高さ演算プロ グ ラ ムが記憶されている。 この輝度及び演算プログラムには、 対物レンズ 5毎の I一 Zカープに合わせた近似曲線が設定さ れている。 処理制御部 1 1 は、 測定器 1 3 の測定が開始され、 その測定範囲において、 決め られた移動ピッチ△ Zで、 Z ス テージ 1 2 を移動させ、 その移動に伴う各 Z相対位置毎に、 それぞれス ラ イ ス した共焦点画像を生成する。 That is, the processing control unit 11 stores a luminance and height calculation program in advance. In this brightness and calculation program, approximate curves are set according to the I-Z carp for each objective lens 5. Have been. The processing control unit 11 starts the measurement of the measuring device 13, moves the Z stage 12 at the determined moving pitch △ Z within the measurement range, and moves the Z stage 12 at each Z relative position accompanying the movement. Then, each sliced confocal image is generated.
こ こで、 光強度情報は、 F i g . 2 に示す黒丸で示す I 一 Z カーブ上の値と な り 、 各点において比較し、 例えば最大強度 と な っ た ( Z m、 I ma x ) 、 そ の前後の値 ( Z m- Δ Z f 、 I ' ) 、 ( Z m+ Δ Z b、 I " ) を抽出する。 この 3 点から近似 曲線に基づいて試料 7 の表面の輝度及び相対髙さが移動ピッ チ Δ Z以上の分解能で求め られる。 このよ う に推定した試料 7の表面の輝度及び相対高さ情報に基づいて処理制御部 1 1 は、 共焦点画像を生成する。  Here, the light intensity information is the value on the I-Z curve indicated by the black circle shown in Fig. 2 and compared at each point. For example, the maximum intensity was obtained (Zm, Imax). Then, the values before and after (Zm−ΔZf, I ′) and (Zm + ΔZb, I ″) are extracted. From these three points, the luminance and relative intensity of the surface of the sample 7 are determined based on the approximate curve. Is obtained with a resolution equal to or greater than the moving pitch ΔZ The processing control unit 11 generates a confocal image based on the luminance and relative height information of the surface of the sample 7 estimated in this manner.
Z ステージ 1 2 の移動ピッチ△ Z を測定器 1 3 によ り 実測 する こ とから、 従来のよ う に正確な移動操作が求められず、 また移動ピ ッチ毎に等間隔に検出位置を配置する必要もない こ と で、 簡易な構成の移動機構を備えても、 高精度な画像の 生成が可能と なる。 なお、 検出位置を等間隔に配置しない場 合には、 その配置に合わせて補正する こ とで、 所望の測定精 度を確保する。  Since the movement pitch △ Z of the Z stage 12 is actually measured by the measuring device 13, accurate movement operation is not required as in the past, and the detection position is detected at equal intervals for each movement pitch. Since there is no need to dispose them, high-precision images can be generated even with a simple moving mechanism. If the detection positions are not arranged at equal intervals, correct the measurement according to the arrangement to ensure the desired measurement accuracy.
この よ う に共焦点顕微鏡は、 Z ステージ 1 2 に対向 して移 動量検出用の測定器 1 3 を配置する。 この測定器 1 3で対物 レンズ 5 の集光位置と試料 7 と の相対位置を検出する。 検出 された相対位置情報と 、 光強度の最大光強度値を含む複数の 光強度情報と に基づいて、 光強度情報が示す変化曲線の最大 値と 、 それを与える相対位置を推定する。 こ の推定した光強 度の最大値と相対位置を、 反射輝度情報と高さ情報と して共 焦点画像を生成する。 As described above, in the confocal microscope, the measuring device 13 for detecting the amount of movement is arranged to face the Z stage 12. The measuring device 13 detects the relative position between the condensing position of the objective lens 5 and the sample 7. Based on the detected relative position information and a plurality of pieces of light intensity information including the maximum light intensity value of the light intensity, a maximum value of a change curve indicated by the light intensity information and a relative position at which the change curve is given are estimated. This estimated light intensity A confocal image is generated using the maximum value of the degree and the relative position as reflected luminance information and height information.
従って、 試料 7 の輝度及び高さ寸法を測定器 1 3 で検出さ れる相対位置情報 ( Z ステージ 1 2 の移動情報) に基づいて 取得させる こ と によ り 、 対物レ ンズ 5 の集光位置と試料 7 の 位置を高精度に移動させる必要がなく なる と共に、 その Zス テージ 1 2 の移動回数を最小限に保つこ と ができ迅速な算出 が可能と なる。  Therefore, by acquiring the brightness and height of the sample 7 based on the relative position information (movement information of the Z stage 12) detected by the measuring device 13, the focusing position of the objective lens 5 is obtained. It is not necessary to move the position of the sample 7 and the position of the sample 7 with high precision, and the number of movements of the Z stage 12 can be kept to a minimum, so that quick calculation can be performed.
また、 これによれば、 測定器 1 3 を用いて対物レ ンズ 5 の 集光位置と試料 7 と の相対位置を検出 しているため、 Z ス テ ージ 1 2 の移動性能に影響を受ける こ と な く 、 高精度な移動 位置の検出が実現される こ と によ り 、 Z ス テージ 1 2 を移動 制御する移動機構の簡略化が図れる。  Further, according to this, since the relative position between the focus position of the objective lens 5 and the sample 7 is detected using the measuring device 13, the movement performance of the Z stage 12 is affected. In addition, since highly accurate detection of the movement position is realized, the movement mechanism for controlling the movement of the Z stage 12 can be simplified.
なお、 本実施形態では、 測定器 1 3 をガラススケールで構 成した例で説明 したが、 これに限られる こ と はな く 、 レーザ 干渉計等の各種の長さ を-測定する測定器を用いて構成する -こ とが可能である。  In the present embodiment, an example in which the measuring device 13 is formed of a glass scale has been described. However, the present invention is not limited to this, and a measuring device such as a laser interferometer for measuring various lengths may be used. Configure using-It is possible.
また、 こ の第 1 の実施形態では、 試料 7 を Z方向 (光軸方 向) に移動させて対物レ ンズ 5 と の間を相対的に移動させる よ う に構成した例で説明 したが、 これに限る こ と なく 、 顕微 鏡全体を試料 7 に対して移動させた り 、 又は対物レンズ 5 を 試料 7 に対し、 相対的に移動させる よ う に構成する こ と も可 能で、 いずれの構成においても、 略同様の効果を得る こ と カ でき る。  Also, in the first embodiment, an example has been described in which the sample 7 is moved in the Z direction (the direction of the optical axis) so as to be relatively moved between the sample 7 and the objective lens 5. The present invention is not limited to this, and it is possible to move the entire microscope with respect to the sample 7 or to move the objective lens 5 relatively with respect to the sample 7. In the configuration, substantially the same effect can be obtained.
以上詳述したよ う に、 こ の第 1 の実施形態の共焦点顕微鏡 によれば、 簡易な構成で、 且つ簡便に して容易に高精度な共 焦点画像を取得する こ とができ る。 As described in detail above, the confocal microscope of the first embodiment According to this, a high-precision confocal image can be easily acquired easily with a simple configuration.
さ らに、 第 1 の実施形態では、 反射輝度と高さ寸法の算出 方法と して、 近似曲線を 2次曲線と し、 演算点数を 3 点と し て説明 したが、 これに限定する ものではな く 、 装置特性等に 応じて、 各種の算出方法が構成可能である。  Further, in the first embodiment, as the method of calculating the reflection luminance and the height dimension, the approximation curve is assumed to be a quadratic curve, and the number of calculation points is assumed to be three. However, the present invention is not limited to this. Instead, various calculation methods can be configured according to the device characteristics and the like.
次に、 第 2の実施形態の共焦点顕微鏡について説明する。 前述した実施形態では、 1個の測定器を用いた例であった が、 本実施形態では、 F i g , 3 に示すよ う に複数の測定器を 用いる。 尚、 F i g . 3 に示す構成部位において、 前述した F i g . 1 に示した構成部位と 同等のものには同 じ参照符号を付 して、 その説明を省略する。  Next, a confocal microscope according to a second embodiment will be described. In the above-described embodiment, an example is described in which one measuring device is used. However, in the present embodiment, a plurality of measuring devices are used as shown in FIG. Note that, in the components shown in FIG. 3, the same components as those shown in FIG. 1 described above are denoted by the same reference numerals, and description thereof will be omitted.
この共焦点顕微鏡は、 例えば 2個の測定器 2 1 、 2 2 を対 物レンズ 5 の光軸に対して、 共に間隔 Lをあけて略対称に配 し、 これ らの測定器 2 1 、 2 2 で対物レンズ 5 の集光位置と 試料 7 と の相対位置を測定する よ う に構成する。 ' . · こ の構成では、 対物レンズ 5 の光軸に対して間隔 Lを有し て略対称に配した 2 個の測定器 2 1 、 2 2 の測定値を、 平均 化 して反射輝度と高さ寸法を求め、 この平均化して求めた反 射輝度と高さ寸法に基づいて同様に共焦点画像を生成する。  In this confocal microscope, for example, two measuring devices 21 and 22 are arranged approximately symmetrically with respect to the optical axis of the objective lens 5 at intervals L, and these measuring devices 21 and 2 are arranged. 2 is configured to measure the relative position between the condensing position of the objective lens 5 and the sample 7. · In this configuration, the measured values of the two measuring devices 21 and 22 arranged approximately symmetrically with a distance L from the optical axis of the objective lens 5 are averaged, and the reflected luminance and A height dimension is obtained, and a confocal image is generated in the same manner based on the averaged reflection luminance and height dimension.
この第 2 の実施形態の共焦点顕微鏡によれば、 2個の測定 器によ り Z方向の移動ピッチを測定でき、 簡易な構成で且つ 簡便にして、 第 1 の実施形態よ り もさ らに高精度な共焦点画 像を取得する こ とができ る。  According to the confocal microscope of the second embodiment, the movement pitch in the Z direction can be measured by the two measuring instruments, and the configuration is simple and simple. Thus, a highly accurate confocal image can be obtained.
次に本発明による第 3 の実施形態に係る共焦点顕微鏡につ いて説明する。 Next, a confocal microscope according to a third embodiment of the present invention will be described. Will be described.
F i g . 4 は、 第 3 の実施形態の共焦点顕微鏡の構成を概略 的に示す図である。 尚、 F i g . 4 に示す構成部位において、 前述 した F i g . 1 に示 した構成部位と 同等のも の には同 じ参 照符号を付して、 その説明を省略する。  FIG. 4 is a diagram schematically showing a configuration of a confocal microscope according to the third embodiment. In the components shown in FIG. 4, those that are the same as the components shown in FIG. 1 described above are given the same reference numerals, and descriptions thereof will be omitted.
この共焦点顕微鏡では、 処理制御部 1 1 が 2次元走査機構 4及び Z ステージ 1 2 を動作制御 し、 且つ光検出器 1 0 の出 . 力を取り 込んで光強度情報を離散的に取得し、 これら光強度 情報に基づいて最大光強度情報を得る相対距離を推定し、 こ の相対距離を試料 7 の高さ情報とする一連の動作の制御プロ グラムを有する他に、 輝度及び高さ演算プロ グラムを有する。 処理制御部 1 1 は、 高さ情報演算部 3 2 を有している。 こ の高さ情報演算部 3 2 は、 後述する よ う に輝度及び高さ演算 を実行する こ と によ り 、 対物レンズ 5 の倍率及ぴ高さ情報を 取得する各測定モー ドに応 じた光強度情報の計測条件データ を記憶する計測条件データ メ モ リ 3 1 を備えている。 この高 さ情報演算部 3 2 は、 この計測条件データ メ モ リ 3 1 から計 測条件データ を読み出 して、 当該計測条件データ に従って試 料 7 と対物レンズ 5 と の相対距離を変化させて試料 7 の高さ 情報を取得する。  In this confocal microscope, the processing control unit 11 controls the operation of the two-dimensional scanning mechanism 4 and the Z-stage 12, and acquires the light intensity information discretely by taking in the output of the photodetector 10. In addition to having a control program for a series of operations for estimating the relative distance at which the maximum light intensity information is obtained based on the light intensity information and using this relative distance as the height information of the sample 7, the brightness and height calculation are performed. Has a program. The processing control section 11 has a height information calculation section 32. The height information calculation section 32 performs brightness and height calculations as described later, and thus responds to each measurement mode for acquiring the magnification and height information of the objective lens 5. A measurement condition data memory 31 for storing the measurement condition data of the light intensity information is provided. The height information calculation unit 32 reads the measurement condition data from the measurement condition data memory 31 and changes the relative distance between the sample 7 and the objective lens 5 according to the measurement condition data. Obtain the height information of sample 7.
F i g. 5 は、 計測条件データメ モ リ 3 1 に記憶されている 計測条件データ の一例を示す摸式図である。 この計測条件デ ータは、 対物レンズ 5 の倍率と して例えば 1 0倍、 2 0倍、 5 0倍及ぴ 1 0 0倍が記憶され、 これら対物レンズ 5 の倍率 に対して各測定モー ド、 例えば高速モー ドと精細モー ドとが 記憶されている。 高速モー ドは、 試料 7 の高さ情報の測定時 間を優先するモー ドであ り 、 精細モー ドは試料 7 の高さ情報 の測定精度を優先するモー ドである。 FIG. 5 is a schematic diagram showing an example of the measurement condition data stored in the measurement condition data memory 31. The measurement condition data stores, for example, 10 ×, 20 ×, 50 ×, and 100 × as the magnification of the objective lens 5, and each measurement mode corresponds to the magnification of the objective lens 5. Mode, for example, high speed mode and fine mode It is remembered. The high-speed mode is a mode in which the measurement time of the height information of the sample 7 is prioritized, and the fine mode is a mode in which the measurement accuracy of the height information of the sample 7 is prioritized.
これら高速モー ドと精細モー ドと には、 それぞれ対物レ ン ズ 5 の倍率及び測定モー ドに応じた各光強度情報から高さ情 報を推定するための近似曲線、 この近似曲線から光強度情報 を抽出する演算点数、 相対距離を変える と き の移動ピッチ Δ Z の各データが記憶されている。  The high-speed mode and the fine mode include an approximate curve for estimating height information from each light intensity information corresponding to the magnification of the objective lens 5 and the measurement mode, respectively. Each data of the number of calculation points for extracting information and the moving pitch ΔZ for changing the relative distance are stored.
こ の う ち近似曲線には高速モー ドに 2次曲線が記憶され、 精細モー ドにガウス曲線が記憶され、 演算点数には高速モー ドに 3 点が記憶され、 精細モー ドに 5 点と が記憶されている。 又、 移動ピッチ Δ Z には、 対物レンズ 5 の各倍率における高 速モー ドと精細モー ドと に対してそれぞれ異なる移動ピッチ Δ Z、 例えば倍率 1 0倍の対物レ ンズ 5 における高速モー ド に対して 1 0 mが記憶され、 精細モー ドに対して 5 μ mな どが記-億されている。 - また、 処理制御部 1 1 は、 試料 7の共焦点画像をモニタ 1 4 に表示する と共に、 この共焦点画像と合せて試料 7 の高さ 情報を取得するための操作画面 (不図示) をモニタ 1 4 に表 示する機能を有する。 さ ら に、 処理制御部 1 1 は、 輝度及 び高さ演算プロ グラ ムを実行する こ と によ り 、 例えば F i g. 5 に示すよ う な対物レ ンズ 5 の倍率 (例えば 1 0倍、 2 0倍、 5 0倍、 1 0 0倍) の選択と、 測定モー ド (例えば高速モー ド、 精細モー ド) の選択と を行 う ための設定画面をモニタ 1 4 の画面上に表示する機能を有する。 次に、 このよ う に構成された共焦点顕微鏡装置の動作につ いて説明する。 The approximate curve stores a quadratic curve in the high-speed mode, the Gaussian curve in the fine mode, three points in the high-speed mode, and five points in the fine mode. Is stored. The moving pitch ΔZ is different from the moving speed ΔZ for the high-speed mode and the fine mode at each magnification of the objective lens 5, for example, the high-speed mode for the objective lens 5 having a magnification of 10 times. On the other hand, 10 m is memorized, and 5 μm etc. are recorded for the fine mode. -The processing control unit 11 displays the confocal image of the sample 7 on the monitor 14 and displays an operation screen (not shown) for acquiring height information of the sample 7 together with the confocal image. It has the function of displaying on the monitor 14. In addition, the processing control unit 11 executes the luminance and height calculation program to obtain, for example, the magnification of the objective lens 5 as shown in FIG. The setting screen for selecting between 2 ×, 20 ×, 50 ×, and 100 × and the measurement mode (for example, high speed mode, fine mode) is displayed on the monitor 14 screen. It has the function of displaying. Next, the operation of the confocal microscope configured as described above will be described.
光源 1 から出射された光束は、 ビームスプリ ッタ 2 を透過 し、 ミ ラー 3 で反射して 2次元走查機構 4 に入射する。 こ の 2次元走査機構 4 は、 第 1 及び第 2 の光ス キャナ 4 a 、 4 b によ り入射した光束を 2次元に走査する。 こ の 2次元走查機 構 4 によ り 2次元に走査された光束は、 各レ ンズ 3 3 、 3 4 を通 して対物レ ンズ 5 に入射する。 こ の対物レ ンズ 5 に入射 した光束は、 当該対物レンズ 5 によ り 収束光となって試料 7 の面上に走査される。  The light beam emitted from the light source 1 passes through the beam splitter 2, is reflected by the mirror 3, and enters the two-dimensional scanning mechanism 4. The two-dimensional scanning mechanism 4 two-dimensionally scans light beams incident from the first and second optical scanners 4a and 4b. The light beam two-dimensionally scanned by the two-dimensional scanning mechanism 4 is incident on the objective lens 5 through each of the lenses 33 and 34. The light beam incident on the objective lens 5 is converged by the objective lens 5 and is scanned on the surface of the sample 7.
試料 7 の表面で反射した光は、 試料 7 への入射光路と は逆 の光路、 すなわち対物レ ンズ 5 力ゝら各 レ ンズ 3 4 、 3 3 の順 に通 り 、 さ らに 2次元走査機構 4、 ミ ラー 3 を通ってビーム スプリ ッタ 2 に再び入射する。 こ の ビーム スプリ ッタ 2 に再 入射した光は、 当該ビーム スプリ ッタ 2 で反射し、 結像レ ン ズ 8 によって共焦点絞り 9 上に集光される。 光検出器 1 0 は、 共焦点絞り 9 を通過 した光束を受光し、 その電気信号を出力 する。  The light reflected on the surface of the sample 7 passes through the optical path opposite to the optical path incident on the sample 7, that is, passes through the objective lens 5 and the lenses 3 4 and 3 3 in order, and is further two-dimensionally scanned. Re-enters beam splitter 2 through mechanism 4 and mirror 3. The light that has re-entered the beam splitter 2 is reflected by the beam splitter 2 and condensed on a confocal stop 9 by an imaging lens 8. The photodetector 10 receives the light beam that has passed through the confocal stop 9 and outputs an electric signal thereof.
処理制御部 1 1 は、 光検出器 1 0 の出力を 2次元走査機構 4 に同期 して取り 込み、 試料 7 のある特定の高さのみの試料 像を画像化 し、 試料 7 を光学的にス ラ イ ス した共焦点画像を 得てモニ タ i 4 に表示する。 これと共に処理制御部 1 1 は、 この共焦点画像と合せて試料 7 の高さ情報を得るための操作 画面をモニ タ 1 4 に表示する。 こ こ で、 ユーザは、 モ タ 1 4画面上の共焦点画像を観察しなが ら、 同画面上の操作画面 上で操作を行って Z ステージ 1 2 を光軸方向に移動させなが ら計測範囲を設定する。 この計測範囲は、 処理制御部 1 1 内 のメ モ リ 上に記憶される。 The processing control unit 11 captures the output of the photodetector 10 in synchronization with the two-dimensional scanning mechanism 4, images the sample image of only a specific height of the sample 7, and optically converts the sample 7 The sliced confocal image is obtained and displayed on the monitor i4. At the same time, the processing control unit 11 displays an operation screen for obtaining the height information of the sample 7 on the monitor 14 together with the confocal image. Here, the user observes the confocal image on the motor 14 screen while viewing the operation screen on the same screen. Perform the above operation to set the measurement range while moving the Z stage 12 in the optical axis direction. This measurement range is stored in a memory in the processing control unit 11.
次に、 処理制御部 1 1 は、 ユーザの操作を受けて、 F i g . 4 に示すよ う な対物レンズ 5 の倍率 (例えば 1 0倍、 2 0倍、 5 0倍、 1 0 0倍) の選択と、 測定モー ド (例えば高速モー ド、 精細モー ド) の選択と を行う ための設定画面をモニタ 1 4の画面上に表示する。  Next, the processing control unit 11 receives the operation of the user, and performs the magnification of the objective lens 5 as shown in FIG. 4 (for example, 10 ×, 20 ×, 50 ×, 100 ×). The setting screen for selecting the measurement mode and selecting the measurement mode (for example, high-speed mode, fine mode) is displayed on the monitor 14 screen.
こ こで、 ユーザの設定画面上の操作によって、 試料 7 の高 さ情報の計測に使用する対物レンズ 5倍率 (例えば 1 0倍) が選択され、 続いて測定モー ド (例えば高速モー ド) が選択 される。 なお対物レンズ 5 の倍率の設定は、 F i g . 6 に示す 設定画面上での操作に限らず、 例えば顕微鏡設定画面上で対 物レンズ 5 の倍率が既に設定されていれば、 再度、 この設定 画面上で選択設定する必要はない。  Here, the user operates on the setting screen to select the objective lens 5 magnification (for example, 10 times) used for measuring the height information of the sample 7, and then to change the measurement mode (for example, high-speed mode). Selected. Note that setting the magnification of the objective lens 5 is not limited to the operation on the setting screen shown in Fig. 6; for example, if the magnification of the objective lens 5 has already been set on the microscope setting screen, this setting will be performed again. There is no need to make selections on the screen.
対物レンズ 5 の倍率及び測定モー ドの設定が完了 し、 試料 7 の高さ情報の計測が開始される。 まず高さ情報演算部 3 2 は、 設定された計測範囲において、 F i g . 5 に示す計測条件 データメ モ リ 3 1 か ら対物レンズ 5 の倍率 ( 1 0倍) で測定 モー ド (高速モー ド) に対応する計測条件データ、 すなわち 近似曲線と して 2次曲線、 演算点数と して 3点、 移動ピッチ △ Z と して を読み出 し、 こ の う ち移動 ピ ッチ 厶 Z ( = 1 0 μ m ) に従って、 Z ステージ 1 2 を光軸方向に移動 させる。  The setting of the magnification of the objective lens 5 and the measurement mode is completed, and the measurement of the height information of the sample 7 is started. First, in the set measurement range, the height information calculation unit 32 measures from the measurement condition data memory 31 shown in Fig. 5 using the magnification (10 times) of the objective lens 5 (high-speed mode). ), Ie, a quadratic curve as an approximate curve, three points as the number of operation points, and a moving pitch ΔZ are read out, and the moving pitch Z (= 10 μm), the Z stage 12 is moved in the optical axis direction.
次に、 高さ情報演算部 3 2 は、 Z ステージ 1 2 が光軸方向 に移動ピッチ Δ Ζ ( = 1 0 μ m ) で移動する毎に光検出器 1 0 の出力を取り 込み、 これら移動ピッチ Δ Ζ ( A Z f、 Δ Z b 等) 毎の各共焦点画像を取得する。 この と き、 ある点の光強 度情報は、 例えば、 F i g. 2 に示す I 一 Z カープ上における 黒丸の値になる。 Next, the height information calculation unit 3 2 determines that the Z stage 12 Every time it moves at a moving pitch ΔΖ (= 10 μm), the output of the photodetector 10 is acquired, and each confocal image is acquired for each of these moving pitches ΔΖ (AZf, ΔZb, etc.) I do. At this time, the light intensity information at a certain point is, for example, the value of a black circle on the I-Z carp shown in FIG.
次に、 高さ情報演算部 3 2 は、 高速モー ドが設定されてい る場合、 移動ピッチ Δ Z毎に逐次取り 込んだ光強度情報と既 に取り 込んだ最大と している光強度情報と を比較する。 この 比較の結果、 光強度の高い光強度情報を最大の光強度情報と して変更する。 この よ う な比較動作を光強度情報を取り 込む 毎に逐次操り 返 し行い、 その結果と して最大光強度と なる光 強度情報を求める。 この と きの Z ステージ 1 2の高さ情報 Z (m)と、 最大光強度 I maxと を取得する。  Next, when the high-speed mode is set, the height information calculation unit 32 calculates the light intensity information sequentially acquired for each movement pitch ΔZ and the light intensity information already acquired as the maximum. Compare. As a result of this comparison, the light intensity information with the higher light intensity is changed as the maximum light intensity information. Such a comparison operation is sequentially repeated each time light intensity information is taken in, and the light intensity information having the maximum light intensity is obtained as a result. At this time, the height information Z (m) of the Z stage 12 and the maximum light intensity I max are obtained.
これと共に高さ情報演算部 3 2 は、 最大光強度と なった高 さ情報 Z (ra)の前後の高 さ Z (m)— Δ Z、 Z (m) + Δ Z におけ る Z ステ- ジ 1 2 の-各高さ情報及び各光強度情報 { Z (m)— Δ Z , I ' } 、 { Z (m) + Δ Z , I 〃 } を逐次取 り 込んだ各 光強度情報から抽出する。  At the same time, the height information calculation unit 32 calculates the Z stay at the height Z (m) —ΔZ, Z (m) + ΔZ before and after the height information Z (ra) at which the maximum light intensity is reached. The height information and the light intensity information of each of the elements 1 and 2 are obtained from the light intensity information obtained by sequentially acquiring {Z (m) —ΔZ, I '} and {Z (m) + ΔZ, I〃}. Extract.
次に、 高さ情報演算部 3 2 は、 F i g. 4 に示す計測条件デ 一タ メモ リ 3 1 から近似曲線と して 2次曲線を選択し、 この 2次曲線を例えば、  Next, the height information calculation unit 32 selects a quadratic curve as an approximate curve from the measurement condition data memory 31 shown in FIG.
I = a - Z 2 + b - Z + c . ·'· ( 1 ) とする。 そ して、 高さ情報演算部 3 2 は、 先に抽出 した Ζス テージ 1 2 の高 さ情報及び光強度情報 { Z (m), I max} 、 { Z (m)— Δ Z, I ' } 、 2 I = a - Z 2 + b -. Z + c · '· (1) to. Then, the height information calculation unit 32 generates the height information and the light intensity information {Z (m), Imax}, {Z (m) —ΔZ, I of the stage 12 extracted earlier. '}, Two
{ Z (m) + Δ Z , I " } を式 ( 1 ) に代入し、 {Z (m) + Δ Z, I "} into equation (1),
a = ( I ' + I " - 2 I max) / 2 ··· ( 2 ) b = ( I - I ' ) / 2 "· ( 3 ) を求め、 2次曲線の頂点の値 ( Z 0, I )  a = (I '+ I "-2 I max) / 2 · · · (2) b = (I-I') / 2" · (3) and find the value (Z 0, I)
Z Q =- - b / ( 2 a ) ·'· ( 4 ) 1 = 1 max— b " 4 a ··· (, 5 ) を求める。 これによ り 、 試料 7 の表面の輝度及び相対高さは 移動ピッチ Δ Z以上の分解能で求める こ と が可能になる。  ZQ =--b / (2 a) · '· (4) 1 = 1 max-b "4 a · · · (, 5) This gives the brightness and relative height of the surface of sample 7. Can be obtained with a resolution equal to or greater than the moving pitch ΔZ.
一方、 精細モー ドが設定される と、 高さ情報演算部 3 2 は 同様に、 逐次取 り込む各移動ピッチ Δ Ζ毎の各光強度情報を 順次比較 していき、 最大光強度と なる光強度情報を求め、 且 つこの と きの Z ス テージ 1 2 の高さ情報 Z (m)と 、 最大光強 度 I maxと を取得する。  On the other hand, when the fine mode is set, the height information calculation unit 32 similarly compares the light intensity information for each of the moving pitches Δ 込 む that are sequentially acquired, and sequentially obtains the light having the maximum light intensity. Intensity information is obtained, and height information Z (m) of the Z stage 12 at this time and maximum light intensity I max are obtained.
これと共に高さ情報演算部 2 1 は、 最大光強度となった高 さ情報 Z (m)の前後の 2 点ずつの各高さ Z (m- 2) · Δ Z、 Z (m) — Δ— Z、 Z (m) + Δ Z、 Z (m + 2 ) ' Δ Z における Zス―テ一 ジ 1 2 の各高 さ 情報及び各光強度情報 { Z (ra-2 ) · Δ Z , I ' } 、 { Z (m)— Δ Z, I ' } 、 { Z (ra) + Δ Z , I " } 、 { Z (m+2) . Δ Z, I 〃 } を逐次取り 込んだ各光強度情報か ら抽出する。  At the same time, the height information calculation unit 21 calculates the height Z (m−2) · ΔZ, Z (m) — Δ at each of two points before and after the height information Z (m) at which the maximum light intensity is reached. — Z, Z (m) + ΔZ, Z (m + 2) 'Height information and light intensity information of Z stage 12 at ΔZ {Z (ra-2) · ΔZ, I '}, {Z (m) —ΔZ, I'}, {Z (ra) + ΔZ, I "}, {Z (m + 2) .ΔZ, I〃} Extract from light intensity information.
次に、 高さ情報演算部 3 2 は、 F i g. 4 に示す計測条件デ 一タ メモ リ 3 1 から近似曲線と してガウス曲線を選択する。 ガウス曲線は、 2次曲線に比べて I 一 Zカーブをよ り精度高 く 近似する こ とが可能である。  Next, the height information calculation unit 32 selects a Gaussian curve as an approximate curve from the measurement condition data memory 31 shown in FIG. The Gaussian curve can approximate the I-Z curve more accurately than the quadratic curve.
ガウス曲線は、 例えば、 I = A . exp {- ( Z — Z o ) 2 / W 2 } ··· ( 6 ) とする。 このガウス曲線 I は、 The Gaussian curve is, for example, I = A. Exp {-(Z — Z o) 2 / W 2 } (6). This Gaussian curve I is
log I = a Z 2 + b Z + c ··· ( 7 ) によ り 表わすこ と ができ る ので、 高さ情報演算部 3 2 は、 既 に抽出 した 5 点の高さ情報及び光強度情報 { Z (m-2) ■ 厶 Z I ' } 、 { Z (m)— Δ Z, I ' } 、 { Z (m) + Δ Z , I " } 、 { Z (m + 2) · Δ Z , I " } を代入 して最小二乗法によ り ( a b , c ) を求め、 さ らにガウス曲線の頂点の値 ( Z 0 , I ) を求める。 log I = a Z 2 + b Z + c (7), the height information calculation unit 32 calculates the height information and light intensity of the five points already extracted. Information {Z (m-2) ■ mm ZI '}, {Z (m) — Δ Z, I'}, {Z (m) + Δ Z, I "}, {Z (m + 2) · Δ Z , I "}, find (ab, c) by the least squares method, and then find the value (Z0, I) of the vertex of the Gaussian curve.
Z 0 = - b / ( 2 a ) ··· ( 8 )Z 0 =-b / (2 a) (8)
I = exp{ c - b 2 / 4 a } … ( 9 ) I = exp {c - b 2 /4 a} ... (9)
これによ り 、 試料 7 の表面の輝度及び相対高さ は、 移動ピ ツチ Δ Z以上の分解能で求める こ とが可能になる。 この場合 精細モー ドでは、 演算点数を 5 点、 近似曲線をガウス曲線と しているので、 よ り 高い精度で試料 7 の高さ情報を得る こ と ができ る。 - . - このよ う に第 3 の実施形態においては、 対物レンズ 5 の倍 率及び試料 7 の高さ情報を取得する高速モー ド又は精細モー ドの各測定モー ドに応 じた光強度情報の計測条件データに従 つて Z ステージ 1 2 を移動ピッチ Δ Ζずつ移動させ、 この移 動ピッチ Δ Z毎に離散的に取得した各演算点数の各光強度情 報に基づいて最大光強度情報を求め、 この最大光強度情報に 対応する Z ステージ 1 2 の高さから試料 7 の高さ情報を取得 するので、 試料 7 の光強度情報及ぴ高さ情報の計測を Z ステ ージ 1 2 の移動回数を少な く して高速で行 う こ とができ る。 しかも、 ユーザが計測に必要 と する対物 レ ン ズ 5 の倍率 (例えば 1 0倍、 2 0倍、 5 0倍、 1 0 0倍) 及び測定モー ド (例えば高速モー ド、 精細モー ド) を選択でき 、 これら対 物レ ンズ 5 の倍率及び測定モー ドに最適な計測条件、 すなわ ち近似曲線、 演算点数及び移動ピ ッチで試料 7 の光強度情報 及ぴ高さ情報を計測でき る。 Thus, the brightness and relative height of the surface of the sample 7 can be obtained with a resolution of the moving pitch ΔZ or more. In this case, in the fine mode, since the number of calculation points is five and the approximate curve is a Gaussian curve, the height information of the sample 7 can be obtained with higher accuracy. As described above, in the third embodiment, the light intensity information corresponding to each measurement mode of the high-speed mode or the fine mode in which the magnification of the objective lens 5 and the height information of the sample 7 are acquired. The Z stage 12 is moved by the movement pitch ΔΖ in accordance with the measurement condition data of the above, and the maximum light intensity information is obtained based on the light intensity information of each operation point discretely acquired for each movement pitch ΔZ. Since the height information of sample 7 is obtained from the height of Z stage 12 corresponding to this maximum light intensity information, measurement of the light intensity information and height information of sample 7 is performed on Z stage 12. It can be performed at high speed with fewer movements. In addition, the user can set the objective lens 5 magnification (eg, 10 ×, 20 ×, 50 ×, 100 ×) and measurement mode (eg, high speed mode, fine mode) required for measurement. The light intensity information and height information of the sample 7 can be measured using the optimum measurement conditions for the objective lens 5 and the measurement mode, that is, the approximate curve, the number of calculation points, and the movement pitch. .
そ して、 試料 7 の表面の輝度及び相対高さは、 移動ピッチ Δ Ζ以上の分解能で求める こ とが可能であ り 、 且つさ らに高 速モー ドによ り 試料 7 の光強度情報及び高さ情報を短時間で 計測でき 、 また精細モー ドによ り 高い精度で試料 7 の高さ情 報を得る こ と ができ る。  The brightness and the relative height of the surface of the sample 7 can be obtained with a resolution of the moving pitch ΔΖ or more, and the light intensity information of the sample 7 can be obtained in the high-speed mode. And the height information can be measured in a short time, and the height information of the sample 7 can be obtained with high accuracy in the fine mode.
又、 対物レンズ 5 の倍率と 測定モー ドと を F i g . 6 に示す 設定画面上で設定すれば、 自動的にユーザの要望する対物レ ンズ 5 の倍率及び測定モー ドに最適な計測条件で試料 7 の光 強度情報及び高さ情報を計測でき る。  Also, if the magnification of the objective lens 5 and the measurement mode are set on the setting screen shown in Fig. 6, the magnification of the objective lens 5 desired by the user and the measurement conditions optimal for the measurement mode are automatically set. The light intensity information and height information of sample 7 can be measured.
また、 こ の第 3 の実施形態では、 測定モー ドと して高速モ 一ドと精細モー ドとの選択設定を可能と しているが、 これに 限らず、 これら高速モー ドと精細モー ドと の中間モー ドゃ、 試料 7 の高さ情報を計測するための各種モー ドを選択設定可 能と しても よい。 又、 近似曲線と しては、 2次曲線とガウス 曲線との他に、 他の曲線を用いても よ く 、 演算点数も他の点 数に しても よ く 、 共焦点顕微鏡の特性に応じて種々変更 して も よい。  Further, in the third embodiment, the high-speed mode and the fine mode can be selected and set as the measurement mode. However, the present invention is not limited to this. It is also possible to select and set various modes for measuring the height information of the sample 7 between the intermediate mode (1) and the sample (7). As the approximate curve, in addition to the quadratic curve and the Gaussian curve, other curves may be used, and the number of calculation points may be different from that of the confocal microscope. Various changes may be made accordingly.
さ らに共焦点顕微鏡は、 F i g. 4 に示す構成に限らず、 例 えば対物レ ンズ 5 によ り 収束光を試料 7 の表面に沿って相対 的に走査させる走査機構と しては、 例えば光軸に対して垂直 な面内で試料 7 を移動させる X Yステージを用いても よい。 また、 2 次元走查機構 4 に代えて 1 次元光スキャナによって 対物レンズ 5 の収束光を試料 7 上に 1 ライ ン走査し、 試料 7 の断面形状を計測する構成に して も よい。 対物レンズ 5 の集 光位置と試料 7 の位置との相対位置を移動させる移動機構と しては、 Z ステージ 1 2 による移動に代えて、 例えば対物レ ンズ 5 を移動させる機構と して も よい し、 対物レンズ 5 と試 料 7 と を相対的に移動させても よい。 In addition, the confocal microscope is not limited to the configuration shown in FIG. 4; for example, the convergent light is converged by the objective lens 5 along the surface of the sample 7. For example, an XY stage that moves the sample 7 in a plane perpendicular to the optical axis may be used as the scanning mechanism that performs the scanning. In addition, instead of the two-dimensional scanning mechanism 4, a one-dimensional optical scanner may be used to scan the convergent light of the objective lens 5 one line over the sample 7 to measure the cross-sectional shape of the sample 7. As the moving mechanism for moving the relative position between the light collecting position of the objective lens 5 and the position of the sample 7, for example, a mechanism for moving the objective lens 5 may be used instead of the movement by the Z stage 12. Then, the objective lens 5 and the sample 7 may be relatively moved.
また共焦点絞り 9 に代って、 例えば円盤にスパイ ラル状に 複数の微小孔を設けた Ni p k o wディ スク を高速回転させる構成 でも よい。 この N i p k o wディ スク は、 対物レンズ 5 の集光位置 と共役な位置に配置される微小孔を兼ね、 光検出器 1 0 と し ては例えば C C D等を用いた 2次元画像センサが用いられる。 共焦点顕微鏡と しては、 対物レンズ 5 の集光位置に対して 共役な位置に各種の共焦点絞り 9 を配置し、 試料 7 と対物レ ンズ 5 と の相対距離を相対的に変化させた と きの共焦点絞り を通過 した光強度情報を離散的に取得し、 これら光強度情報 に基づいて最大光強度情報を得る相対距離を推定し、 この相 対距離を試料 7 の高さ情報とする ものであれば、 その全てに 適用でき る。  In place of the confocal stop 9, for example, a configuration may be adopted in which a Nipkow disk provided with a plurality of fine holes in a spiral shape in a disk is rotated at a high speed. The Nipkow disk also serves as a microhole arranged at a position conjugate with the condensing position of the objective lens 5, and a two-dimensional image sensor using, for example, a CCD or the like is used as the photodetector 10. As a confocal microscope, various confocal diaphragms 9 were placed at positions conjugate to the focusing position of the objective lens 5, and the relative distance between the sample 7 and the objective lens 5 was changed relatively. The light intensity information that has passed through the confocal aperture at this time is obtained discretely, the relative distance at which the maximum light intensity information is obtained is estimated based on the light intensity information, and this relative distance is used as the height information of sample 7. If it does, it applies to all of them.
この第 3 の実施形態の共焦点顕微鏡によれば、 最適な計測 条件で高速に高さ情報を得る こ と ができ る  According to the confocal microscope according to the third embodiment, height information can be obtained at high speed under optimum measurement conditions.
次に、 本発明の第 4 の実施形態に係る共焦点顕微鏡を含む システムについて説明する。 F i g . 7 は、 第 4 の実施形態における高さ測定方法に適用 される共焦点顕微鏡を含むシステ ムの概略的な構成を示す図 である。 本実施形態のシステムにおいては、 共焦点走査型光 学顕微鏡の光学系を使用 して試料を 2次元走查するこ と によ り表面情報を取得している。 Next, a system including a confocal microscope according to a fourth embodiment of the present invention will be described. FIG. 7 is a diagram showing a schematic configuration of a system including a confocal microscope applied to the height measuring method according to the fourth embodiment. In the system of the present embodiment, surface information is acquired by scanning the sample two-dimensionally using the optical system of the confocal scanning optical microscope.
F i g . 7 に示す共焦点顕微鏡 4 1 は、 レーザ光源 4 2 力 ら 出射した走査用 レーザ光をミ ラー 4 3 で反射する と共にハー フ ミ ラー 4 4 を介して走査機構 4 5 に入射する。  The confocal microscope 41 shown in FIG. 7 reflects the scanning laser light emitted from the laser light source 4 2 at the mirror 4 3 and enters the scanning mechanism 45 via the half mirror 44. .
こ の走査機構 4 5 は、 走査制御ュニッ ト 4 6 を介してコ ン ピュータ等からなる処理制御部 4 7 に接続されており 、 処理 制御部 4 7 からの指示によって走査制御ュニッ ト 4 6 から出 力される走査制御信号 P 1 に基づいて駆動制御される。  The scanning mechanism 45 is connected to a processing control unit 47 composed of a computer or the like via a scanning control unit 46. The scanning mechanism 45 is connected to the scanning control unit 46 in response to an instruction from the processing control unit 47. Drive control is performed based on the output scanning control signal P 1.
こ の走査機構 4 5 は、 走査制御信号 P 1 に基づいて走査用 レーザ光を レボルバ 4 7 にセ ッ ト された対物レ ンズ 4 8 を介 してステージ 4 9 上の試料 5 0 に集光して微小スポッ ト と し て照射し、 こ の状態で走査用 レーザ光を試料 5 0上にラスタ 一走査と 同様に X Y方向に走査する。  The scanning mechanism 45 focuses the scanning laser beam on the sample 50 on the stage 49 via the objective lens 48 set in the revolver 47 based on the scanning control signal P1. In this state, a scanning laser beam is scanned in the XY direction on the sample 50 in the same manner as one raster scan.
走査用 レーザ光によ る試料走査で試料 5 0 から反射した反 射光は、 対物レ ンズ 4 8及び走査機構 4 5 を介してハー フ ミ ラー 4 4 まで導光され、 こ のハーフ ミ ラー 4 4 によって光検 出器 5 1 側へ反射される。  The reflected light reflected from the sample 50 by the scanning of the sample with the scanning laser light is guided to the half mirror 44 via the objective lens 48 and the scanning mechanism 45, and the half mirror 4 The light is reflected by 4 to the light detector 51 side.
ハーフ ミ ラー 4 4 で反射した反射光は、 対物レ ンズ 4 8 の 集光位置と共役な位置に配置した共焦点絞り 5 2 を通過 した 後、 光検出器 5 1 に入射する。 光検出器 5 1 は、 入射した反 射光をその光量に対応 した電気信号に変換して画像処理ュニ ッ ト 5 4 へ出力する。 The light reflected by the half mirror 44 passes through a confocal stop 52 arranged at a position conjugate to the converging position of the objective lens 48, and then enters the photodetector 51. The photodetector 51 converts the incident reflected light into an electric signal corresponding to the amount of the reflected light and performs image processing. Output to slot 54.
画像処理ュニッ ト 5 4 は、 例えば 5 1 2画素 X 5 1 2画素 X 8 ビッ ト ( 2 5 6 階調) 力 ら構成された画像メ モ リ 5 4 a が内蔵されている。 画像メ モ リ 5 4 a は光検出器 5 1 へ接続 されてお り 、 光検出器 5 1 から出力される電気信号を保存す る。 さ ら に、 画像メ モ リ 5 4 a は、 ス テージ 4 9 を Z方向 (即ち、 走査用 レーザ光の光軸方向) に移動制御 して走查用 レーザ光を Z方向に走査させる Z方向移動制御回路 5 3 が接 続されている。 Z方向移動制御回路 5 3 から出力された信号 に基づいてステージ 4 9 の移動回数をカ ウ ン ト したカ ウン ト 値が画像メ モ リ 5 4 a に保存される。  The image processing unit 54 incorporates, for example, an image memory 54a composed of 512 pixels × 512 pixels × 8 bits (256 gradations). The image memory 54a is connected to the photodetector 51, and stores the electric signal output from the photodetector 51. Further, the image memory 54a is configured to control the movement of the stage 49 in the Z direction (that is, the optical axis direction of the scanning laser beam) to scan the scanning laser beam in the Z direction. Movement control circuit 53 is connected. A count value obtained by counting the number of movements of the stage 49 based on the signal output from the Z-direction movement control circuit 53 is stored in the image memory 54a.
また、 ステージ 4 9 は、 処理制御部 4 7 の指示によって Z 方向移動制御回路 5 3 から出力される Z制御信号 P 2 に基づ いて、 Z方向へ所定量だけ移動制御される。 この と き、 ステ ージ 4 9 の一回あた り の移動量 (移動ピッチ) は、 処理制御 部 4 7 に よ って制御される。 ·  The stage 49 is controlled to move by a predetermined amount in the Z direction based on the Z control signal P 2 output from the Z direction movement control circuit 53 according to an instruction from the processing control unit 47. At this time, the amount of movement (movement pitch) per stage 49 is controlled by the processing control unit 47. ·
また、 測定範囲の設定及ぴ各測定範囲内のステージ 4 9 の 移動量の設定や、 画像表示及び顕微鏡システムの制御等は、 処理制御部 4 7 に接続されたモニタ 4 8 に表示される設定画 面を見なが らユーザが設定する。  In addition, the setting of the measurement range, the setting of the amount of movement of the stage 49 within each measurement range, the image display, and the control of the microscope system are performed on the monitor 48 connected to the processing control unit 47. Set by the user while looking at the screen.
以上のよ う に構成されたシステムでは、 ユーザが試料 5 0 をステージ 4 9 上に載置した後、 処理制御部 4 7 によ る制御 によって試料 5 0上に集光される微小スポッ トを X Y方向に 走査する。 そ して、 同時に、 各測定点 ( X , y } においてス テージ 4 9 を Z方向に移動制御 して試料 5 0 に対する合焦制 御を行う 。 この と き、 試料 5 0 にピン ト が合ったか否かの判 断は、 モエタ 4 8 に表示された画像を見なが ら行う。 In the system configured as described above, after the user places the sample 50 on the stage 49, the minute spot condensed on the sample 50 is controlled by the processing control unit 47. Scan in XY direction. At the same time, at each measurement point (X, y), the stage 49 is controlled to move in the Z direction to control the focus on the sample 50. I will do it. At this time, whether or not the sample 50 is in focus is determined while checking the image displayed on the moeta 48.
次に、 ユーザは、 測定動作に関する各パラ メータの設定を 行う。 まず、 処理制御部 4 7 によって試料 5 0 の測定範囲 L 及び、 測定を開始するステージ 4 9 の位置 Z 0 を設定した後、 Z 走査でのス テージ 4 9 の 1 回あた り の移動ピ ッチ Δ ( 厶 Z ) を設定する。  Next, the user sets each parameter related to the measurement operation. First, the processing control unit 47 sets the measurement range L of the sample 50 and the position Z0 of the stage 49 where the measurement starts, and then moves the stage 49 in the Z scanning for each movement of the stage 49. Switch Δ (mm Z).
測定範囲 L と ステージ 4 9 の 1 回あたり の移動ピッチ Δ と を設定する と、 ステージ 4 9 の移動回数Nは L / Δ ≤ N とぃ う 関係に従って決定される。 と ころで、 ステージ 4 9 の移動 回数のカ ウ ン ト値は、 画像メ モ リ 5 4 a に保存されるため、 ステージ 4 9 の移動回数 Nは、 画像メ モ リ 5 4 a の階調数 2 5 5 以下に制限される。  When the measurement range L and the movement pitch Δ per one time of the stage 49 are set, the number of movements N of the stage 49 is determined according to the relationship L / Δ≤N. Since the count value of the number of movements of the stage 49 is stored in the image memory 54a, the number of movements N of the stage 49 is the gradation of the image memory 54a. Limited to the number 2 5 5 or less.
上記のよ う に測定範囲 L と移動ピッチ Δ及び移動回数 Nを 設定した後、 試料 5 0 に対する測定が開始される と、 光検出 器 5 1 で Z方向の各相対位置 Z 0 、 Z Ί s … Z n における電 気信号 I 0 、 I 丄 、 … I nが検出される。 After setting the measurement range L, the movement pitch Δ, and the number of movements N as described above, when the measurement on the sample 50 is started, the relative positions Z 0 , Z s s in the Z direction are detected by the photodetector 51. ... air collector in Z n signal I 0, I丄, is ... I n are detected.
次に F i g . 8 に示すフ ロ ーチャー ト を参照 して、 このよ う に構成された共焦点顕微鏡における高さ測定方法について説 明する。  Next, with reference to the flowchart shown in FIG. 8, a method for measuring the height of the confocal microscope configured as described above will be described.
まず、 Z走査して輝度をサンプリ ング し、 輝度最大値及び その前後計 5 点の輝度、 輝度が最大になる Z カ ウ ンタ の値を 格納する (ステ ップ S 1 (ステ ップ S 2 〜ステ ッ プ 9 〉 ) 。 ステ ップ S 2 からステ ップ S 9 の具体的な内容は、 以下の通 り である。 測定開始時における初期設定を行う (ステ ップ S 2 ) 。 具 体的な初期設定と しては、 Z ステージを Z o に移動して、 力 ゥンタ を リ セッ ト ( k に 0 を代入) した後、 輝度の初期値 I 0 を取 り 込んで、 I 0 の値を最大輝度値 M c に格納する。 次 に、 移動ピッチ だけ Z ス テージを移動して、 カ ウンタ値 k をイ ンク リ メ ン トする と共に、 輝度 I k を取り 込む (ステ ツ プ S 3 ) 。 First, the luminance is sampled by scanning in the Z direction, and the maximum luminance value, the luminance of the five points before and after the luminance value, and the value of the Z counter that maximizes the luminance are stored (step S1 (step S2 Step 9>) The specific contents of steps S2 to S9 are as follows. Perform the initial settings at the start of measurement (step S2). As a concrete initial setting, after moving the Z stage to Z o, resetting the power counter (substituting 0 for k), taking the initial luminance value I 0, value of 0 is stored in the maximum brightness value M c. In the following, only the movement pitch by moving the Z stages, the counter value k with i ink Li main emission Tosuru, Komu takes luminance I k (stearyl class tap S 3).
輝度 I k と最大輝度値 M c の値と を比較 し ( ス テ ッ プ S 4 ) 、 I kが M c よ り 大きければ ( Y E S ) 、 I k を M c に、 1 つ前の輝度 を M A ;L に、 2 つ前の輝度 L 2 を M A 2 に、 k を M d にそれぞれ格納 して (ス テ ッ プ S 5 ) 、 ステ ップ S 8 に移行する。 一方、 ステ ップ S 4 において、 I kが M c以 下の値であれば ( N O ) 、 カ ウンタの値が k =M d + 2 であ るか否かを判定する (ステ ップ S 6 ) 。 こ の判定で、 k = M d + 2 であれば ( Y E S ) 、 輝度 I k を M b 2 へ 、 L i を M b l にそれぞれ格納 して (ステップ S 7 ) 、 ステ ップ S 8 へ 移行する。 一方、 ステ ップ S 6 において、 k = M d + 2 でな ければ ( N O) 、 そのままステ ップ S 8 に移行する。 The luminance I k is compared with the value of the maximum luminance value M c (step S 4). If I k is larger than M c (YES), I k is set to M c and the previous luminance is set to M c. The two previous luminances L 2 are stored in M A ; L, the previous luminance L 2 is stored in M A2 , and k is stored in M d (step S5), and the process proceeds to step S8. On the other hand, in stearyl-up S 4, if the value of the following I k is M c (NO), the value of the counter is equal to or k = M d + 2 der Luca (Step-up S 6). In the determination of this migration if k = M d + 2 (YES ), the luminance I k to M b 2, and stores each L i to M bl to (step S 7), stearyl-up S 8 I do. On the other hand, in stearyl-up S 6, if Kere such a k = M d + 2 (NO ), control proceeds to stearyl-up S 8.
次に、 ステップ S 8 において、 1 つ前の輝度 L i を 2 つ前 の輝度 L 2 へ 、 輝度 I k を 1 つ前の輝度 L i へそれぞれ格納 する。 その後、 カ ウンタ値が終了値 Nになったか否かを判定 して (ステ ップ S 9 ) 、 同 じ値になった時点 ( Y E S ) で輝 度のサンプリ ングと最大値前後の 5点の抽出が完了する。 ま たカ ウ ンタ値が終了値に至っていなければ、 ステ ップ S 3 に 戻り 、 同 じ処理を繰り 返し行う。 このよ う な輝度のサンプリ ングが終了する と、 次に、 最大 輝度前後の 5 点のデータ M a 2、 M a i 、 M c 、 M b l 、 M b 2を用いて、 I — Z カーブを 2次式で近似する。 近似式の 係数は、 5 点の輝度データから最小自乗法によって計算する。 このステ ップ S 1 0 で求めた近似式の 2次の係数 a に従って ノ イ ズの影響の大小を判定する (ステ ップ S 1 1 ) 。 Next, in step S8, the immediately preceding luminance L i is stored in the immediately preceding luminance L 2 , and the luminance I k is stored in the immediately preceding luminance L i. Thereafter, it is determined whether or not the counter value has reached the end value N (step S9). When the counter value reaches the same value (YES), the brightness sampling and the five points around the maximum value are determined. The extraction is completed. If the counter value has not reached the end value, the process returns to step S3, and the same processing is repeated. When sampling of such luminance is completed, the I—Z curve is then transformed into two curves using the data Ma 2 , M ai , M c , M bl , and M b 2 of the five points before and after the maximum luminance. It is approximated by the following equation. The coefficients of the approximation formula are calculated by the least squares method from the luminance data at five points. The magnitude of the influence of noise is determined according to the second order coefficient a of the approximation formula obtained in step S10 (step S11).
こ こで、 この判定における ノ イ ズの影響の大小について、 F i g. 9 を参照して説明する。 なお、 F i g. 9 において、 試料 Aは表面が平滑であるので、 I — Zカープが鋭く 、 試料 Bは、 表面が粗いので、 I 一 Zカープが緩いこ と を示している。 In here, the magnitude of the impact of Roh size b in this decision, will be described with reference to the F i g. 9. In Fig. 9, sample A has a smooth surface, so that the I-Z carp is sharp, and sample B has a rough surface, indicating that the I-Z carp is loose.
上記ステ ップ S 1 1 において、 計算によって得られた係数 a が負 ( a く 0 の場合には ( Y E S ) 、 F ig. 9 に示す試料 Aの 5 点近似曲線に示すよ う に、 2次曲線が上に凸である こ と力 ら I 一 Zカープが近似できている。 すなわち、 ノイズの 影響は小さいものと判断し、 ステ ップ S 1 0 で求めた係数を 用いてピ^"ク位置を計算する (ステ ップ S 1 2 ) 。 と ころが、 ステ ップ S 1 1 の判定において、 係数 a が負ではなく 、 正の 場合には ( N O ) 、 試料 Bの 5 点近似曲線のよ う に下に凸に なってお り 、 0 の場合には直線と なる。 このよ う な場合は、 抽出 した 5 点のデータでは、 ノ イズの影響によ り 、 I — Z 力 ーブが近似できていないこ と を示 している。  In the above step S 11, when the coefficient a obtained by the calculation is negative (a is less than 0 (YES)), as shown in the five-point approximate curve of sample A shown in FIG. Since the quadratic curve is upwardly convex, the I-Z carp can be approximated from the force. (Step S 12) However, when the coefficient a is not negative but positive in the judgment of Step S 11 (NO), a five-point approximation of sample B is obtained. It is convex downward like a curve, and becomes a straight line when it is 0. In such a case, the extracted five points of data show the I-Z force due to the noise. This indicates that the curve could not be approximated.
従って、 このよ う な場合には、 I 一 Zカーブ上で輝度の変 化が小さ く 、 ノ イズの影響が大きいと考えられる。 最大値の 近傍の点のデータ M a l , M b l を使用せずに M a 2、 M b 2 、 M c を用いて近似式の係数を計算する (ス テ ッ プ S 1 3 ) 。 このよ う にする こ と によ り 、 試料 Bの 3 点近似曲線に 示すよ う な近似曲線が得られ、 この係数に基づいてピーク位 置を計算する (ステ ップ S 1 4 ) 。 Therefore, in such a case, it is considered that the change in luminance on the I-Z curve is small and the influence of noise is large. Data M al point near the maximum value, without using the M bl with M a 2, M b 2, M c for computing the coefficients of the approximate expression (scan STEP S 1 3). By doing so, an approximate curve as shown in the three-point approximate curve of sample B is obtained, and the peak position is calculated based on this coefficient (step S14).
このよ う な方法によれば、 Z の走査範囲が広く なっても格 納されるデータ は M a 2 、 M a l 、 M c 、 M b l 、 M b 2お ょぴ M d の 6 フ レーム分と な り 、 メ モ リ の使用を少なく でき る。 なお、 前述 した説明では、 説明を簡単にするためにノィ ズ影響を判断する条件と して a < 0 (近似曲線が上に凸) と したが、 a く 0 (上に凸) の場合であっても近似曲線が広が り すぎの場合も ある ので、 よ り 適切な しきい値 (く 0 ) を用 いる こ と が好ま しい。 According to this Yo I Do method, data is M a 2, M al the scanning range of Z is store even wider, M c, M bl, 6 frames worth of M b 2 Contact Yopi M d As a result, the use of memory can be reduced. In the above description, for the sake of simplicity, the condition for judging the noise effect is a <0 (approximate curve is convex upward), but in the case of a <0 (convex upward). Even so, the approximation curve may be too wide, so it is preferable to use a more appropriate threshold value (about 0).
係数 a は I 一 Z カープの広が り 幅を示 し、 試料が鏡面の場 合に最も小さ く なる ( I 一 Zカープの幅がせま く なる) 。 試 料面が粗い場合には、 I 一 Zカーブが 2倍程度まで広がるの で、 ノイズ影響を判断する しきい値と しては、 鏡面の場合の 係数 a の 1 Z 2程度 (く 0 ) と しても良い。 鏡面の場合の係 - 数 a は、 実際に鏡面の I — Zカープを測定する こ とで求めて も良いし、 光学系の N A、 波長等から計算によって求めても 良い。  The coefficient a indicates the spread width of the I-Z carp, and becomes the smallest when the sample is a mirror surface (the width of the I-Z carp becomes narrower). When the sample surface is rough, the I-Z curve expands to about twice, so the threshold for judging the noise effect is about 1 Z2, which is the coefficient a for a mirror surface (about 0). It may be. In the case of a mirror surface, the coefficient a may be obtained by actually measuring the I-Z carp of the mirror surface, or by calculating from the NA and the wavelength of the optical system.
また、 ノイズがなければ、 ステ ップ S 1 0 の結果を使って ピーク位置を計算する と、 結果は必ず移動ピッチ Δの ± 1 ノ 2以内になる。 そこで、 ステ ップ S 1 0 では、 ピーク位置ま でを計算し、 ステ ップ S 1 1 では、 計算 して得られたピーク 位置が ± 1 Ζ 2 Χ Δ の範囲にある と きは、 ステ ップ S 1 2 に てステ ップ S 1 0 で計算したピーク位置を使い、 それ以外の 場合は、 ステ ップ S 1 3 以降の手順でピーク位置を求める と 良い。 尚、 サンプリ ングした輝度にノ イズが重畳する こ と は やむを得ないので、 ステ ップ S 1 1 の基準を多少広め、 土厶 や ± 2 Χ Δ と しても良い。 Also, if there is no noise, if the peak position is calculated using the result of step S10, the result will always be within ± 1-2 of the moving pitch Δ. Therefore, in step S10, the calculation up to the peak position is performed. In step S11, when the calculated peak position is within the range of ± 1Ζ2ΧΔ, the step is performed. In step S12, use the peak position calculated in step S10, and In this case, the peak position may be obtained by the procedure after step S13. Note that since it is inevitable that noise is superimposed on the sampled luminance, the standard of step S11 may be slightly widened, and may be set to earth or ± 2ΧΔ.
また画像メ モ リ 5 4 a のメ モ リ 容量に余裕があればステ ツ プ S 4 で Z 走査範囲の全ての位置で輝度 I 丄 、 I 2 、 〜 I n をメモ リ に格納する よ う にすれば、 ステ ップ S 5 力 らステ ツ プ S 8 の処理は不要と なる。 The image Note Li 5 4 luminance at all positions in the Z scanning range stearyl class tap S 4 if there is room in Note Li capacity of a I丄, earthenware pots by storing I 2, a ~ I n the memory In this case, the processing from step S5 to step S8 becomes unnecessary.
この場合、 ステ ップ S 1 0で輝度の最大値及びその前後の N点を抽出するが、 この場合に抽出点数は 3 以上であればよ く 、 3 点や 5 点に制限される ものではない。  In this case, the maximum value of the luminance and N points before and after the maximum value of the luminance are extracted in step S10. In this case, the number of extracted points need only be 3 or more, and is not limited to 3 points or 5 points. Absent.
更にステ ップ S 1 1 でノイズの影響が大きいと評価された 場合においては ( N O ) 、 ステ ッ プ S I 3 での輝度データの 再抽出は、 ステ ップ S 1 0 で抽出 した輝度の中からではなく 、 ステップ S 4 で一次格納されている Z走査範囲の全ての位置 での輝度 I 丄 、 I 2 、 〜· Ι nから最大値を挟んでその前後、Further, if the influence of the noise is evaluated to be large in step S11 (NO), the re-extraction of the luminance data in step SI3 is performed based on the luminance extracted in step S10. , But before and after the maximum value from the luminances I 丄, I 2 , 〜 n at all positions in the Z scan range temporarily stored in step S 4,
1 つおき に 5点抽出する よ う に しても良い。 Every other 5 points may be extracted.
このよ う に、 Z走查範囲の全ての位置での輝度 I l s 1 2 、 … I n をメ モ リ に格納する よ う にする と、 輝度のサンプリ ン グ時 (ステ ップ S 1 ) の処理が少なく な り 、 よ り 、 高速でサ ンプリ ングでき る と共に、 ノイズの影響の大小に関わらずピ ク位置の計算に用いる輝度の個数を一定にでき るなど、 ノ ィ ズの評価や輝度データ の再抽出の自 由度が増す。 Ni will this Yo, luminance I ls 1 2 at all positions of the Z Hashi查range, ... when the power sale by storing I n the Note Li, when sampled in g of luminance (Step-up S 1) Noise reduction and faster sampling, as well as a constant number of luminances used to calculate the peak position regardless of the magnitude of the effect of noise. The degree of freedom in re-extracting luminance data increases.
本実施形態によれば以下のよ う な要旨が抽出される。  According to the present embodiment, the following points are extracted.
この第 4 の実施形態の高さ測定方法は、 共焦点顕微鏡を用 いた高さ測定方法であって、 まず、 試料と対物レ ンズの相対 位置を所定の間隔で変化させなが ら、 複数の位置における輝 度を測定する。 得られた複数の輝度の う ち、 最大輝度の前後 含む連続した少なく と も 3 点の位置における輝度データを用 いてノイ ズの影響を評価する。 このノ イズの評価結果に基づ いて、 近似曲線を求めて、 輝度のピーク位置を計算する。 The height measuring method according to the fourth embodiment uses a confocal microscope. First, the brightness at a plurality of positions is measured while changing the relative positions of the sample and the objective lens at predetermined intervals. Of the multiple luminances obtained, the effect of noise is evaluated using luminance data at at least three consecutive positions including before and after the maximum luminance. Based on the result of this noise evaluation, an approximate curve is obtained, and the luminance peak position is calculated.
こ の高さ測定方法において、 近似曲線を求める場合におい て、 ノ イ ズの影響が小さい場合には、 最大輝度を含む連続し た少なく と も 3 点の位置における輝度データ を用いて近似曲 線を求め、 ノ イ ズの影響が大きい場合には、 測定した輝度デ ータの う ち、 少なく と も最大輝度の位置に隣接した位置の輝 度データを除いた輝度データを用いて近似曲線を求める。  In this height measurement method, when obtaining an approximate curve, if the effect of noise is small, the approximate curve is used using the luminance data at at least three consecutive points including the maximum luminance. If the effect of noise is large, an approximate curve is calculated using luminance data excluding the luminance data at least adjacent to the position of the maximum luminance from the measured luminance data. Ask.
このよ う な高さ測定方法によれば、 近似曲線を求める場合 において、 ノ イ ズの評価基準と して近似式の幅を用いる。 ま た、 近似曲線の再計算は、 抽出済みの 5 点の う ち、 中心と両 端の 3 -点を用いる。  According to such a height measuring method, when obtaining an approximate curve, the width of the approximate expression is used as a noise evaluation criterion. For recalculation of the approximate curve, three points at the center and both ends are used among the five extracted points.
従って、 第 4 の実施形態によれば、 試料の表面形状によ り 、 I 一 Zカープの形状が変化 しても、 Z のス テ ッ プを変えずに、 近似式の係数の計算に用いる I の数を増やさず、 ノ イ ズの影 響を抑えて、 I 一 zカーブの近似式の係数を計算する こ とで、 高速かつ正確に高さ を測定する こ とができ る。  Therefore, according to the fourth embodiment, even if the shape of the I-Z carp changes due to the surface shape of the sample, it is used for calculating the coefficient of the approximate expression without changing the step of Z. By calculating the coefficients of the approximation of the I-z curve without increasing the number of I and suppressing the effects of noise, the height can be measured quickly and accurately.
次に第 5 の実施形態について説明する。  Next, a fifth embodiment will be described.
F i g . 1 0 は、 本発明によ る第 5 の実施形態に係る、 共焦 点顕微鏡を含むシス テ ム の構成例を示す。 こ のシス テムにお いて、 F i g . 1 に示 した構成部位と の部位には同 じ参照符号 を付してその説明を省略する。 Fig. 10 shows a configuration example of a system including a confocal point microscope according to the fifth embodiment of the present invention. In this system, the same reference numerals are used for the components that are the same as the components shown in Fig. 1. And the description is omitted.
この構成において、 倍率の異なる複数の対物レンズ 5 が レ ポルバ 6 1 に装着されている。 処理制御部 1 1 は、 C P U、 R O M及ぴ R A M等を備え、 C P Uが R O Mに格納されてい る顕微鏡制御プロ グラムを読み出 し実行する。  In this configuration, a plurality of objective lenses 5 having different magnifications are mounted on the revolver 61. The processing control unit 11 includes a CPU, a ROM, a RAM, and the like. The CPU reads and executes a microscope control program stored in the ROM.
このシステムによ る輝度及び高さ測定処理について説明す る。  The luminance and height measurement processing by this system will be described.
対物レンズ 5 によ る集光位置は、 共焦点絞り 9 と光学的に 共役な位置にあ り 、 試料 7 が対物レンズ 5 による集光位置に ある場合には、 試料 7からの反射光が共焦点絞り 9上に集光 し、 共焦点絞り 9 を通過する こ と になるが、 試料 7が対物レ ンズ 5 によ る集光位置からずれた位置にある場合には、 試料 7からの反射光は共焦点絞り 9 上に集光せず、 共焦点絞 り 9 を通過しない。  The condensing position of the objective lens 5 is optically conjugate with the confocal stop 9, and when the sample 7 is at the condensing position of the objective lens 5, the reflected light from the sample 7 is common. The light is focused on the focus stop 9 and passes through the confocal stop 9, but if the sample 7 is shifted from the focus position by the objective lens 5, the reflection from the sample 7 will occur. Light does not converge on confocal aperture 9 and does not pass through confocal aperture 9.
F ig. 1 1 は、 こ の と きの対物レンズ 5 の集光位置と試料 7 と の相対位置 ( Z ) と、 光検出器 1 0 の出力 ( I ) の関係 ( I 一 Z カーブ) を示した図である。  Fig. 11 shows the relationship (I-Z curve) between the relative position (Z) of the focus position of the objective lens 5 and the sample 7 and the output (I) of the photodetector 10 at this time. FIG.
図示する よ う に、 試料 7 が対物 レ ンズ 5 の集光位置 Z o にあ る場合、 光検出器 1 0 の出力は最大 ( I max ) と な り 、 この位置から対物レンズ 5 の集光位置と試料 7 と の相対位置 が離れる に従い光検出器 1 0 の出力は急激に低下する。  As shown in the figure, when the sample 7 is located at the focusing position Zo of the objective lens 5, the output of the photodetector 10 becomes maximum (I max), and the focusing of the objective lens 5 is started from this position. As the relative position between the position and the sample 7 increases, the output of the photodetector 10 sharply decreases.
例えば、 試料 7 の表面の所定の一点について取得された光 検出器 1 0 の出力が、 F ig. 1 1 の黒丸に示した値であった と き には、 その出力が最大と な る点 ( Z (k) 、 I (k) ) 、 及びその前後の点 ( Z (k-1) 、 I (k-1) ) 、 ( Z (k + 1) 、 I (k+1) ) の 3 点を通る近似 2次曲線が求め られる。 For example, when the output of the photodetector 10 obtained at a predetermined point on the surface of the sample 7 is the value indicated by the black circle in FIG. 11, the point at which the output becomes the maximum (Z (k), I (k)), and points before and after (Z (k-1), I (k-1)), (Z (k + 1), An approximate quadratic curve passing through three points of I (k + 1)) is obtained.
続いて、 求め られた近似 2次曲線から、 本来光検出器 1 0 の出力が最大と なる最大光強度値とそれを与える Z ステージ 1 2 の Z位置が推定され、 その推定された最大光強度値とそ れを与える Z 位置が、 輝度 (輝度情報) 及び高さ (高さ 情 報) と して取得される。  Subsequently, from the obtained approximated quadratic curve, the maximum light intensity value at which the output of the photodetector 10 is originally maximum and the Z position of the Z stage 12 that gives the maximum light intensity value are estimated, and the estimated maximum light intensity The value and the Z position that gives it are acquired as luminance (luminance information) and height (height information).
F ig. 1 1 に示 した例によれば、 求め られた近似 2次曲線 か ら、 最大光強度 I raax と それを与える Z ス テージ 1 2 の 位置 Z o が推定され、 その推定さ れた I max と Z o が、 輝 度及び高さ と して取得される。  According to the example shown in Fig. 11, the maximum light intensity Iraax and the position Zo of the Z stage 12 that gives it are estimated from the obtained approximated quadratic curve, and the estimated value is obtained. I max and Z o are obtained as brightness and height.
この第 5 の実施形態によ る輝度及び高さ測定処理では、 不 適切な近似 2次曲線が求め られた場合に誤った輝度及ぴ高さ が取得されるのを防止するために、 前述 した実施形態におけ る測定処理に加えて次のよ う な処理も行なわれる。  In the luminance and height measurement processing according to the fifth embodiment, as described above, in order to prevent an erroneous luminance and height from being acquired when an inappropriate approximate quadratic curve is obtained, The following processing is also performed in addition to the measurement processing in the embodiment.
3 つの Z位置での光検出器 1 0 の出力を抽出 したと き に、 その光検出器 1 0 の出力の値が近似 2次曲線を求-める上で不 適切な値であったと きには、 近似 2次曲線を求めず、 或いは 近似 2次曲線から最大光強度値とそれを与える Ζ位置を推定 せず、 任意の最大光強度値及び任意の Ζ位置を、 輝度及び高 さ と して取得する、 等といった処理が行われる。  When the output of the photodetector 10 at the three Z positions is extracted, the output value of the photodetector 10 is inappropriate for obtaining the approximate quadratic curve. Does not calculate the approximated quadratic curve or estimate the maximum light intensity value and the Ζ position to give it from the approximated quadratic curve. And the like are obtained.
具体的には、 次のよ う に して行われる。 但し、 この第 5 の 実施形態においては、 光検出器 1 0 の出力の値と して取 り 得 る範囲を、 0 〜 4 0 9 5 ( 1 2 b i t ) と し、 前述の不適切 な値を 0或いは 4 0 9 5 と し、 また、 前述した任意の最大光 強度値を、 光検出器 1 0 の出力の値と して取 り う る範囲の最 小光強度値である 0 と し、 任意の Z位置を、 高さ方向の測定 範囲の最小値である 0 と して説明する。 Specifically, it is performed as follows. However, in the fifth embodiment, the range that can be obtained as the output value of the photodetector 10 is 0 to 495 (12 bits), and the aforementioned inappropriate value Is set to 0 or 495, and the above-mentioned arbitrary maximum light intensity value is taken as the output value of the photodetector 10. The low light intensity value is assumed to be 0, and an arbitrary Z position is assumed to be 0, which is the minimum value of the measurement range in the height direction.
まず、 抽出された 3 つの Z位置での光検出器 1 0 の出力の いずれかが 0 であった場合に行なわれる処理について、 F ig. 1 2 Aを例と して説明する。  First, the processing performed when any of the outputs of the photodetectors 10 at the three extracted Z positions is 0 will be described using FIG. 12A as an example.
F ig. 1 2 Aは、 抽出 された 3 つの Z位置での光検出器 1 0 の出力の一例を示した図であ り 、 測定条件の設定が不適切 であったために光検出器 1 0 の出力が小さ く なって しまった 場合や、 試料 7 の表面の測定点の反射率が他に比べて低かつ た場合等に得られる ものである。  FIG. 12A is a diagram showing an example of the output of the photodetector 10 at the three extracted Z positions. The photodetector 10 was detected because the measurement conditions were improperly set. This is obtained when the output of the sample 7 becomes small, or when the reflectivity of the measurement point on the surface of the sample 7 is lower than the others.
F ig. 1 2 Aに示 したよ う に、 Z方向の測定範囲に渡って 光検出器 1 0 の出力がほと んど得られず焦点位置 (対物レ ン ズ 5 の集光位置が試料 7の表面にある位置) 近傍においてわ ずかに出力が得られている。 この場合、 黒丸で示 した 3 つの Z位置での光検出器 1 0 の出力の値を示す点を抽出する と、 As shown in Fig. 12 A, almost no output of the photodetector 10 was obtained over the measurement range in the Z direction, and the focal position (the focusing position of the objective lens 5 was (Position on the surface of Fig. 7) Output is slightly obtained in the vicinity. In this case, when the points indicating the output values of the photodetector 10 at the three Z positions indicated by black circles are extracted,
( Z (m) 、 Γ (m) 〉 、 ( Z (ra-1) 、 0 ) · 、 ( Z (m+l) 、 I (ra+1) ) と な る。 こ れ ら に基づいて求め た近似 2 次曲線(Z (m), Γ (m)〉, (Z (ra-1), 0) ·, (Z (m + l), I (ra + 1)) Approximated quadratic curve
( F ig. 1 2 Aの実線) は、 実際の I 一 Zカープ ( F ig. 1 2 Aの点線) と大き く 異な り 、 正 しい最大光強度値とそれを与 える Z位置を推定する こ とができない虞がある。 (The solid line in Fig. 12A) is significantly different from the actual I-Z carp (dotted line in Fig. 12A), and estimates the correct maximum light intensity value and the Z position that gives it. This may not be possible.
そこで、 抽出された 3つの Z位置での光検出器 1 0の出力 の何れかが 0 であった と き には、 近似 2次曲線を求めず、 或 いは近似 2次曲線から最大光強度値とそれを与える Z位置を 推定せずに、 輝度及び高さ と して 0 を取得する よ う に処理が 行なわれる。 次に F i g. 1 2 B は、 前述 した 3 つの Z位置での光検出器 1 0 の出力のいずれかが飽和 して、 その値が 4 0 9 5 であつ た場合に行なわれる処理を一例と して説明する。 この例は、 F ig. 1 2 Aに示 した例 と は逆に、 光検出器 1 0 の出力が大 き く なつて しまった場合や、 試料 7 の表面の測定点の反射率 が他に比べて高かった場合等に得られる ものである。 この場 合、 抽出された 3つの Z位置での光検出器 1 0 の出力の う ち、 光検出器 1 0 の測定範囲を超えた 1 つ ( F ig. 1 2 B の 白 丸) の値は、 測定範囲の上限値である 4 0 9 5 に置き換えら れて しま う。 Therefore, if any of the outputs of the photodetectors 10 at the three extracted Z positions is 0, the approximate quadratic curve is not obtained, or the maximum light intensity is calculated from the approximate quadratic curve. Processing is performed so as to obtain 0 as the luminance and height without estimating the value and the Z position at which it is given. Next, Fig. 12B describes the processing performed when one of the outputs of the photodetector 10 at the three Z positions described above is saturated and the value is 495. This will be described as an example. In this example, contrary to the example shown in Fig. 12A, when the output of the photodetector 10 becomes large or the reflectance of the measurement point on the surface of the sample 7 becomes different. It can be obtained if the price is higher than the others. In this case, one of the outputs of the photodetector 10 at the three extracted Z positions, which exceeds the measurement range of the photodetector 10 (the white circle in Fig. 12B) Is replaced by the upper limit of the measurement range, 495.
従って、 これを含む黒丸で示 した 3つの Z位置での光検出 器 1 0 の出力の値を示す点を抽出する と 、 ( Z (m) 、 4 0 9 5 ) 、 ( Z (m-1) 、 I (m-1 ) ) 、 ( Z (m+1) 、 I (m+1) ) と なる。 これらに基づいて求め られた近似 2次曲線 ( F ig. 1 2 Bの実線) は、 実際の I 一 Z カープ ( F ig. 1 2 B の点線) と大き く 異なる こ と にな り 、 正 しい最大光強度値 とそれを与える Z位置を推定する こ とができない虞がある。 そこで、 これを防止するため、 抽出 した 3 つの Z位置での光 検出器 1 0 の出力の何れかが 4 0 9 5 であった と きには、 近 似 2 次曲線を求めず、 或いは近似 2次曲線から最大光強度値 とそれを与える Z位置を推定せずに、 輝度及び高さ と して 0 を取得する よ う に処理が行なわれる。  Therefore, when the points indicating the output values of the photodetector 10 at the three Z positions indicated by the black circles including these points are extracted, (Z (m), 40995), (Z (m-1 ), I (m-1)), (Z (m + 1), I (m + 1)). The approximated quadratic curve (solid line in Fig. 12B) obtained based on these results is significantly different from the actual I-Z carp (dotted line in Fig. 12B). It may not be possible to estimate a new maximum light intensity value and the Z position that gives it. Therefore, in order to prevent this, if any of the outputs of the photodetectors 10 at the three extracted Z positions is 40995, the approximate quadratic curve is not obtained or approximated. Processing is performed so as to obtain 0 as the luminance and height without estimating the maximum light intensity value and the Z position at which it is given from the quadratic curve.
以上のよ う な、 抽出された 3 つの Z位置での光検出器 1 0 の出力のいずれかが 0或いは 4 0 9 5 であった場合に行なわ れる処理が、 試料 7 の表面の各測定点について行われる と、 続いて、 その各測定点について得られた輝度及ぴ高さ に基づ く 画像がモニタ 1 4 に表示される。 The processing performed when any of the outputs of the photodetector 10 at the three extracted Z positions is 0 or 495, as described above, is performed at each measurement point on the surface of the sample 7. When done for Subsequently, an image based on the luminance and height obtained for each of the measurement points is displayed on the monitor 14.
例えば、 試料 7 の形状が F i g. 1 3 Aに示した形状であつ たと きは、 F ig. 1 3 B又は F ig. 1 3 Cに示した画像等が表 示される。 F ig. 1 3 Aは、 試料 7 の形状の一例を示 した図 であ り 、 その表面の一部は高反射面部及び低反射面部を有し ている。 F ig. 1 3 B は、 取得された輝度に基づいて表示さ れた輝度画像 ( 2次元画像) の一例を示 した図である。 F ig. 1 3 Bの黒く 示 した部分は、 輝度が 0 の部分を示 している。 F ig. 1 3 C は、 取得された輝度及び高さ に基づいて表示さ れた高さ画像 (三次元画像) の一例を示 した図である。 F ig. 1 3 Cの黒く 示 した部分は、 輝度及ぴ高さが ◦ の部分を示し、 実際には、 穴の空いた空洞部分と して表示される。  For example, when the shape of the sample 7 is the shape shown in FIG. 13A, the image shown in FIG. 13B or FIG. 13C or the like is displayed. FIG. 13A is a diagram showing an example of the shape of the sample 7, and a part of the surface has a high reflection surface portion and a low reflection surface portion. FIG. 13B is a diagram showing an example of a luminance image (two-dimensional image) displayed based on the acquired luminance. The black portion of FIG. 13B indicates the portion where the luminance is 0. FIG. 13C is a diagram showing an example of a height image (three-dimensional image) displayed based on the acquired luminance and height. The black portion of FIG. 13C indicates a portion where the brightness and the height are ◦, and is actually displayed as a hollow portion with a hole.
このよ う に、 近似 2次曲線を求めるための 3つの Z位置で の光検出器 1 0 の出力が不適切な値と なった場合には、 試料 7 の表面の各測定点について取得された輝度及び高さ に基づ く 画像に、 輝度及び高さが 0 である測定点が視覚的に判別可 能に表示される。 これによ り 、 ユーザは、 試料 7 の表面の何 れの測定点が不正確なデータなのか、 或いは何れの測定点或 いは測定対象部位の測定条件が不適切であったのか等を視覚 的に判断する こ と が可能になる。  In this way, when the output of the photodetector 10 at three Z positions for obtaining the approximate quadratic curve was an inappropriate value, the values obtained for each measurement point on the surface of Sample 7 were obtained. Measurement points with a luminance and height of 0 are displayed on the image based on the luminance and height so that they can be visually distinguished. This allows the user to visually check which measurement point on the surface of the sample 7 is incorrect data, or which measurement point or measurement condition of the measurement target portion is inappropriate. It is possible to make a judgment.
次に、 前述した抽出 された 3 つの Z位置での光検出器 1 0 の出力のいずれかが 0 であった場合の他の例について、 F ig. 1 2 Cを例と して説明する。  Next, another example in which one of the outputs of the photodetector 10 at the three extracted Z positions described above is 0 will be described using FIG. 12C as an example.
F ig. 1 2 C は、 抽出 された 3 つの Z位置での光検出器 1 0 の出力の一例を示 した図である。 F ig. 1 2 C に示 した例 は、 F i g. 1 4 に示 したよ う に、 ュ ザによ り Z方向の測定 範囲 と して F ig, 1 4 の Z走査範囲が設定され、 その結果、 試料 7 の表面の S 3 面が、 その測定範囲の下限位置に近く な つて しまった場合の例である。 この場合、 S 3 面上の所定の 測定点において、 F i g. 1 2 C に示したよ う に、 抽出される べき 3つの Z位置での光強度情報の う ちの 1 つを取得できな い虞がある。 F ig. 1 2 Cの例では、 Z方向の測定開始位置 において光検出器 1 0 の出力が最大になって しまったために、 その前の Z位置での光検出器 1 0 の出力を取得できないこ と になる。 従って、 その Z位置での光検出器 1 ◦ の出力が仮に F ig. 1 2 Cの 白丸で示 した値であつた と しても、 実際には それを取得でき ないため、 その Z位置での光検出器 1 0 の出 力は黒丸で示 した 0 と みな される こ と になる。 よ って、 そ そこで、 抽出された 3 つの Z位置での光検出器 1 0の出力の 何れかが 0 であった と きには、 近似 2次曲 -線を求めず、 或い は近似 2次曲線から最大光強度値とそれを与える Z位置を推 定せずに、 輝度及び高さ と して 0 を取得する よ う に処理が行 なわれる。 Fig. 1 2 C is the photodetector 1 at the three extracted Z positions. FIG. 9 is a diagram showing an example of an output of 0. In the example shown in Fig. 12C, as shown in Fig. 14, the user sets the Z scanning range of Fig. 14 as the measurement range in the Z direction as shown in Fig. 14. However, as a result, this is an example in which the S 3 surface of the surface of the sample 7 is close to the lower limit position of the measurement range. In this case, as shown in Fig. 12C, one of the light intensity information at the three Z positions to be extracted cannot be acquired at a predetermined measurement point on the S3 surface, as shown in Fig. 12C. There is a fear. In the example of Fig. 12 C, the output of the photodetector 10 at the measurement start position in the Z direction has reached the maximum, so the output of the photodetector 10 at the previous Z position cannot be obtained. It will be. Therefore, even if the output of the photodetector 1 at the Z position is the value indicated by the white circle in Fig. 12C, it cannot actually be obtained, so that at the Z position The output of the photodetector 10 is regarded as 0 indicated by a black circle. Therefore, if any of the outputs of the photodetectors 10 at the three extracted Z positions is 0, the approximate quadratic curve is not obtained, or the approximate Processing is performed so as to obtain 0 as the luminance and height without estimating the maximum light intensity value and the Z position at which it is given from the quadratic curve.
このよ う な処理が試料 7 の表面の各測定点について行なわ れる と、 続いて、 その各測定点について得られた輝度及び高 さ に基づく 画像がモユタ 1 4 に表示される。  When such processing is performed for each measurement point on the surface of the sample 7, an image based on the luminance and height obtained for each measurement point is displayed on the monitor 14 subsequently.
例えば、 F i g. 1 3 Bに示した画像が表示される。  For example, the image shown in FIG. 13B is displayed.
F ig. l 3 B は、 取得され また、 F ig. l 2 Cに示した例 と は逆に、 ユーザによ り Z方向の測定範囲が設定され、 その 結果、 F i g . 1 4 に示 した試料 7 の表面の S I 面が、 その測 定範囲の上限位置に近く なつて しまったために、 S 1 面上の 所定の測定点において近似 2次曲線を求めるための 3つの Z 位置での光検出器 1 0 の出力の う ちの 1 つを取得できない場 合についても同様に して処理が行なわれる。 Fig. L3B is obtained and, contrary to the example shown in Fig. L2C, the measurement range in the Z direction is set by the user. As a result, since the SI surface of the surface of sample 7 shown in Fig. 14 was close to the upper limit position of the measurement range, an approximate quadratic curve was obtained at a predetermined measurement point on the S1 surface. When one of the outputs of the photodetector 10 at the three Z positions cannot be obtained, the same processing is performed.
このよ う に、 ユーザによ り設定された Z方向の測定範囲に よって、 近似 2 次曲線を求めるための 3つの Z位置での光検 出器 1 0 の出力が不適切な値と なる場合がある。 この場合に は、 試料 7 の表面の各測定点について取得された輝度及び高 さに基づく 画像に、 輝度及び高さが 0 である測定点が視覚的 に判別可能に表示される。 従って、 ユーザは、 試料 7 の表面 の何れの測定点が不正確なデータなのか、 或いは何れの測定 点或いは測定対象部位 以上説明 したよ う に、 第 5 の実施形 態によれば、 I 一 Z カーブと される近似 2次曲線を求めて試 料 7 の輝度及び高さ を計測でき るので、 その計測において、 Z ステ ^"ジ - 1 2 の移動回数を少なく して処理を高速化させる こ とができ る。  As described above, when the output of the photodetector 10 at three Z positions for obtaining the approximate quadratic curve is an inappropriate value due to the measurement range in the Z direction set by the user. There is. In this case, the measurement point whose luminance and height are 0 is displayed in an image based on the luminance and height acquired for each measurement point on the surface of the sample 7 so as to be visually distinguishable. Therefore, according to the fifth embodiment, as described above, according to the fifth embodiment, the user is required to determine which measurement point on the surface of the sample 7 is inaccurate data, or as described above. Since the brightness and height of sample 7 can be measured by obtaining an approximate quadratic curve that is assumed to be a Z curve, in that measurement, the number of movements of the Z stage-12 is reduced to speed up the processing. be able to.
また、 3 つの Z位置での光検出器 1 0 の出力の値が光検出 器 1 0 の出力の取り う る範囲の最小値 (例えば 0 ) 或いは最 大値 (例えば 4 0 9 5 ) である場合には、 近似 2次曲線を求 める上で不適切な値である。 このよ う に不適切な値である場 合には、 近似 2 次曲線は求めず、 或いは近似 2次曲線から最 大光強度値とそれを与える Z位置が推定せずに、 輝度及ぴ高 さが特定の値 (例えば 0 ) に置き換えられる よ う になる。 従って、 本実施形態は、 輝度画像或いは高さ画像が表示さ れた と き に、 ユーザへ正確/不正確な測定結果を判別可能に 通知する こ と ができ る と共に、 適切な測定条件設定が行なわ れていたか否か等を通知する こ とができ る。 Further, the output value of the photodetector 10 at the three Z positions is the minimum value (for example, 0) or the maximum value (for example, 40995) of the range that the output of the photodetector 10 can take. In this case, the value is inappropriate for obtaining the approximate quadratic curve. If the values are inappropriate, an approximate quadratic curve is not obtained, or the maximum light intensity value and the Z position at which it is given are not estimated from the approximate quadratic curve. Will be replaced with a specific value (for example, 0). Therefore, in the present embodiment, the brightness image or the height image is displayed. In this case, it is possible to notify the user of the accurate / inaccurate measurement result in a distinguishable manner, and to notify whether or not appropriate measurement condition setting has been performed.
次に、 本発明によ る第 6 の実施形態について説明する。  Next, a sixth embodiment according to the present invention will be described.
この第 6 の実施形態に係る共焦点顕微鏡を含むシステムの 構成は、 前述 した第 5 の実施形態における F ig. 1 0 に示 し た構成と 同様であるが、 光検出器 1 0 の出力が処理制御部 1 1 によってデジタル処理される と きのデータ フォーマツ トが 異なっている。  The configuration of the system including the confocal microscope according to the sixth embodiment is the same as the configuration shown in FIG. 10 in the fifth embodiment described above, except that the output of the photodetector 10 is different. The data format when digitally processed by the processing control unit 11 is different.
F ig. 1 5 は、 本実施形態に係るデータ フォーマ ツ ト のー 例を示した図である。 このデータ フォーマ ッ トでは、 データ 長は例えば、 1 6 b i t で構成され、 その う ちの ビッ ト番号 0 〜 1 1 の 1 2 b i t のデータが輝度及び高さに関する情報 (輝度 高さデータ) を示し、 残 り のビッ ト番号 1 2 〜 1 5 の 4 b i t のデータが条件フラグ (捕足情報) を示している。 条件フラ グは'、 近似 2次曲線を求めるために抽出ざれた 3 つの Z位置での光検出器 1 0 の出力のいずれかが不適切な値 であったと判定された と きに、 その不適切な値が得られた理 由等を通知するためのフラグである。  FIG. 15 is a diagram showing an example of a data format according to the present embodiment. In this data format, the data length is composed of, for example, 16 bits, and the 12-bit data of bit numbers 0 to 11 indicates information on luminance and height (luminance height data). The remaining four bits of bit numbers 12 to 15 indicate the condition flag (capture information). The condition flag indicates that the output of the photodetector 10 at the three Z positions extracted to obtain the approximated quadratic curve was not determined when one of the outputs was judged to be an inappropriate value. This is a flag for notifying the reason for obtaining an appropriate value.
こ こ で、 F i g. 1 5 に示 した例においては、 まずビッ ト番 号 1 5 の b i t は、 その判定の有 Z無を表すフラグを示す。 ビッ ト番号 1 4 の b i t は、 その理由 と して Z方向の測定範 囲不足 ( Z走査範囲不足) を表すフラ グを示す。 ビッ ト番号 1 3 の 13 i t は、 その理由 と して光量過大を表すフラグを示 す。 ビッ ト番号 1 2 の b i t は、 その理由 と して光量不足を 表すフラ グを示す。 Here, in the example shown in FIG. 15, first, the bit of bit number 15 shows a flag indicating whether or not the determination is made. The bit of bit number 14 indicates a flag indicating that the measurement range is insufficient in the Z direction (Z scanning range is insufficient). 13 it of bit number 13 indicates a flag indicating excessive light intensity as the reason. Bits 1 and 2 have the reason for lack of light. Indicates the flag.
本実施形態に係る輝度及び高さ測定処理では、 前述したよ う に 3 つの Z位置での出力に不適切な値があった場合でも、 近似 2次曲線を求める。 この近似 2次曲線から最大光強度値 とそれを与える Z位置を推定し、 その推定した最大光強度値 と、 その強度値が得られる Z位置を、 輝度及び高さ と して取 得する。  In the luminance and height measurement processing according to the present embodiment, an approximate quadratic curve is obtained even if there are inappropriate values in the outputs at the three Z positions as described above. From this approximate quadratic curve, the maximum light intensity value and the Z position at which it is provided are estimated, and the estimated maximum light intensity value and the Z position at which the intensity value is obtained are obtained as luminance and height.
すなわち、 試料 7 の輝度及び高さ測定処理が開始される と、 第 5 の実施形態と同様に、 試料 7 の表面の各測定点について、 近似 2次曲線が求められて輝度及び高さが取得されていく 。  That is, when the brightness and height measurement processing of the sample 7 is started, an approximate quadratic curve is obtained for each measurement point on the surface of the sample 7 and the brightness and the height are obtained as in the fifth embodiment. It will be.
例えば、 その処理中のある測定点について、 光量不足のた めに、 近似 2次曲線を求めるために抽出された 3 つの Z位置 で光検出器 1 0 の出力のいずれかが不適切な値であつた と判 定される。 この と きには、 前述したビッ ト番号 1 5及び 1 2 の b i t のフラ グが立て られ、 当該輝度及ぴ高さに関する情 報が光量不足のために不適切な近似 2次曲線によ り 得られた データである 旨の情報が、 輝度及び高さに関する情報と共に 記録される。  For example, for one measurement point during the processing, one of the outputs of the photodetector 10 at an inappropriate value at three Z positions extracted to obtain an approximate quadratic curve due to insufficient light quantity It is determined to be hot. At this time, the flags of bits 15 and 12 described above are flagged, and the information on the luminance and the height is determined by an approximate quadratic curve that is inappropriate due to insufficient light quantity. Information to the effect that the data is obtained is recorded together with information on luminance and height.
または、 その処理中のある測定点について、 光量過大のた めに、 近似 2次曲線を求めるために抽出された 3 つの Z位置 で光検出器 1 0 の出力のいずれかが不適切な値であつた と判 定される。 この と きには、 前述したビッ ト番号 1 5及び 1 3 の b i t のフラ グが立て られ、 当該輝度及び高さ に関する情 報が光量過大のために不適切な近似 2次曲線によ り 得られた データである旨の情報が、 輝度及び高さ に関する情報と共に 記録される。 Or, for one of the measurement points being processed, one of the outputs of the photodetector 10 at an inappropriate value at the three Z positions extracted to obtain an approximate quadratic curve due to excessive light intensity It is determined to be hot. At this time, the flags of bits 15 and 13 described above are flagged, and the information on the luminance and the height is obtained by an approximate quadratic curve that is inappropriate due to excessive light quantity. Information indicating that the data was collected, along with information on brightness and height. Be recorded.
或いは、 その処理中のある測定点において、 Z方向の測定 範囲不足のために、 近似 2次曲線を求めるために抽出された 3 つの Z位置で光検出器 1 0 の出力のいずれかが不適切な値 であった と判定される。 この と きには、 前述したビッ ト番号 1 5 及び 1 4 の b i t のフラグが立て られ、 当該輝度及び高 さ に関する情報が Z方向の測定範囲不足のために不適切な近 似 2次曲線によ り得られたデータである旨の情報が、 輝度及 び高さに関する情報と共に記録される。  Alternatively, at one of the measurement points being processed, one of the outputs of the photodetector 10 is inappropriate at the three Z positions extracted to obtain the approximate quadratic curve due to the lack of the measurement range in the Z direction. Is determined to be a reasonable value. At this time, the flags of the bits 15 and 14 mentioned above are set, and the information on the luminance and the height is converted to an inappropriate approximation quadratic curve due to insufficient measurement range in the Z direction. Information indicating that the data is obtained is recorded together with information on the luminance and the height.
以上の よ う な処理が試料 7の表面の各測定点について行わ れ、 各測定点の輝度及ぴ高さが取得される と、 続いて、 その 輝度及び高さ に基づく 画像がモニタ 1 4 に表示される。  The above processing is performed for each measurement point on the surface of the sample 7 and the brightness and height of each measurement point are acquired. Subsequently, an image based on the brightness and height is displayed on the monitor 14. Is displayed.
伹し、 この表示の際に、 処理制御部 1 1 は、 試料 7 の表面 の各測定点についての前述 した 1 6 b i t のデータの う ちの ビッ ト番号 1 5 の b i t のフラグをチェ ック し、 それが有効 を示すデータのう ちのビッ ト番号 1 4 乃至 1 2 の b i t の各 フラ グをチェ ック し、 それぞれのフラグの値に応 じて、 その 表示を行 う よ う に処理する。  However, at the time of this display, the processing control unit 11 checks the flag of the bit number 15 bit of the 16-bit data described above for each measurement point on the surface of the sample 7. Checks each flag of bit number 14 to 12 of the data indicating that it is valid, and performs processing to display the flag according to the value of each flag. .
例えば、 ビッ ト番号 1 2 の b i t (光量不足) のフラ グが 立て られた 1 6 b i t データが得られた測定点については青 色、 ビッ ト番号 1 3 の b i t (光量過大) のフラ グが立て ら れた 1 6 b i t デ タが得られた測定点については赤色、 ビ ッ ト番号 1 4 の b i t ( Z方向の測定範囲不足) のフラグが 立て られた 1 6 b i t データが得られた測定点については黄 色で着色されてモニタ 1 4 に表示される。 F ig. l 6 A , 1 6 B は、 その よ う なビッ ト番号 1 2〜 1 4 の b i t の各フラグの値に応 じて表示された画像の一例を 示 している。 F ig. 1 6 Aは、 輝度に基づいて表示された輝 度画像 ( 2次元画像〉 の一例を示 し、 F ig. 1 6 B は、 輝度 及ぴ高さ に応じて表示された高さ画像 (三次元画像) の一例 を示 してレヽる。 For example, the measurement point at which 16-bit data with the bit number 12 bit (light quantity insufficient) was set is blue, and the bit number 13 bit (excess light quantity) flag is The measurement point at which the set 16-bit data was obtained is red, and the measurement at which the 16-bit data with the bit number 14 bit (measuring range insufficiency in the Z direction) is set is obtained. The points are colored yellow and displayed on monitor 14. FIGS. 16A and 16B show an example of an image displayed according to the value of each flag of such bit numbers 12 to 14. Fig. 16A shows an example of a brightness image (two-dimensional image) displayed based on luminance, and Fig. 16B shows the height displayed according to luminance and height. An example of an image (three-dimensional image) is shown and described.
これらの F ig. 1 6 A , 1 6 Β において、 青色で着色され て表示されている領域 6 3 ( 6 3 a , 6 3 b ) は、 ビッ ト番 号 1 2 の b i t (光量不足) のフラグが立て られた 1 6 b i t データ の得られた測定点を示 している。 また赤色で着色さ れて表示されている領域 6 4 ( 6 4 a、 6 4 b、 6 4 c ) は、 ビッ ト番号 1 3 の b i t (光量過大) のフラグが立て られた 1 6 b i t データの得られた測定点を示している。 さ らに、 黄で着色されて表示されている領域 6 2 ( 6 2 a、 6 2 b、 6 2 c ) は、 ビッ ト番号 1 4 の b i t ( Z方向の測定範囲不 足) のフ ラグが立て られた 1 6 b i t データ の得られた測定 点を示している。 以上のよ う に、 それぞれ、 領域 6 3 は光量 不足の領域を示し、 領域 6 4 は光量過大の領域を示し、 領域 6 2 は Z方向の測定範囲不足の領域を示している。  In these Fig. 16 A, 16Β, the areas 6 3 (63 a, 63 b) colored blue are indicated by the bits (light quantity shortage) of bit number 12. The measurement points at which the 16-bit data with the flag set are obtained are shown. The area 64 (64a, 64b, 64c) colored red is 16-bit data with the bit 13 bit (excessive light) flag set. Shows the measurement points obtained. In addition, the area 62 (62a, 62b, 62c), which is colored yellow, is the flag of bit number 14 (the measurement range is insufficient in the Z direction). Indicates the measurement point at which the 16-bit data for which the was set was obtained. As described above, the area 63 indicates the area where the light quantity is insufficient, the area 64 indicates the area where the light quantity is excessive, and the area 62 indicates the area where the measurement range in the Z direction is insufficient.
こ のよ う に、 信頼性の低いデータ (輝度及び高さ) が取得 された測定点が、 色分けされて着色される こ と によって、 ュ 一ザは、 その測定点が何れの理由によ り 信頼性の低いデータ が取得されて しまったのかを判断する こ とが可能になる。  In this way, the measurement points at which the unreliable data (brightness and height) are obtained are color-coded and colored. This makes it possible to determine whether unreliable data has been acquired.
また、 F i g. 1 6 A, 1 6 B に示 した画像の他に、 それぞ れの色で着色されている測定点の全体に占める割合 (色で着 色されている画素の全体画素に占める割合) を表示させる よ う に構成する こ と もでき る。 In addition to the images shown in Figs. 16A and 16B, the ratio of the measurement points colored in each color to the whole (color It can also be configured to display the ratio of the colored pixels to the total pixels).
F ig. 1 7 A , 1 7 B は、 そのよ う な表示が行われた表示 画面の一例である。 F ig. 1 7 A , 1 7 B は、 F ig. 1 6 A , 1 6 B に対応する ものであ り 、 F ig. 1 7 Aは、 F ig. 1 6 A に示 した輝度画像と共にそれぞれの色で着色されている測定 点の全体に占める割合が示されて表示された図である。 F ig. 1 7 B は、 F ig. 1 6 B で示 した高さ画像と共にそれぞれの 色で着色されている測定点の全体に占める割合が示されて表 示された図である。  FIGS. 17A and 17B are examples of display screens on which such display is performed. FIGS. 17A and 17B correspond to FIGS. 16A and 16B, respectively, and FIG. 17A is used together with the luminance image shown in FIG. 16A. FIG. 9 is a diagram showing the ratio of the measurement points colored in each color to the entirety, which are displayed. Fig. 17B is a diagram showing the height image shown in Fig. 16B and the ratio of the measurement points colored by the respective colors to the whole, which are shown.
F ig. 1 7 A , 1 7 B に示 したよ う に、 その画像の下には、 "赤色…〇〇% 青色…△△ % 黄色… X X % " が示される。 これによ り 、 ユーザは、 光量過大のデータが全体の〇〇%を 占め、 光量不足のデータが全体の△△ %を占め、 Z方向の測 定範囲不足のデータが全体の X X %を占めている こ と を確認 する こ とができ る。 尚、 F ig. 1 7 A, 1 7 B に表示された "赤色…〇〇% 青色…△△ % 黄色… X X % " の代わ り に、 "光量過大…〇_〇% 光量不足…△△ % Z方向の測定範囲 不足… X X °/0 " 等を表示する よ う に しても良い。 As shown in Fig. 17A and 17B, "red ... 〇〇% blue ... △△% yellow ... XX%" is shown below the image. As a result, users can see that excessive light amount data accounts for 〇〇% of the total, insufficient light amount data accounts for △△% of the total, and measurement range shortage data in the Z direction accounts for XX% of the total. You can confirm that it is. In addition, instead of “Red… 〇〇% Blue… △△% Yellow… XX%” displayed on Fig. 17 A and 17B, “Excessive light quantity… 〇_〇% Insufficient light quantity… △△ % Insufficient measurement range in Z direction ... XX ° / 0 "etc. may be displayed.
また、 このよ う に して試料 7 の表面の各測定点の輝度及び 高さ に関する情報が取得された後は、 その取得された輝度及 ぴ高さ に関する情報に基づいて所定部位の計測が可能になる。  After information on the brightness and height of each measurement point on the surface of the sample 7 is obtained in this manner, measurement of a predetermined part can be performed based on the obtained information on the brightness and height. become.
但し、 輝度及び高さ に関する情報が正常に求め られていれ ば、 モニタ 1 4 に表示されている輝度画像或いは高さ画像内 に、 前述したビッ ト番号 1 2乃至 1 4 の b i t のフラ グに基 づいて着色されて表示されている測定点が含まれていた と し ても問題にな らない。 しかし、 計測対象と なる部位と して選 択された範囲に、 着色されて表示されている測定点が含まれ ていた場合には、 その計測対象部位の計測結果が信頼性の低 いデータ と なる。 この場合には、 計測結果を表示した際に、 その計測結果が信頼性の低いデータである旨を通知するため のマークが併せて表示される。 However, if the information on the luminance and the height is normally obtained, the luminance image or the height image displayed on the monitor 14 includes the flag of the bit numbers 12 to 14 described above. Base It does not matter if the measurement points that are colored and displayed are included. However, if the range selected as the part to be measured includes a colored measurement point, the measurement result of the part to be measured will be unreliable data. Become. In this case, when the measurement result is displayed, a mark for notifying that the measurement result is low-reliability data is also displayed.
F i g . 1 8 は、 その予測結果の表示例を示 した図である。 FIG. 18 is a diagram showing a display example of the prediction result.
F i g . 1 8 において、 "番号" は、 当該番号に対応する所 定部位の計測である こ と を示す。 また、 "精度" は、 計測結 果が信頼性の低いデータであるか否かを示す印であ り 、 "精 度" 力 S " X " の と きは信頼性の低いデータである こ と を示 し、 それが "〇 " の と きは信頼性の低いデータでないこ と を示す。 また、 "高さ " 及び "幅 " は、 計測対象と なる部位の測定結 果である高さ及び幅を示す。 In FIG. 18, the “number” indicates that the measurement is for the specified part corresponding to the number. The “accuracy” is a mark indicating whether or not the measurement result is data with low reliability. When the “accuracy” power S “X”, the data is low reliability. Indicates that the data is not unreliable when it is "〇". “Height” and “width” indicate the height and width as the measurement result of the part to be measured.
例えば、 番号 2或いは番号 5 に対応する所定部位の計測に - おいては、 計測対象部位と して選択された部分に、 着色され て表示されている測定点が含まれていたために、 その計測結 果が信頼性の低いデータである こ と を示している。  For example, in the measurement of a predetermined part corresponding to No. 2 or No. 5, since the part selected as the measurement target part includes the measurement point displayed in color, the measurement is performed. The results show that the data is unreliable.
また、 このよ う な計測処理において、 取得された輝度及び 高さ に関する情報に基づいて所定部位の計測を行 う場合に、 計測対象部位と して選択された部分に、 着色されて表示され ている測定点が含まれていたと き には、 計測を禁止する と共 に、 モニタ 1 4 に警告表示を行って、 その旨を通知する よ う に しても良い。 これによ り 、 他の計測対象部位の計測結果と 比べて大きな誤差を含む可能性のある計測結果をユーザに利 用させないよ う にする こ とができ る。 Further, in such a measurement process, when a predetermined portion is measured based on the acquired information on the luminance and the height, a portion selected as the measurement target portion is displayed in a colored form. If a certain measurement point is included, the measurement may be prohibited and a warning may be displayed on the monitor 14 to notify the user. As a result, the measurement results of other measurement target parts are This makes it possible to prevent the user from using measurement results that may include large errors.
以上、 本実施形態によれば、 近似 2次曲線を用いて試料 7 の輝度及び高さ計測を行う ため、 Z ステージ 1 2 の移動回数 を少なく して処理を高速化させる こ とができ る。  As described above, according to the present embodiment, since the luminance and the height of the sample 7 are measured using the approximate quadratic curve, the number of movements of the Z stage 12 can be reduced and the processing speed can be increased.
また、 光検出器 1 0 の出力値が近似 2次曲線を求める上で 不適切な値の場合には、 当該測定点についての輝度及び高さ に関する情報に捕足情報 (例えば前述のビッ ト番号 1 2 乃至 1 5 の 13 i t のフラ グ) が付与される。 これによ り 、 ユーザ に、 正確 /不正確な測定結果を判別可能に通知する こ と がで きる と共に、 適切な測定条件設定が行なわれていたか否か等 といったこ と を通知する こ とができ る。  If the output value of the photodetector 10 is inappropriate for obtaining an approximate quadratic curve, information about the luminance and height at the measurement point is included in the capture information (for example, the bit number described above). 13 to 15 flags) are added. As a result, it is possible to notify the user of an accurate / inaccurate measurement result in a distinguishable manner, and to notify the user whether or not appropriate measurement condition setting has been performed. it can.
次に、 前述 した第 5 、 第 6 の実施形態に係る変形例につい て説明する。  Next, modified examples according to the fifth and sixth embodiments described above will be described.
前述した第 5 の実施形態では、 近似 2次曲線を求めるため の 3 つの光検出器 1 0 の出力値が、 光検出器 1 0 の出力の取 り う る範囲の最小値 (例えば 0 ) 或いは最大値 (例えば 4 0 9 5 ) であった と きに、 近似 2 次曲線を求めず、 或いは近似 2次曲線から最大強度値とそれを与える Z位置を推定せずに 処理が行われた。  In the fifth embodiment described above, the output values of the three photodetectors 10 for obtaining the approximate quadratic curve are the minimum value (for example, 0) of the range that the outputs of the photodetectors 10 can take, or When the value was the maximum value (for example, 4,095), the processing was performed without obtaining the approximate quadratic curve, or without estimating the maximum intensity value and the Z position to give it from the approximate quadratic curve.
この処理の際に、 光検出器 1 0 の出力値は、 その範囲の最 小値或いは最大値に限定される ものではな く 、 ノ イズ分を考 盧した閾値であっても良い。 例えば、 それらの 3 つの出力値 の何れかが、 閾値以下或いは閾値以上であった と き、 すなわ ち、 範囲の最小値から閾値までの光強度範囲內、 或いはその 最大値から閾値までの光強度範囲内に含まれていた と き には、 近似 2次曲線を求めず、 或いは近似 2次曲線から最大強度値 とそれを与える Z位置を推定せずに処理が行われる よ う に し ても良い。 In this process, the output value of the photodetector 10 is not limited to the minimum value or the maximum value in the range, but may be a threshold value considering noise. For example, if any of these three output values is below or above the threshold, i.e., the light intensity range の from the minimum value of the range to the threshold, or its When the light intensity is within the light intensity range from the maximum value to the threshold value, the processing is performed without calculating the approximate quadratic curve or estimating the maximum intensity value and the Z position that gives it from the approximate quadratic curve. It may be done.
また、 第 5 の実施形態では、 近似 2次曲線を求めるために 抽出された 3 つの Z位置での光検出器 1 0 の出力の値の何れ かが、 近似 2次曲線を求める上で不適切な値の場合には、 輝 度及ぴ高さが特定の値と して 0 に置き換え られる ものであつ たが、 その特定の値は 0 に限定される ものではな く 、 その他 の値であっても良い。  In the fifth embodiment, one of the values of the output of the photodetector 10 at the three Z positions extracted for obtaining the approximate quadratic curve is inappropriate for obtaining the approximate quadratic curve. In the case of an unusual value, the brightness and height were replaced with 0 as a specific value, but the specific value is not limited to 0, but other values. May be.
また、 第 5 の実施形態に F i g . 1 5 に示 したデータフ ォー マッ ト を適用 して、 輝度及び高さ に関する情報に基づいて表 示された画像上において、 ユーザによ り輝度及び高さが 0 の 画素 (測定点) が指示される こ と によって、 その画素の輝度 及び高さが 0 である理由 (例えば光量不足など) 等が表示さ れる よ う に しても良い。 · - · — 第 6 の実施形態において、 F i g . 1 5 に示したデータ フォ 一マ ッ ト に、 輝度及び高さ に関する情報に付加したビッ ト番 号 1 2〜 1 5 の b i t が示す情報以外の情報を付加する よ う に しても良い。 例えば、 ビッ ト番号 1 2〜 1 4 の う ちの何れ 力、と ビッ ト番号 1 5 の b i t のフ ラグが立て られたと き に、 そのフラ グが立て られた理由を解消するためのア ドバイ スに 関する情報を付加し、 画像と共にその付加したァ ドバイ スに 関する情報をモニタ 1 4 に表示させる よ う に しても良い。  Also, by applying the data format shown in FIG. 15 to the fifth embodiment, the user can set the luminance and height on an image displayed based on the information on luminance and height. When a pixel (measurement point) having a value of 0 is designated, the reason why the luminance and the height of the pixel are 0 (for example, lack of light amount) may be displayed. · · · · In the sixth embodiment, in the data format shown in Fig. 15, the information indicated by the bits of bit numbers 12 to 15 added to the information on luminance and height is added. Information other than the above may be added. For example, when any one of the bit numbers 12 to 14 and the bit number 15 are flagged, an advice to resolve the reason why the flag was set is set. Alternatively, information about the added device may be added, and the information about the added device may be displayed on the monitor 14 together with the image.
この場合、 例えば、 ビッ ト番号 1 2 (光量不足) 及ぴ 1 5 の i t のフラグが立て られていたと きには、 ア ドバイ スに 闋する情報と して、 光検出器 1 0 の感度ア ップを勧める 旨の 情報が付加され、 画像と共にそのァ ドバイ スがモエタ 1 4 に 表示される よ う になる。 また、 その他ヘルプ情報等を付加す る よ う に しても良い。 In this case, for example, bit number 1 2 (light quantity is insufficient) and 1 5 When the it flag is set, information indicating that the sensitivity of the photodetector 10 is recommended is added as information to the advisor, and the advisor is added together with the image. It will be displayed on Moeta 14. Also, other help information may be added.
また、 この よ う に輝度及び高さ に関する情報に付加 したビ ッ ト番号 1 2 〜 1 5 の b i t が示す情報以外の情報を付加す る場合に、 その情報を付加するための b i t 数が足 り ないと きには、 既知のデータ圧縮技術を用いて、 その情報を輝度及 ぴ高さに関する情報 (前述の ビッ ト番号 0 〜 1 1 の 1 2 b i t データ) の中に埋め込むよ う に しても良い。 このよ う にす る こ とで、 メ モ リ容量を増やすこ と なく 、 その情報を付加さ せる こ と ができる。  In addition, when information other than the information indicated by the bits of bit numbers 12 to 15 added to the information on luminance and height is added, the number of bits for adding the information is small. If not, use a known data compression technique to embed the information in the information on luminance and height (the above-mentioned 12-bit data of bit numbers 0 to 11). May be. In this way, the information can be added without increasing the memory capacity.
さ らに第 6 の実施形態は、 ビッ ト番号 1 2 〜 1 5 の b i t のフラグをチヱ ックする こ と によって、 光量不足、 光量過大、 又は Z方向の測定範囲不足である こ と を判定する こ と がで'き る。 その判定結果に基づいて、 そのよ う に判定された測定点 についての輝度及ぴ高さに関する情報が正常に取得される よ う に、 光検出器 1 0 の感度を A G C (オー トゲイ ンコ ン ト 口 ール) に設定して輝度及び高さに関する情報を再取得する、 或いは、 ユーザが設定した Z方向の測定範囲を補正して輝度 及び高さ に関する情報を再取得する、 等といった 自動制御を 行う よ う に しても良い。  Further, in the sixth embodiment, it is determined that the light amount is insufficient, the light amount is excessive, or the measurement range in the Z direction is insufficient by checking the bit flags of bit numbers 12 to 15. can do. Based on the result of the determination, the sensitivity of the photodetector 10 is set to AGC (auto gain control) so that information on the brightness and height of the measurement point determined as described above can be obtained normally. To obtain the information on brightness and height again, or correct the measurement range set by the user in the Z direction and reacquire information on brightness and height. You may do it.
また、 第 6 の実施形態において、 近似 2次曲線を求めるた めに抽出された 3つの Z位置での光検出器 1 0 の出力のいず れかが不適切な値であったと き に、 第 5 の実施形態と 同様に、 近似 2次曲線を求めず、 或いは近似 2次曲線から最大光強度 値と それを与える Z位置を推定せずに、 輝度及び高さ と して 0 を取得する よ う に処理が行なわれる よ う に しても良い。 Further, in the sixth embodiment, any of the outputs of the photodetector 10 at the three Z positions extracted to obtain the approximate quadratic curve If any of these values are inappropriate, similar to the fifth embodiment, no approximate quadratic curve is obtained, or the maximum light intensity value and the Z position at which it is given are not estimated from the approximate quadratic curve. Further, the processing may be performed so as to obtain 0 as the luminance and the height.
また、 第 5及ぴ第 6 の実施形態では、 近似 2次曲線を、 3 つの Z位置での光検出器 1 0 の出力に基づいて求めているが、 3つ以上の Z位置での光検出器 1 0 の出力に基づいて求める よ う に して も良い。  Further, in the fifth and sixth embodiments, the approximate quadratic curve is obtained based on the output of the photodetector 10 at three Z positions. However, the light detection at three or more Z positions is performed. Alternatively, it may be determined based on the output of the container 10.
また、 第 5 及ぴ第 6 の実施形態では、 システムを F i g . 1 0 に示した構成と したが、 その構成はそれに限定されず、 そ の他の構成と しても良い。  Further, in the fifth and sixth embodiments, the system is configured as shown in FIG. 10, but the configuration is not limited thereto and may be another configuration.
例えば、 そのシス テ ム に含まれる共焦点光学顕微鏡の構成 である、 対物レ ンズ 5 によ る集束光を試料 7 の表面に沿って 相対的に走査させる走査機構と して、 光軸に垂直な面内で試 料 7 を移動させる X Yス テージ等を用いても良い。  For example, a scanning mechanism that relatively scans the focused light from the objective lens 5 along the surface of the sample 7, which is a configuration of a confocal optical microscope included in the system, is perpendicular to the optical axis. An XY stage or the like that moves the sample 7 in a suitable plane may be used.
また、 円盤上にス パイ ラル状の複数の微小開口 を設けた N i p k o wディ スク を高速回転させる構成を用いても良い。 この場合、 N i p k o wディ スク は対物レ ンズ 5 の集光位置 と共役な位置に配置される微小開 口を兼ね、 光検出器 1 0 の 代わ り に C C D等の 2次元画像センサが用い られる。  Further, a configuration may be used in which a Nipkow disk provided with a plurality of spiral minute openings on a disk is rotated at a high speed. In this case, the Nipkow disk also serves as a micro aperture disposed at a position conjugate to the light-collecting position of the objective lens 5, and a two-dimensional image sensor such as a CCD is used instead of the photodetector 10.
また、 2次元走査機構 3 の代わ り に、 1 次元光ス キ ャ ナに よって対物レ ンズ 5 の集束光を試料 7 の 1 ライ ン上で走査し て試料 7 の断面形状を測定する構成を用いる よ う にしても良 い 0 In addition, instead of the two-dimensional scanning mechanism 3, a configuration is used in which the focused light of the objective lens 5 is scanned on one line of the sample 7 by a one-dimensional optical scanner to measure the cross-sectional shape of the sample 7. You can use it 0
また、 対物レ ンズ 5 の集光位置と試料 7 の位置を相対的に 移動させる移動機構と して、 試料 7 の位置を移動させる Z ス テージ 1 2 の代わり に対物レンズ 5 の位置を移動させる機構 を用レヽる よ う に しても良い。 Also, the focusing position of the objective lens 5 and the position of the sample 7 are relatively As the moving mechanism for moving, a mechanism for moving the position of the objective lens 5 may be used instead of the Z stage 12 for moving the position of the sample 7.
さ らに、 第 1 の実施形態で説明 したよ う な Z ステージ 1 2 の移動量を直接的に検出する測定器 1 3 は、 他の実施形態の 構成 ( F i g . 4 、 F i g . 7及び F i g . 1 0 ) おいて も容易に適 用する こ とができ、 測定器 1 3 を用いて、 対物レンズ 5 の集 光位置と試料 7 との相対位置を検出する こ と ができる。 従つ て、 これらの他の実施形態においても、 試料 7の輝度及び高 さ寸法を測定器 1 3 で検出 される相対位置情報 ( Z ステージ 1 2 の移動情報) に基づいて取得させて、 対物レンズ 5 の集 光位置と試料 7 の位置を高精度に移動させる必要がなく なる と共に、 その Z ステージ 1 2 の移動回数を最小限に保つこ と ができ迅速な算出が可能と なる。 Et al of the measuring instrument 1 3 for directly detecting the amount of movement of the Do Z stage 1 2 I I described in the first embodiment in the configuration of another embodiment (F i g. 4, F ig. 7 and Fig. 10) can be easily applied, and the relative position between the light-collecting position of the objective lens 5 and the sample 7 can be detected using the measuring device 13. . Therefore, also in these other embodiments, the luminance and the height of the sample 7 are acquired based on the relative position information (movement information of the Z stage 12) detected by the measuring device 13 to obtain the objective 7 It is not necessary to move the focusing position of the lens 5 and the position of the sample 7 with high precision, and the number of movements of the Z stage 12 can be kept to a minimum, thereby enabling quick calculation.
以上、 本発明の共焦点顕微鏡及び、 この共焦点顕微鏡によ る測定方法について詳細に説明 したが、 本発明は前述した各 実施形態の記載事項に限定される ものではな く 、 本発明の要 旨を逸脱しない範囲において、 各種の改良及び変更を行って も良いのはもちろんである。  As described above, the confocal microscope of the present invention and the measuring method using the confocal microscope have been described in detail. However, the present invention is not limited to the items described in each of the above-described embodiments. Of course, various improvements and changes may be made without departing from the spirit of the invention.

Claims

請 求 の 範 囲 The scope of the claims
1 . 光源からの光を試料に対して集光させて照射し、 該試 料からの反射光を取り 込む対物レ ンズ と 、  1. An objective lens that focuses light from a light source onto a sample and irradiates the sample with light, and captures reflected light from the sample.
上記光の光軸方向に沿って上記対物レ ンズの集光位置と上 記試料の位置を相対的に移動させる移動機構と、  A moving mechanism for relatively moving the focus position of the objective lens and the position of the sample along the optical axis direction of the light;
上記対物レ ンズの集光位置と共役な位置に配置される共焦 点絞り と 、  A confocal stop arranged at a position conjugate to the light-collecting position of the objective lens, and
こ の共焦点絞 り を通過する光の強度を検出する光検出器と 上記対物レ ンズの集光位置と上記試料との相対位置を検出 する測定部と、  A photodetector for detecting the intensity of light passing through the confocal aperture, a measuring unit for detecting a relative position between the condensing position of the objective lens and the sample,
上記対物レ ンズの集光位置と上記試料の相対位置を変化さ せ、 上記光検出器で検出 した光強度の最大光強度値を含む複 数の光強度情報と上記測定部で検出 した位匱情報と に基づい て、 上記光強度情報が示す変化曲線の最大値と、 それを与え る相対位置を推定し、 こ の推定した光強度の最大値と相対位 置を、 反射輝度情報と高さ情報と して共焦点画像を生成する 処理制御部と、  By changing the relative position of the objective lens and the relative position of the sample, the light intensity information including the maximum light intensity value of the light intensity detected by the photodetector and the light intensity information detected by the measurement unit Based on the information, the maximum value of the change curve indicated by the light intensity information and the relative position to give it are estimated, and the estimated maximum value and relative position of the light intensity are calculated as the reflected luminance information and the height. A processing control unit for generating a confocal image as information,
で構成される共焦点顕微鏡。 Confocal microscope composed of.
2 . 上記測定部は、 上記対物レ ンズの光軸上に配置する請 求項 1 に記載の共焦点顕微鏡。  2. The confocal microscope according to claim 1, wherein the measuring unit is arranged on an optical axis of the objective lens.
3 . 上記対物レ ンズの倍率及び上記高さ情報を取得する各 測定モー ドに応じた上記光強度情報の計測条件データ を有し こ の計測条件データ に従って上記試料と上記対物レンズ と の 相対距離を変化させて上記試料の高さ情報を取得する高さ情 報演算部を、 さ らに具備する請求項 1 に記載の共焦点顕微鏡 3. It has measurement condition data of the light intensity information corresponding to each measurement mode for acquiring the magnification and height information of the objective lens, and the relative distance between the sample and the objective lens according to the measurement condition data. 2. The confocal microscope according to claim 1, further comprising a height information calculation unit that obtains height information of the sample by changing the height.
4 . 上記計測条件データは、 上記対物レ ンズの倍率及び上 記測定モー ドに応じた上記各光強度情報から上記高さ情報を 推定するための近似曲線、 この近似曲線から上記光強度情報 を抽出するために用いる演算点数、 上記相対距離を変える と きの移動ピッチである請求項 3 に記載の共焦点顕微鏡。 4. The measurement condition data is an approximate curve for estimating the height information from the respective light intensity information according to the magnification of the objective lens and the measurement mode, and the light intensity information from the approximate curve. 4. The confocal microscope according to claim 3, wherein the number of calculation points used for extraction and the movement pitch when changing the relative distance are used.
5 . 上記計測条件データ は、 上記測定モー ドと して測定精 度よ り も測定時間を優先した時間優先データ と、 上記測定時 間よ り も上記測定精度を優先した精度優先データ と を有する 請求項 3 に記載の共焦点顕微鏡。  5. The measurement condition data includes, as the measurement mode, time priority data in which measurement time is prioritized over measurement accuracy, and accuracy priority data in which the measurement accuracy is prioritized over measurement time. The confocal microscope according to claim 3.
6 . 試料と対物レンズと の相対位置を所定の間隔で変化さ せながら、 複数の位置における輝度を測定する輝度測定部と 、 上記複数の位置における輝度の測定結果の う ち、 上記最大 輝度を含む連続した少なく と も 3 点の位置における輝度デー タを用いてノ イ ズの影響を評価する ノイズ評価部と、  6. A luminance measuring unit for measuring the luminance at a plurality of positions while changing the relative position between the sample and the objective lens at a predetermined interval; and the maximum luminance among the measurement results of the luminance at the plurality of positions. A noise evaluation unit that evaluates the effect of noise using luminance data at at least three consecutive points, including:
上記ノ ィズ評価部 評価結果に基づいて、 近似曲線を求め て、 輝度のピ^"ク位置を計算する ピーク位置推定部と-、 で構成され、 上記試料と上記対物レンズ と の間の高さ を測定 する高さ測定装置を搭載する共焦点顕微鏡。  The noise evaluation unit is configured by: a peak position estimation unit that calculates an approximate curve based on the evaluation result and calculates a luminance peak position; and a peak position estimation unit that calculates a height between the sample and the objective lens. A confocal microscope equipped with a height measuring device for measuring height.
7 . 上記ピーク位置推定部は、  7. The peak position estimating unit
上記近似曲線を求める場合において、  In obtaining the above approximate curve,
ノ イ ズの影響が小さい場合には、 ノ イズ評価に用いた輝度 データ を用いて近似曲線を求め、  When the influence of noise is small, an approximate curve is obtained using the luminance data used for noise evaluation.
ノ ィ ズの影響が大きい場合には、 測定した輝度デー タ の う ち、 少な く と も上記最大輝度の位置に隣接した位置の輝度デ ータ を除いた輝度データを用いて近似曲線を求める請求項 6 に記載の高さ測定装置を搭載する共焦点顕微鏡。 When the influence of noise is large, an approximate curve is obtained using the luminance data excluding at least the luminance data at the position adjacent to the position of the maximum luminance among the measured luminance data. Claim 6 A confocal microscope equipped with the height measuring device according to 1.
8 . 上記ピーク位置推定部は、  8. The peak position estimating unit
上記近似曲線を求める場合に、 上記ノ イ ズの評価基準と して 近似曲線の幅を用いて高さ測定する請求項 7 に記載の高さ測 定装置を搭載する共焦点顕微鏡。 The confocal microscope equipped with the height measuring device according to claim 7, wherein the height is measured using the width of the approximate curve as an evaluation criterion of the noise when the approximate curve is obtained.
9 . 上記ピーク位置推定部は、  9. The peak position estimator
上記近似曲線の再計算を抽出済みの 5 点の う ち、 中心と両 端の 3 点を用いて行う請求項 7 に記載の高さ測定装置を搭載 する共焦点顕微鏡。  The confocal microscope equipped with the height measuring device according to claim 7, wherein the recalculation of the approximate curve is performed using three points at the center and both ends of the five extracted points.
1 0 . 上記共焦点顕微鏡は、 さ らに、  10. The above confocal microscope is
上記光検出器によ り 検出 された複数の光強度情報に基づき、 変化曲線上の最大光強度値と該最大光強度値を与える上記相 対位置を推定する推定部と、  An estimating unit for estimating a maximum light intensity value on a change curve and the relative position giving the maximum light intensity value based on a plurality of pieces of light intensity information detected by the light detector;
上記推定部によ り推定された最大光強度値と該最大光強度 値を与える相対位置と をそれぞれ輝度情報と高さ情報と して 取得する第 2 の取得部と、 一  A second acquisition unit for acquiring the maximum light intensity value estimated by the estimation unit and a relative position giving the maximum light intensity value as luminance information and height information, respectively;
上記推定部によ り推定された複数の光強度情報に基づいて 補足情報を生成する生成部と、  A generating unit for generating supplementary information based on the plurality of light intensity information estimated by the estimating unit;
上記生成部によ り 生成された補足情報を、 上記第 2 の取得 部によ り 取得された輝度情報と高さ情報に付加する付加部と、 を備える請求項 1 に記載の共焦点顕微鏡。  The confocal microscope according to claim 1, further comprising: an adding unit that adds the supplementary information generated by the generating unit to the luminance information and the height information obtained by the second obtaining unit.
1 1 . 上記推定部は、  1 1. The estimation unit
上記光検出器によ り 検出された光強度情報が示す光強度値 の う ちの少なく と も一つ以上が、 所定の光強度値であるか或 いは所定の光強度範囲に属する場合には、 上記推定を行わず、 上記第 2 の取得部は任意の光強度値と任意の相対位置と を、 上記輝度情報と高さ情報と して取得する請求項 1 0 に記載の 共焦点顕微鏡。 When at least one or more of the light intensity values indicated by the light intensity information detected by the light detector is a predetermined light intensity value or belongs to a predetermined light intensity range. , Without performing the above estimation, The confocal microscope according to claim 10, wherein the second acquisition unit acquires an arbitrary light intensity value and an arbitrary relative position as the luminance information and the height information.
1 2 . 上記推定部によ り 推定し、 上記第 2 の取得部によ り 上記輝度情報及び高さ情報と して取得された最大光強度値及 ぴ該最大光強度値を与える相対位置と共に上記補足情報を表 示させる請求項 1 0 に記載の共焦点顕微鏡。  12. A maximum light intensity value estimated by the estimation unit and acquired as the luminance information and the height information by the second acquisition unit, and a relative position at which the maximum light intensity value is given. The confocal microscope according to claim 10, wherein said supplementary information is displayed.
1 3 . 対物レンズと 、  1 3. Objective lens and
上記対物レンズの集光位置に対 して共役な位置に配置され た共焦点絞り と  A confocal stop located at a position conjugate to the focusing position of the objective lens
上記試料と上記対物レンズと の相対距離を変化させた と き の上記共焦点絞り を通過 した光強度情報を離散的に取得する 光検出部と、  A light detection unit that discretely acquires light intensity information that has passed through the confocal stop when the relative distance between the sample and the objective lens is changed;
これら光強度情報に基づいて最大光強度情報を得る上記相 対距離を推定する相対距離推定部と、  A relative distance estimating unit for estimating the relative distance for obtaining maximum light intensity information based on the light intensity information;
上記対物レンズの倍率及び上記高さ情報を取得する各測定 モー ドに応じた上記光強度情報の計測条件データ を有し、 こ の計測条件データに従って上記試料と上記対物レンズと の相 対距離を変化させて上記試料の高さ情報を取得する高さ情報 演算部と、 を具備する共焦点顕微鏡。  It has measurement condition data of the light intensity information corresponding to each measurement mode for acquiring the magnification and the height information of the objective lens, and determines the relative distance between the sample and the objective lens according to the measurement condition data. A confocal microscope comprising: a height information calculation unit configured to acquire height information of the sample by changing the height.
1 4 . 上記計測条件データは、 上記対物レンズの倍率及び 上記測定モー ドに応じた上記各光強度情報から上記高さ情報 を推定するための近似曲線、 この近似曲線から上記光強度情 報を抽出するために用いる演算点数、 上記相対距離を変える と き の移動ピッチである請求項 1 3 に記載の共焦点顕微鏡。 14. The measurement condition data is an approximate curve for estimating the height information from the respective light intensity information according to the magnification of the objective lens and the measurement mode, and the light intensity information from the approximate curve. 14. The confocal microscope according to claim 13, wherein the number of calculation points used for extraction is a movement pitch when changing the relative distance.
1 5 . 上記計測条件データは、 上記測定モー ドと して測定 時間を優先したデータ と、 測定精度を優先したデータ と を有 する請求項 1 3 に記載の共焦点顕微鏡。 15. The confocal microscope according to claim 13, wherein the measurement condition data includes, as the measurement mode, data in which measurement time is prioritized and data in which measurement accuracy is prioritized.
1 6 . 共焦点走査型光学顕微鏡を用いた高さ測定方法であ つて、  16. A height measuring method using a confocal scanning optical microscope,
試料と対物レンズと の相対位置を所定の間隔で変化させな が ら、 複数の位置における輝度を測定し、  While changing the relative position between the sample and the objective lens at predetermined intervals, the luminance at multiple positions was measured,
上記複数の位置における輝度の測定結果の う ち、 上記最大 輝度を含む連続した少な く と も 3 点の位置における輝度デー タ を用いてノ イ ズの影響を評価し、  Of the luminance measurement results at the above-mentioned plurality of positions, the influence of noise was evaluated using luminance data at at least three consecutive positions including the above-mentioned maximum luminance,
上記ノ イ ズの評価結果に基づいて、 近似曲線を求めて、 輝 度の ピーク位置を計算する共焦点顕微鏡によ る測定方法。  A measurement method using a confocal microscope that calculates an approximate curve based on the above noise evaluation results and calculates the peak position of brightness.
1 7 . 上記測定方法において、  1 7. In the above measurement method,
上記近似曲線を求める際に、  When finding the above approximate curve,
ノ イズの影響が小さい場合には、 ノ イズ評価に用いた輝度 デーダを用 ·いて近似曲線-を求め、 ·  When the influence of noise is small, an approximate curve is obtained using the luminance data used for noise evaluation.
ノ イ ズの影響が大きい場合には、 測定した輝度データ の う ち、 少な く と も上記最大輝度の位置に隣接した位置の輝度デ ータ を除いた輝度データ を用いて近似曲線を求める請求項 1 6 に記載の共焦点顕微鏡による測定方法。  If the influence of noise is large, a request for obtaining an approximate curve using luminance data obtained by excluding luminance data at least at a position adjacent to the position of the maximum luminance from among the measured luminance data. Item 16. A measurement method using a confocal microscope according to Item 16.
1 8 . 上記測定方法において、  1 8. In the above measurement method,
上記近似曲線を求める場合において、 上記ノ イ ズの評価基 準と して近似曲線の幅を用いる請求項 1 7 に記載の共焦点顕 微鏡によ る測定方法。  18. The measurement method using a confocal microscope according to claim 17, wherein, when obtaining the approximate curve, a width of the approximate curve is used as a criterion for evaluating the noise.
1 9 . 上記測定方法において、 近似曲線の再計算は、 抽出済みの 5 点の う ち、 中心と両端 の 3 点を用いる請求項 1 7 に記載の共焦点顕微鏡による測定 方法。 1 9. In the above measurement method, 18. The method according to claim 17, wherein the approximate curve is recalculated using three points at the center and both ends of the five extracted points.
PCT/JP2003/007750 2002-06-01 2003-06-18 Confocal microscope and method for measuring by confocal microscope WO2003107064A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/015,076 US20050122577A1 (en) 2002-06-18 2004-12-16 Confocal microscope and measuring method by this confocal microscope

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002-177047 2002-06-01
JP2002-177472 2002-06-01
JP2002177472A JP3960862B2 (en) 2002-06-18 2002-06-18 Height measurement method
JP2002177047 2002-06-18
JP2002-263033 2002-09-09
JP2002263033A JP2004101831A (en) 2002-09-09 2002-09-09 Confocal microscope
JP2002-272246 2002-09-18
JP2002272246A JP4391731B2 (en) 2002-09-18 2002-09-18 Height measuring method and confocal optical measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/015,076 Continuation US20050122577A1 (en) 2002-06-18 2004-12-16 Confocal microscope and measuring method by this confocal microscope

Publications (1)

Publication Number Publication Date
WO2003107064A1 true WO2003107064A1 (en) 2003-12-24

Family

ID=29740953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007750 WO2003107064A1 (en) 2002-06-01 2003-06-18 Confocal microscope and method for measuring by confocal microscope

Country Status (1)

Country Link
WO (1) WO2003107064A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300563C (en) * 2005-03-24 2007-02-14 华中科技大学 Minisize three-dimensional self-scanning confocal microscope
CN115930829A (en) * 2022-12-27 2023-04-07 深圳市中图仪器股份有限公司 Reconstruction method of confocal microscope

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242380A (en) * 1993-02-15 1994-09-02 Yokogawa Electric Corp Confocal microscope
JPH08210819A (en) * 1994-12-02 1996-08-20 Keyence Corp Laser microscope
JPH0968413A (en) * 1995-08-31 1997-03-11 Olympus Optical Co Ltd Height measuring method and cofocal scanning optical microscope
JPH11211439A (en) * 1998-01-22 1999-08-06 Takaoka Electric Mfg Co Ltd Surface form measuring device
JP2001091844A (en) * 1999-09-22 2001-04-06 Olympus Optical Co Ltd Confocal scanning type microscope
WO2002077567A1 (en) * 2001-03-22 2002-10-03 Olympus Optical Co., Ltd. Height measuring instrument, and method of measuring height using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242380A (en) * 1993-02-15 1994-09-02 Yokogawa Electric Corp Confocal microscope
JPH08210819A (en) * 1994-12-02 1996-08-20 Keyence Corp Laser microscope
JPH0968413A (en) * 1995-08-31 1997-03-11 Olympus Optical Co Ltd Height measuring method and cofocal scanning optical microscope
JPH11211439A (en) * 1998-01-22 1999-08-06 Takaoka Electric Mfg Co Ltd Surface form measuring device
JP2001091844A (en) * 1999-09-22 2001-04-06 Olympus Optical Co Ltd Confocal scanning type microscope
WO2002077567A1 (en) * 2001-03-22 2002-10-03 Olympus Optical Co., Ltd. Height measuring instrument, and method of measuring height using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300563C (en) * 2005-03-24 2007-02-14 华中科技大学 Minisize three-dimensional self-scanning confocal microscope
CN115930829A (en) * 2022-12-27 2023-04-07 深圳市中图仪器股份有限公司 Reconstruction method of confocal microscope
CN115930829B (en) * 2022-12-27 2023-06-23 深圳市中图仪器股份有限公司 Reconstruction method of confocal microscope

Similar Documents

Publication Publication Date Title
JP6363382B2 (en) Film thickness measuring apparatus and method
CN113795778A (en) Self-calibrating and directional focusing system and method for infinity corrected microscopes
JP2006184303A (en) Image inspecting device
JP4963544B2 (en) Minute height measuring device
JP2016099213A (en) Three-dimensional shape measurement device
CN116540393B (en) Automatic focusing system and method, semiconductor defect detection system and method
WO2010143375A1 (en) Microscope device and control program
JP4179790B2 (en) Confocal scanning optical microscope
JP2013213695A (en) Shape measurement device
KR101132642B1 (en) Optical composite measuring apparatus and method
WO2003107064A1 (en) Confocal microscope and method for measuring by confocal microscope
JP3794670B2 (en) Microscope autofocus method and apparatus
CN114778514B (en) Measuring device and method for nondestructive high aspect ratio structure based on Raman analysis
JP4963567B2 (en) Minute height measuring device
WO2022145391A1 (en) Scanning confocal microscope and adjustment method for scanning confocal microscope
JP4398183B2 (en) Confocal microscope
JP5137772B2 (en) Confocal microscope
JP2008046361A (en) Optical system and its control method
JP4391731B2 (en) Height measuring method and confocal optical measuring device
JPH07306135A (en) Spectroscope device
JP2828145B2 (en) Optical section microscope apparatus and method for aligning optical means thereof
JP2003042720A (en) Height measuring apparatus
JP2004239890A (en) Magnifying observation device, magnified image observing method, magnifying observation device operation program, and computer-readable recording medium
JP2004177732A (en) Optical measuring device
US20240319487A1 (en) Microscope and method for autofocusing

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11015076

Country of ref document: US