JPS6316964Y2 - - Google Patents

Info

Publication number
JPS6316964Y2
JPS6316964Y2 JP18127581U JP18127581U JPS6316964Y2 JP S6316964 Y2 JPS6316964 Y2 JP S6316964Y2 JP 18127581 U JP18127581 U JP 18127581U JP 18127581 U JP18127581 U JP 18127581U JP S6316964 Y2 JPS6316964 Y2 JP S6316964Y2
Authority
JP
Japan
Prior art keywords
lens system
sample
light source
point
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18127581U
Other languages
Japanese (ja)
Other versions
JPS5886509U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18127581U priority Critical patent/JPS5886509U/en
Publication of JPS5886509U publication Critical patent/JPS5886509U/en
Application granted granted Critical
Publication of JPS6316964Y2 publication Critical patent/JPS6316964Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は表面検査装置に関するものである。[Detailed explanation of the idea] This invention relates to a surface inspection device.

従来、表面の凹凸などのあらさを測定検査する
ものとして、接触測定法と非接触測定法があつ
た。しかしながら前者は、測定しようとする試料
に接触させて、測定するため、試料面を変形させ
たり、傷を付けたりしてしまう恐れがあつた。ま
た非接触測定法においては、レーザー装置を使用
して、レーザー光を試料面に当て、その反射光を
測定して表面状態を測定検査するものと、顕微鏡
によつて測定検査するものとがあるが、レーザー
の場合、装置の簡素化が難かしという欠点があ
り、また顕微鏡の場合、視野内の部分のみしか測
定できないので測定範囲が狭いという欠点があつ
た。
Conventionally, contact measurement methods and non-contact measurement methods have been used to measure and inspect roughness such as surface irregularities. However, in the former method, the sample is brought into contact with the sample to be measured, so there is a risk that the sample surface may be deformed or damaged. In addition, in non-contact measurement methods, there are two types: one uses a laser device to shine a laser beam onto the sample surface and measures the reflected light to measure and inspect the surface condition, and the other uses a microscope to measure and inspect the surface condition. However, lasers have the disadvantage that it is difficult to simplify the equipment, and microscopes have the disadvantage that only the area within the field of view can be measured, so the measurement range is narrow.

したがつて、この考案の目的は、試料面を傷付
けることなく、試料の全表面を同時に測定でき、
しかも小形化を図ることができる表面検査装置を
提供することである。
Therefore, the purpose of this invention is to be able to simultaneously measure the entire surface of the sample without damaging the sample surface.
Moreover, it is an object of the present invention to provide a surface inspection device that can be made smaller.

この考案は表面にある曲率半径が大きく微細な
凹凸や歪等の測定検査を対象としており、基本的
構成をまず説明する。第1図において、1は反射
面を有する試料であり、試料の反射側に収束レン
ズ系2を設置し、その同じ側に点光源3を設置す
る。4はそのレンズ系2の焦点であり、点光源3
はレンズ系2の焦点4よりも、レンズ系2側に接
近して設置する。点光源3から出た光線5はレン
ズ系2により光線6のように拡散し、その光線6
は試料1の反射面により、反射光7になつてレン
ズ系2に再入射し、光線8になる。第2図は前記
試料1の拡大図であり、試料1の表面上には幅
L1が数ミリメートルで、深さL2がサブミクロン
であるような凹凸Pがあり、その凹凸Pの曲率半
径Rは数メートルないし数十メートルになつて、
表面からその距離離れた位置に曲率中心9が形成
される。このような凹凸Pに第3図のように試料
1の表面に直角に平行光線束aを入射すると、凹
凸Pの反射光は収束するが凹凸P以外の部分の反
射光はほぼ直角に反射し、その結果、凹凸Pの収
束反射光の領域cを含む位置にたとえばスクリー
ンを置くと他の領域dとの間に明暗の差が生じ
る。したがつてこの反射光の明暗の差異を受光す
ることにより、微細な凹凸Pを検出することがで
きる。また前記凹凸Pの曲率半径が長いため、第
1図に示すように点光源3の位置を焦点4よりレ
ンズ系2側に近ずくように位置させると、より一
層明暗の判断が容易になる。すなわち、点光源3
をレンズ系2の焦点4においた場合と点光源3を
焦点4よりレンズ系2側に近ずいた位置(第1
図)においた場合を比較すると、レンズ系2を通
して試料1に入射しかつ反射してレンズ系2を通
過した反射光は前者の場合、焦点4に収束するの
に対して後者の場合、焦点4よりさらにレンズ系
2から離れた位置に収束する(収束点3′)。その
ため位置1′上に反射光線を写し出した場合を考
えてみると、前者の像l′と後者の像lは関係l>
l′となり、試料1が同じ条件であるにもかかわら
ず、像の分解能を高めることとなる。
This idea is aimed at measuring and inspecting fine irregularities and distortions with a large radius of curvature on the surface, and the basic configuration will be explained first. In FIG. 1, reference numeral 1 indicates a sample having a reflective surface, and a converging lens system 2 is installed on the reflective side of the sample, and a point light source 3 is installed on the same side. 4 is the focal point of the lens system 2, and the point light source 3
is installed closer to the lens system 2 than the focal point 4 of the lens system 2. The light ray 5 emitted from the point light source 3 is diffused into a light ray 6 by the lens system 2, and the light ray 6
is turned into reflected light 7 by the reflective surface of the sample 1 and re-enters the lens system 2, where it becomes a light ray 8. Figure 2 is an enlarged view of the sample 1, and there is a width on the surface of the sample 1.
There is an unevenness P in which L 1 is several millimeters and depth L 2 is submicron, and the radius of curvature R of the unevenness P is several meters to several tens of meters.
A center of curvature 9 is formed at that distance from the surface. When a parallel light beam a is incident on such an unevenness P at right angles to the surface of the sample 1 as shown in Fig. 3, the reflected light from the unevenness P is converged, but the reflected light from areas other than the unevenness P is reflected almost at right angles. As a result, if a screen is placed, for example, at a position that includes the region c of the convergent reflected light of the unevenness P, a difference in brightness will occur between it and the other region d. Therefore, by receiving the difference in brightness of this reflected light, the minute unevenness P can be detected. Furthermore, since the radius of curvature of the unevenness P is long, if the point light source 3 is positioned closer to the lens system 2 than the focal point 4 as shown in FIG. 1, it becomes easier to judge brightness and darkness. That is, point light source 3
When the point light source 3 is placed at the focal point 4 of the lens system 2, and when the point light source 3 is placed closer to the lens system 2 side than the focal point 4 (first
Comparing the case shown in Figure 1), the reflected light that enters the sample 1 through the lens system 2, is reflected, and passes through the lens system 2 converges at the focal point 4 in the former case, whereas in the latter case, the reflected light enters the sample 1 at the focal point 4. The light converges further away from the lens system 2 (convergence point 3'). Therefore, if we consider the case where a reflected ray is projected on position 1', the former image l' and the latter image l are related to l>
l', and the resolution of the image is increased even though sample 1 is under the same conditions.

この考案の一実施例を第4図および第5図に示
す。すなわち、第4図において10は入射光軸で
あり、11は反射光軸である。入射光軸10上に
一般光源で作つた点光源12を設置し、点光源1
2とレンズ系2の間に、集光レンズ系13を入射
光軸10上に設置する。点光源12と集光レンズ
系13によつて点光源装置を構成している。点光
源12から出た光線は集光レンズ系13により点
光源12の実像14を結ぶ。これにより反射面を
有する試料面1にはあたかも点光源12の実像1
4より出た光線になる。そしてこの実像14はレ
ンズ系2の焦点距離よりも短い位置に結ぶよう
に、点光源12と集光レンズ系13とが設置され
る。そして、試料面1から反射された光線を集光
レンズ系15により集光させ試料1の表面から出
た光線を受光面に写し出す。したがつて受光面の
大きさが、試料1の表面の大きさより小さくて
も、集光レンズ系15により反射光線は集光され
るので受光面上に試料面の全体を写し出すことが
できる。これにより、受光面を小さくすることが
でき、装置のコンパクトが計れる。
An embodiment of this invention is shown in FIGS. 4 and 5. That is, in FIG. 4, 10 is an incident optical axis, and 11 is a reflected optical axis. A point light source 12 made of a general light source is installed on the incident optical axis 10, and the point light source 1
2 and the lens system 2, a condenser lens system 13 is installed on the incident optical axis 10. The point light source 12 and the condensing lens system 13 constitute a point light source device. The light rays emitted from the point light source 12 are focused by a condensing lens system 13 into a real image 14 of the point light source 12 . As a result, the real image 1 of the point light source 12 appears on the sample surface 1 having a reflective surface.
It becomes a ray of light that comes out from 4. A point light source 12 and a condensing lens system 13 are installed so that this real image 14 is focused at a position shorter than the focal length of the lens system 2. Then, the light beam reflected from the sample surface 1 is focused by the condenser lens system 15, and the light beam emitted from the surface of the sample 1 is projected onto the light receiving surface. Therefore, even if the size of the light-receiving surface is smaller than the surface size of the sample 1, the reflected light beam is condensed by the condenser lens system 15, so that the entire sample surface can be imaged on the light-receiving surface. As a result, the light receiving surface can be made smaller, and the device can be made more compact.

ここで、前記のように点光源12の実像14を
作り出した理由は、入射光軸10と反射光軸11
とをなるべく近づけるためである。たとえば、試
料面を鏡面としてとらえた場合、その鏡面に対
し、垂直から見た場合と、斜めから見た場合にお
ける写し出された像を見た場合、斜めから見た像
の方が、垂直から見た場合よりも、ゆがみが発生
する。このことから、なるべく光軸は、試料面に
対し、垂直にするのが良い。そのためには、入射
光軸と反射光軸を一致させることが良いが、一致
させることができない場合、両光軸は近づけられ
るだけ近づけた方が良い。この場合、点光源12
は、試料1の表面から反射された光線を遮断しな
い位置に設置する必要があり、なおかつ、レンズ
系2の焦点よりも短い位置に設置しなければなら
ない。そのために、集光レンズ系13によつて、
点光源12の実像14を作り出すことにより、入
射光軸10と反射光軸11とを近づけることがで
きる。
Here, the reason for creating the real image 14 of the point light source 12 as described above is that the incident optical axis 10 and the reflected optical axis 11
This is to bring the values as close as possible. For example, if you consider the sample surface as a mirror surface, and you look at the projected images when looking perpendicularly to the mirror surface and when viewing it diagonally, the image seen diagonally is better than the image seen perpendicularly. Distortion will occur more than if the For this reason, it is preferable to make the optical axis perpendicular to the sample surface. For this purpose, it is better to make the incident optical axis and the reflected optical axis coincide, but if they cannot be made to coincide, it is better to bring both optical axes as close as possible. In this case, the point light source 12
needs to be installed at a position that does not block the light beam reflected from the surface of the sample 1, and must be installed at a position shorter than the focal point of the lens system 2. For this purpose, by the condensing lens system 13,
By creating the real image 14 of the point light source 12, the incident optical axis 10 and the reflected optical axis 11 can be brought closer together.

第5図は、集光レンズ系15の結像点にテレビ
カメラ16を設置した例を示す。集光レンズ系1
5により、反射光線を集光させてテレビカメラ1
6に試料面全体の反射光線の全部を写し出すこと
ができ、それにより画像処理が可能になる。また
テレビカメラ16を、集光レンズ系15の近くに
設置できるので、装置の小形化が計れる。また集
光レンズ系13と、集光レンズ系15を各光軸方
向に移動可能な機構にすることにより、反射面を
有する試料1の大きさに変化があつても、テレビ
カメラ16に入る画像を一定にすることもでき
る。
FIG. 5 shows an example in which a television camera 16 is installed at the imaging point of the condenser lens system 15. Condensing lens system 1
5, the reflected light is condensed and the TV camera 1
6, all of the reflected light rays from the entire sample surface can be imaged, thereby making it possible to perform image processing. Furthermore, since the television camera 16 can be installed near the condenser lens system 15, the device can be made more compact. Furthermore, by making the condensing lens system 13 and the condensing lens system 15 movable in each optical axis direction, even if the size of the sample 1 having a reflective surface changes, the image captured by the television camera 16 It is also possible to keep it constant.

第6図は第5図の装置により得られた試料1の
表面の映像である(別紙写真参照)。この条件と
して、レンズ系2の焦点距離1m、点光源12と
して3Wの豆電球、集光レンズ系13および集光
レンズ系15の焦点距離50cm、テレビカメラ16
として焦点距離が35cmの撮像管、試料1として3
インチシリコンウエハを用いた。また点光源12
から試料1までの距離を1.3m、試料1からテレ
ビカメラ16までの距離も同程度である。この第
6図を観察すると、明るい横線Aと、明線および
暗線よりなる横線Bが見られる。一方この3イン
チシリコンウエハの表面状態を触針による検査法
(タリステツプ)により測定したところ、横線A
は第7図aのように深さH1が0.38μm、幅H2が8
mmの微細な凹部が対応し、横線Bの明暗は第7図
bのように、5.6mmの幅L内に0.05μmの凹部(明
部)Q1と0.12μmの凹部(明部)Q2およびそれら
の間の凸部(暗部)Q3が対応することがわかつ
た。こうしてテレビカメラ等で観測される明部が
試料の凹みを表わし、暗部が凸を表わし、もつて
凹凸が検査できることとなる。
FIG. 6 is an image of the surface of sample 1 obtained by the apparatus shown in FIG. 5 (see attached photograph). The conditions include a focal length of lens system 2 of 1 m, a 3W miniature light bulb as point light source 12, a focal length of 50 cm of condensing lens system 13 and condensing lens system 15, and a television camera 16.
An image tube with a focal length of 35 cm as sample 1, and 3 as sample 1.
An inch silicon wafer was used. Also, point light source 12
The distance from the sample 1 to the sample 1 is 1.3 m, and the distance from the sample 1 to the television camera 16 is also about the same. When observing FIG. 6, a bright horizontal line A and a horizontal line B consisting of a bright line and a dark line can be seen. On the other hand, when the surface condition of this 3-inch silicon wafer was measured using a stylus inspection method (Talystep), the horizontal line A
As shown in Figure 7a, the depth H 1 is 0.38 μm and the width H 2 is 8
The brightness of the horizontal line B corresponds to the minute recesses of 0.05 μm (bright part) Q 1 and 0.12 μm recesses (bright part) Q 2 within the width L of 5.6 mm, as shown in Figure 7b. It was found that the convex part (dark part) Q 3 and the convex part (dark part) between them correspond. In this way, the bright areas observed with a television camera or the like represent the depressions of the sample, and the dark areas represent the convexities, so that the irregularities can be inspected.

以上のように、この考案の表面検査装置は、反
射性試料面の前方に配置された収束レンズ系と、
この収束レンズ系の前記反射性試料面の反対側に
配置されてその焦点距離よりも収束レンズ系に接
近して実像点を有する点光源装置と、前記収束レ
ンズ系に対し前記点光源装置と同じ側に設けた受
光面と、前記収束レンズ系と受光面との間に配置
した集光レンズ系とを備え、前記点光源装置の光
線が前記収束レンズ系を通して前記反射性試料面
に入射しかつ前記試料面から反射した反射光を、
前記収束レンズ系を通し、前記集光レンズ系で集
光して前記受光面に入射させる構成としたことを
特徴とするため、つぎの作用効果がある。すなわ
ち、試料に対し非接触検査となるので試料を傷付
けることなく、小形でしかも試料の表面全面を同
時に検査できるという効果があり、装置全体を暗
室内に設置して使用するとさらに測定精度を高め
ることができる。
As described above, the surface inspection device of this invention includes a converging lens system placed in front of the reflective sample surface,
a point light source device disposed on the opposite side of the reflective sample surface of the convergent lens system and having a real image point closer to the convergent lens system than its focal length; a light-receiving surface provided on the side, and a condensing lens system disposed between the converging lens system and the light-receiving surface, the light beam of the point light source device being incident on the reflective sample surface through the converging lens system; The reflected light reflected from the sample surface,
Since the present invention is characterized in that the light passes through the converging lens system, is condensed by the condensing lens system, and is incident on the light receiving surface, the following effects can be obtained. In other words, since it is a non-contact test on the sample, it is compact and allows the entire surface of the sample to be inspected at the same time without damaging the sample.If the entire device is installed and used in a dark room, the measurement accuracy can be further improved. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案の基本構成の概略図、第2図
は試料面の拡大断面図、第3図は試料面上の凹部
に光線を与えた時の光線の状態を示す試料の断面
図、第4図および第5図はこの考案の一実施例の
概略図、第6図は第5図の装置で得られた試料表
面の映像図、第7図は試料表面をタリステツプに
より実測した試料の部分拡大断面図である。 1……反射面を有する試料面、2……レンズ
系、12……点光源、13……集光レンズ系、1
4……点光源の実像、15……集光レンズ系、1
6……テレビカメラ。
Fig. 1 is a schematic diagram of the basic configuration of this invention, Fig. 2 is an enlarged cross-sectional view of the sample surface, and Fig. 3 is a cross-sectional view of the sample showing the state of the light beam when it is applied to a recess on the sample surface. Figures 4 and 5 are schematic diagrams of an embodiment of this invention, Figure 6 is an image of the sample surface obtained with the apparatus shown in Figure 5, and Figure 7 is a sample surface obtained by actually measuring the sample surface using a Talystep. FIG. 3 is a partially enlarged sectional view. 1... Sample surface having a reflective surface, 2... Lens system, 12... Point light source, 13... Condensing lens system, 1
4... Real image of point light source, 15... Condensing lens system, 1
6...TV camera.

Claims (1)

【実用新案登録請求の範囲】 (1) 反射性試料面の前方に配置された収束レンズ
系と、この収束レンズ系の前記反射性試料面の
反対側に配置されてその焦点距離よりも収束レ
ンズ系に接近して実像点を有する点光源装置
と、前記収束レンズ系に対し前記点光源装置と
同じ側に設けた受光面と、前記収束レンズ系と
受光面との間に配置した集光レンズ系とを備
え、前記点光源装置の光線が前記収束レンズ系
を通して前記反射性試料面に入射しかつ前記試
料面から反射した反射光を、前記収束レンズ系
を通し、前記集光レンズ系で集光して前記受光
面に入射させる構成としたことを特徴とする表
面検査装置。 (2) 前記点光源装置はその実像点を前記収束レン
ズ系の焦点距離よりも収束レンズ系に接近した
位置に形成させる集光レンズ系を有する実用新
案登録請求の範囲第(1)項記載の表面検査装置。
[Claims for Utility Model Registration] (1) A convergent lens system disposed in front of the reflective sample surface, and a convergent lens disposed on the opposite side of the reflective sample surface of the convergent lens system whose focal length is shorter than the focal length of the convergent lens system. a point light source device having a real image point close to the system; a light receiving surface provided on the same side of the converging lens system as the point light source device; and a condensing lens disposed between the converging lens system and the light receiving surface. a light beam from the point light source device enters the reflective sample surface through the converging lens system, and the reflected light reflected from the sample surface passes through the converging lens system and is collected by the condensing lens system. A surface inspection device characterized in that it is configured to emit light and make it incident on the light receiving surface. (2) The point light source device has a condensing lens system that forms its real image point at a position closer to the converging lens system than the focal length of the converging lens system. Surface inspection equipment.
JP18127581U 1981-12-04 1981-12-04 surface inspection equipment Granted JPS5886509U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18127581U JPS5886509U (en) 1981-12-04 1981-12-04 surface inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18127581U JPS5886509U (en) 1981-12-04 1981-12-04 surface inspection equipment

Publications (2)

Publication Number Publication Date
JPS5886509U JPS5886509U (en) 1983-06-11
JPS6316964Y2 true JPS6316964Y2 (en) 1988-05-13

Family

ID=29978606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18127581U Granted JPS5886509U (en) 1981-12-04 1981-12-04 surface inspection equipment

Country Status (1)

Country Link
JP (1) JPS5886509U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3066816B1 (en) * 2017-05-24 2020-09-04 Centre Nat Rech Scient OPTICAL DEVICE FOR MEASURING THE CURVATURE OF A REFLECTIVE SURFACE

Also Published As

Publication number Publication date
JPS5886509U (en) 1983-06-11

Similar Documents

Publication Publication Date Title
US4547073A (en) Surface examining apparatus and method
US6597446B2 (en) Holographic scatterometer for detection and analysis of wafer surface deposits
EP0856728B1 (en) Optical method and apparatus for detecting defects
JPH0695075B2 (en) Surface texture detection method
Ishihara et al. High-speed surface measurement using a non-scanning multiple-beam confocal microscope
JPS6182147A (en) Method and device for inspecting surface
JPH09229819A (en) Method and instrument for measuring lens parameter using optical section
JPS63261144A (en) Optical web monitor
JPH0120405B2 (en)
JPS6316964Y2 (en)
JP3634985B2 (en) Optical surface inspection mechanism and optical surface inspection apparatus
JP6142996B2 (en) Via shape measuring device and via inspection device
JP3417494B2 (en) Method and apparatus for inspecting surface undulation of glass substrate
JPH06508218A (en) Deflection type optical device with wide measurement range
JPH0233089B2 (en)
JP2577960B2 (en) Specular surface inspection equipment
JPS60209106A (en) Flatness inspecting device
JP2906745B2 (en) Surface undulation inspection device
JP3637165B2 (en) Surface measuring device
JPH03276005A (en) Shape measuring device
JPS6313446Y2 (en)
JP2001083098A (en) Optical surface inspection mechanism and device
JPS6319001B2 (en)
JP2982471B2 (en) Painted surface inspection equipment
JP2982474B2 (en) Painted surface inspection equipment