JPS5918678A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5918678A
JPS5918678A JP12724082A JP12724082A JPS5918678A JP S5918678 A JPS5918678 A JP S5918678A JP 12724082 A JP12724082 A JP 12724082A JP 12724082 A JP12724082 A JP 12724082A JP S5918678 A JPS5918678 A JP S5918678A
Authority
JP
Japan
Prior art keywords
plane
source
drain
layer
approx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12724082A
Other languages
Japanese (ja)
Other versions
JPH0328816B2 (en
Inventor
Yoshifumi Mori
森 芳文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP12724082A priority Critical patent/JPS5918678A/en
Publication of JPS5918678A publication Critical patent/JPS5918678A/en
Publication of JPH0328816B2 publication Critical patent/JPH0328816B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Weting (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain an FET of high performance by superposing partial (111) B surface on the surface of a substrate and an epitaxial layer as the shape in which other crystalline surface exists adjacently, and selectively forming a thin operation layer on the (111) surface. CONSTITUTION:A semi-insulating GaAs substrate 11 in which a main surface 11a exists in (100) plane, is anisotropically etched, selected in approx. 2mum of width and approx. 1mum of depth, and a groove 12 of sectional trapezoid in which the bottom width is approx. 3mum and the side surface exists in (111) plane is formed. When the buffer layer 13 of semi-insulating GaAs is epitaxially formed by thermal decomposition of mixture gas of SiH4 and (CH3)3Gs, the growing speed of the (111) B surface is slow, and the oblique surface 13A of (111) B surface is accordingly presented at the certain time point. When N type impurity gas is fed from this time and epitaxial formation is continued to form an operation layer 14, the parts 14A, 14B are formed in thickness of relationship of tA>>tB by similar growing speed difference. A Pt gate electrode 15 is attached to the part 14B, and ohmic electrodes 16, 17 are attached as source and drain to the parts 14A of both sides. Since the channel length can be sufficiently short and the resistance between the source and the drain is formed to be small, high frequency characteristics can be improved.

Description

【発明の詳細な説明】 本発明は半導体装置1例えばQa −As l−V異化
合物半導体を用いたショットキバリアゲート形電界効果
トランジスタ、或いは同様のPN接合ゲート形電界効果
トランジスタ等を得る場合に適用してすぐれた特性を有
するこの種半導体装置を確実に得ることができるように
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to the semiconductor device 1, for example, a Schottky barrier gate type field effect transistor using a Qa-As l-V foreign compound semiconductor, or a similar PN junction gate type field effect transistor. This makes it possible to reliably obtain this type of semiconductor device having excellent characteristics.

従来の化合物半導体による電界効果トランジスタ(FE
T )は、例えば第1図に示すようにQa −As等の
(100)結晶面に切り出した基板(1)上に1例えば
N形の同様のQa −As化合物半導体層(2)を動作
層としてエピタキシャル成長し、この動作層(2)上K
例えばこの動作層(2)に対してショットキバリア(3
)を形成しうる金属、ゲート電極例えば白金ptよりな
るゲート電極(4)を被着し、又これを挾んでその両側
にソース電極(5)及びドレイン電極(6)をオーミッ
クに被着してなる。
Conventional compound semiconductor field effect transistor (FE)
For example, as shown in FIG. 1, a similar Qa-As compound semiconductor layer (2) of N type is formed as an active layer on a substrate (1) cut out in the (100) crystal plane of Qa-As, for example. K is epitaxially grown on this active layer (2) as
For example, for this active layer (2), the Schottky barrier (3
), a gate electrode (4) made of a metal such as platinum PT is deposited, and a source electrode (5) and a drain electrode (6) are ohmically deposited on both sides of the gate electrode (4). Become.

このような構造による場合、その高周波特性はゲート容
量とソース及びゲート間抵抗とで主として決まるため、
これらの低減化のためにゲート電極(4)をできるだけ
幅狭とし、又ソース及びドレイン電極(5)及び(6)
間の間隔をできるだけ小さくするなど微細加工を必要と
する。しかしながらこの場合、その加工精度上に限界か
あって充分すぐれた高周波特性が得難い。又、ソース及
びゲート間抵抗を低減化させる手段としても1種々の方
法がとられており1例えば第2図に示すよ°うに動作層
(2)のゲート電極(4)が被着される部分をエッチジ
グによって肉薄にし他部のソース及びドレイン領域とな
る部分を肉厚として、ここKおける広がり抵抗を低減化
するなどの構造が採られる。或いは第3図に示すように
、ソース及びドレイン領域を、イオン注入法等によって
高い濃度に不純物をドーピングして例えばN形の高濃度
領域を形成する等の方法が知られている。
In the case of such a structure, its high frequency characteristics are mainly determined by the gate capacitance and the resistance between the source and the gate.
In order to reduce these, the width of the gate electrode (4) is made as narrow as possible, and the width of the source and drain electrodes (5) and (6) is made as narrow as possible.
Microfabrication is required, such as making the spacing between the two parts as small as possible. However, in this case, there is a limit to the processing accuracy and it is difficult to obtain sufficiently excellent high frequency characteristics. Various methods have also been used to reduce the resistance between the source and the gate.1 For example, as shown in FIG. A structure is adopted in which the thickness is reduced using an etching jig, and the other portions that will become the source and drain regions are made thicker to reduce the spreading resistance here. Alternatively, as shown in FIG. 3, a method is known in which the source and drain regions are doped with impurities at a high concentration by ion implantation or the like to form, for example, N-type high concentration regions.

しかしながらいずれの場合においても、その製造方法が
煩雑で1例えば第2図の構造によるものにおいては、動
作層(2)K対するエツチング溝の深さの寸法形状にば
らつきが生じゃすく、均一な特性を有するFETを再現
性よく得難いという欠点がある。又、第3図の構造によ
る場合、例えば選択的イオン注入の工程を必要としてそ
の作業性が著しく低下する。
However, in either case, the manufacturing method is complicated, and in the case of the structure shown in FIG. The disadvantage is that it is difficult to obtain an FET with good reproducibility. Further, in the case of the structure shown in FIG. 3, for example, a selective ion implantation process is required, which significantly reduces the workability.

本発明においては、このような欠点を解消することがで
き、簡単な方法によって安定で高周波特性にすぐれたF
ET等の半導体装置を得ることのできる半導体装置の製
法を提供するものである。
In the present invention, these drawbacks can be solved, and an F with stable and excellent high frequency characteristics can be obtained using a simple method.
The present invention provides a method for manufacturing a semiconductor device that can produce a semiconductor device such as an ET.

即ち1本発明においては、化合物半導体の熱分解気相成
長法、特K MOCVD (Metal Qrgani
c ChemicalVhpor Depos口)法に
よる場合、凹凸構造のある基板上への結晶成長の特異現
象を利用して目的とする半導体装置を得るものである。
That is, in the present invention, a pyrolytic vapor phase growth method for compound semiconductors, specifically K MOCVD (Metal Qrgani
In the case of the Chemical Vhpor Deposuction method, a target semiconductor device is obtained by utilizing a peculiar phenomenon of crystal growth on a substrate having an uneven structure.

即ち、 MOCVD法では、化合物半導体基板上に形成
した凹凸構造を崩さず、又これに露出した(111) 
B結晶面に対する半導体層の成長は、他の面よりその成
長速度が数十分の一以下程度にも低く、しかもこの(1
11)B面が、他の結晶面と隣接して表面に露呈する場
合(111) B結晶面のみの場合においては、これの
上に多結晶半導体層の成長が生じるも、この(111)
 B結晶面が狭い範囲において露出し、その近傍に他の
結晶面が存在するとき他の結晶面の成長に伴って(11
1)B面にも単結晶が成長堆積され、且つとの(111
) B面上の単結晶成長層、即ちエピタキシャル成長層
が鏡面を形成するという現象を利用する。
That is, in the MOCVD method, the uneven structure formed on the compound semiconductor substrate is not destroyed, and the exposed structure (111)
The growth rate of the semiconductor layer on the B crystal plane is slower than that on other planes, at a rate of several tenths or less.
11) When the B plane is exposed on the surface adjacent to other crystal planes (111) In the case of only the B crystal plane, a polycrystalline semiconductor layer grows on it, but this (111)
When the B crystal plane is exposed in a narrow range and other crystal planes exist in the vicinity, (11
1) A single crystal is also grown and deposited on the B-plane, and the (111
) Utilizes the phenomenon that a single crystal growth layer on the B-plane, that is, an epitaxial growth layer forms a mirror surface.

第4図を参照して本発明をGa −As等の化合物半導
体によるショットキバリヤゲート形FETを得   ゛
る場合に適用する一例を説明する。
An example in which the present invention is applied to obtaining a Schottky barrier gate type FET made of a compound semiconductor such as Ga--As will be explained with reference to FIG.

この場合、高比抵抗即ち半絶縁性のQa−As等の単結
晶化合物半導体基板αυを設ける。この基板αDは、そ
の−主面(lla)が(100)結晶面に切り出されて
なる。そしてこの基板−συの主面(iia)に臨んで
溝a3を形成する。この溝a3は例えばエツチングレジ
ストとなるフォトレジスト、例えばAZ−1350(商
品名)を塗布し、これに露光現像処理を施して、所要の
幅を有する窓を穿設し、この窓を通じてQa −As基
板αυに対してエツチングに異方性を有するエツチング
液、例えばH3PO4:H2O2:H2Oが1 : 1
0 : 10の液によってエツチングを行う。この場合
、溝αりの例えば基板αυの面(1ta)側における幅
を2μmに選定し、深さを1μm程度に選定するとき、
その両側面には(111)A結晶面が生じて底面の幅が
3μmの断面台形状の溝が形成される。
In this case, a single-crystal compound semiconductor substrate αυ of Qa-As or the like having high specific resistance, that is, semi-insulating, is provided. This substrate αD has its -main surface (lla) cut out to be a (100) crystal plane. Then, a groove a3 is formed facing the main surface (IIA) of this substrate -συ. For this groove a3, a photoresist such as AZ-1350 (trade name), which serves as an etching resist, is applied, and exposed and developed to form a window with the required width. An etching solution having anisotropy in etching with respect to the substrate αυ, for example, H3PO4:H2O2:H2O in a ratio of 1:1.
Etching is performed using a solution of 0:10. In this case, when the width of the groove α on the surface (1ta) side of the substrate αυ is selected to be 2 μm, and the depth is selected to be approximately 1 μm,
(111)A crystal planes are formed on both sides thereof, and a groove having a trapezoidal cross section with a bottom width of 3 μm is formed.

次に、このように溝a2が形成された基板(tυの主面
(XXa)上に#II内を含んで化合物半導体例えばQ
a−A6の高比抵抗1例えば半絶縁性の化合物半導体層
よりなるバラフッ層α謙をMOCVD法、即ち、アルシ
ン、トリメチルガリウムの混合ガスによる熱分解によっ
て被着し、続いてこれと連続してN形の不純物ガスを送
りつつ同様なMOCVD Kよる(3a−As化合物半
導体の動作層αくを成長させる。
Next, a compound semiconductor, for example Q
High resistivity of a-A6 1 For example, a semi-insulating compound semiconductor layer made of a semi-insulating compound semiconductor layer α-layer is deposited by MOCVD method, that is, thermal decomposition with a mixed gas of arsine and trimethyl gallium, and then continuously. An active layer α of a 3a-As compound semiconductor is grown by a similar MOCVD method while supplying an N-type impurity gas.

この動作層α荀の形成は、MOCVDによって溝az内
を含んで上述したように基板αυ上にバッファ層a3を
成長していくとき、この層α謙に、溝(I功の両側に対
応する位置から(111) B面が発生した時点以後に
おいて、送り込むガス中にN形の不純物の添加をなして
N形の動作層α4の成長に切り換えることによって生成
する。即ち、溝aa内にバッファ層峙をMOCVD K
よってエピタキシャル成長させて行くとき(111) 
B面の成長速度が他に比して遅いために溝a4内に成長
されていくバッファ層α3)Kはある時点で(1n)B
面の斜面(13a)が発生してくる。
The formation of the active layer α is carried out by MOCVD when growing the buffer layer a3 on the substrate αυ including the inside of the groove az as described above. After the point where the (111) B plane is generated, N-type impurities are added to the supplied gas and the growth is switched to the N-type active layer α4. That is, a buffer layer is formed in the groove aa. MOCVD K
Therefore, when performing epitaxial growth (111)
Since the growth rate of the B-plane is slower than that of the other layers, the buffer layer α3)K grown in the groove a4 will at some point become (1n)B.
A slope (13a) of the surface is generated.

そしてこのよ5な(111)B結晶面よりなる斜面が発
生した時点より後に前述したようKN形の不純物ガスの
供給を行って続いてエピタキシャル成長をなすことKよ
りて動作層α養を形成する。この場合、動作層a4の、
基板aυの(100)面を有する主面(lla)上と溝
Qり内の(Zoo)結晶面を有する底面(12a)上に
、バッファ層(13を介して、夫# (100)結晶面
として受は継がれて成長された平坦部(14A)kt、
  (111)B面としてバッファ層(13を介して成
長される部分(14B)に比し、その成長速度が早いの
で部分(14A)及び(14B)の各厚さtA及びtB
は。
Then, after the occurrence of the slope formed by the (111)B crystal plane, the active layer α is formed by supplying KN type impurity gas and subsequently performing epitaxial growth as described above. In this case, in the operating layer a4,
A buffer layer (13) is formed on the main surface (lla) having the (100) plane of the substrate aυ and on the bottom surface (12a) having the (Zoo) crystal plane in the groove Q, with the husband # (100) crystal plane The flat part (14A) kt where Uke was inherited and grown as
(111) As the B-plane, the growth rate is faster than that of the portion (14B) grown through the buffer layer (13), so the thicknesses tA and tB of the portions (14A) and (14B) are
teeth.

tA>tnとなる。tA>tn.

本発明においてはこの厚さの小なる部分(14B)上に
この化合物半導体例えばQa −As K対してショッ
トキバリヤを形成し得る金属例えばPtよりなるゲート
電極−を被着しここをゲート部となし、これを挾んでそ
の両側の厚さの大なる部分(14A)をソース及びドレ
イ/領域としてここに夫々ドレイン電極Q6)及びソー
ス帽0ηをオーミックに被着して目的とするショットキ
ゲート形FETを得ることができる。
In the present invention, a gate electrode made of a metal such as Pt that can form a Schottky barrier with respect to the compound semiconductor such as Qa-AsK is deposited on this small-thickness portion (14B), and this is used as a gate portion. , sandwiching this and using the thicker parts (14A) on both sides as the source and drain regions, respectively, ohmically deposit a drain electrode Q6) and a source cap 0η to form the intended Schottky gate FET. Obtainable.

このような本発明方法によって得た半導体装置この例に
おいてはQa −Asショットキバリヤゲート形Fli
Tによれば、ソース及びドレインとなる部分は厚さの大
なる動作層(14A)によって形成されるので、その広
がり抵抗を充分小さくすることができる。例えば、この
動作層Iのソース及びドレインを形成する大なる厚さの
部分(14A)の厚さを例えば1μmとしても、(1t
t) B面として形成される部分(14B)においては
、数百X程度の厚さにとどめ得るものであり、又その斜
面の幅に相当するゲート長も1μm以下にとどめること
ができるのでチャンネル長の縮減化も図ることができ高
周波特性の良いFETを容易に得ることができる。
In this example, the semiconductor device obtained by the method of the present invention is of the Qa-As Schottky barrier gate type.
According to T, since the portions that become the source and drain are formed by the thick active layer (14A), the spreading resistance can be made sufficiently small. For example, if the thickness of the large thick portion (14A) forming the source and drain of this active layer I is, for example, 1 μm, (1t
t) In the part (14B) formed as the B-plane, the thickness can be kept to about several hundred times, and the gate length corresponding to the width of the slope can also be kept to 1 μm or less, so the channel length can be reduced. It is also possible to reduce the amount of noise, and it is possible to easily obtain an FET with good high frequency characteristics.

本発明製法によるときは、基板aυに溝a4を形成し置
くものであるが、これには予め(111) B結晶面が
存在するように第5図中符号(5)を付した破線で示す
よ5に、予め(111) B面が存在する溝形状となす
こともできるが、このような(11148面が生じてい
ない溝となす場合においても、バッファ層α階をエピタ
キシャル成長して行くときに、前述したように自然発生
的に(111)B結晶面よりなる斜面(13a)が生じ
てくる。したがってその後動作層a4を形成し、その厚
さを制御すれば高精度に部分(14A)と(14B)の
厚さの設定ができ、再現性良く均一で優れた特性を有す
る目的とするFBTを得ることができる。
When using the manufacturing method of the present invention, a groove a4 is formed in the substrate aυ, which is shown by the broken line with the symbol (5) in FIG. 5 so that the (111) B crystal plane exists in advance. 5. Although it is possible to form a groove shape in which the (111) B plane exists in advance, even when forming a groove shape in which the (11148 plane does not exist), when epitaxially growing the α-level buffer layer, , as mentioned above, the slope (13a) consisting of the (111)B crystal plane is naturally generated.Therefore, if the active layer a4 is then formed and its thickness is controlled, the part (14A) can be formed with high precision. (14B) thickness can be set, and the desired FBT having uniform and excellent characteristics with good reproducibility can be obtained.

尚、上述した例においては、ゲート部を形成する部分が
斜面として生じるようにした場合であるが5例えば第5
図に示すようK 、Qa−As化合物半導体基板aυと
して(111)B面に切り出された、即ちその主面が(
111)B結晶面を有する基板となしてその主面のソー
ス及びドレインに対応する部分に、(111) B主面
を有する部分の幅Wが例えば1μm程度となるようにそ
の両側に数μmの幅を有し、深さ1μm程度の溝霞及び
Iをエツチングして。
Incidentally, in the above example, the part forming the gate part is formed as a slope;
As shown in the figure, a K, Qa-As compound semiconductor substrate aυ is cut out on the (111)B plane, that is, its main surface is (
A substrate having a (111) B crystal plane is formed on the main surface of the portion corresponding to the source and drain, and a few micrometers are formed on both sides of the substrate so that the width W of the portion having the (111) B main surface is, for example, about 1 μm. Etch grooves and I with a width and a depth of about 1 μm.

この溝08及び09間に(111) B結晶面が臨む主
面(lla)を残し置き、その後例えばN形の化合物半
導体よりなる動作層α4を前述したと同様のMOCVD
法によって形成することもできる。この場合においても
溝081及びα値には(1111B結晶面以外の面が臨
んでいることによって、ここにおけるエピタキシャル成
長速度が早いためKことにおいてこの溝t18及び(1
1を埋め込むように厚い動作層部分(14A)が形成さ
れるも、これら間の主面(lla)の(111)B結晶
面が臨む部分においては薄いエピタキシャル層部分(1
4B)が生じる。従ってこの部分(14B)1忙前述し
たと同様にショットキバリヤを形成するゲート電極−を
被着し、゛溝II及び0上の部分(14A)にそれぞれ
ソース電極aη及びtteをオーミックに被着すること
によって同様に動作層α尋の厚さの大なる部分(14A
)間の距離、従ってソース及びドレイン間の距離が例え
ば1μmを有し、ソース及びドレイン領域にあって広が
り抵抗の小さい即ちソース及びドレイン間抵抗の小さい
FETを得ることができるO 又、ある場合は第5図に示すように1部分(14A)の
両側をエツチングするメサエッチングを行ってソース及
びドレイ/電極←η及びαeをそれぞれメサの周面に渡
ってオーミックに被着する構成と−jることもできる。
The main surface (lla) facing the (111) B crystal plane is left between the grooves 08 and 09, and then the active layer α4 made of, for example, an N-type compound semiconductor is formed by MOCVD similar to that described above.
It can also be formed by law. In this case as well, since the epitaxial growth rate here is fast because grooves 081 and α value face surfaces other than the (1111B crystal plane), grooves t18 and (1
Although a thick active layer portion (14A) is formed so as to bury the active layer 1, a thin epitaxial layer portion (14A) is formed in the portion facing the (111)B crystal plane of the main surface (lla) between them.
4B) occurs. Therefore, a gate electrode forming a Schottky barrier is deposited on this portion (14B) in the same manner as described above, and source electrodes aη and tte are ohmically deposited on portions (14A) above grooves II and 0, respectively. Similarly, a large part of the thickness of the working layer α fathom (14A
), and therefore the distance between the source and the drain, is, for example, 1 μm, and it is possible to obtain an FET with a small spreading resistance in the source and drain regions, that is, a small resistance between the source and the drain. As shown in FIG. 5, mesa etching is performed to etch both sides of one portion (14A), and the source and drain/electrode ←η and αe are each ohmically deposited over the circumferential surface of the mesa. You can also do that.

上述したように本発明製法においては、動作層のエピタ
キシャル成長前において一部に(111) B結晶面が
存在し、これに隣接して他の結晶面が存在するような形
状となし置くことによって、その後これら結晶面上に形
成した動作層α4として。
As described above, in the manufacturing method of the present invention, before the epitaxial growth of the active layer, a (111) B crystal plane exists in a part of the active layer, and other crystal planes exist adjacent to this. Thereafter, an active layer α4 was formed on these crystal planes.

(111) B結晶面として成長した部分においては薄
く、他部においては厚い動作層を形成するものであって
、このようにすること罠よって前述したようにチャンネ
ル長を充分小さくでき、しかもソース及びドレイン間抵
抗の縮減化を図ることができた高周波特性の良いFET
を得ることができるのである。
(111) The active layer is thin in the part grown as the B crystal plane and thick in the other parts.By doing this, the channel length can be made sufficiently small as mentioned above, and the source and FET with good high frequency characteristics that reduces drain-to-drain resistance
can be obtained.

尚上述した例においては、本発明をショットキバリヤゲ
ート形FETに適用した場合であるが、PN接合による
ゲートを有するFETを初めとして各種半導体装置にお
いてその動作層が優れた結晶性を有しこれが厚さの大な
る部分及び小なる部分との両者を具備することが望まれ
る各種半導体装置を得る場合に本発明を適用して同様の
効果を奏せしめ得ることは明らかであろう。
In the above example, the present invention is applied to a Schottky barrier gate type FET, but in various semiconductor devices including FETs having a gate formed by a PN junction, the active layer has excellent crystallinity and is thick. It will be obvious that the present invention can be applied to obtain a similar effect when obtaining various semiconductor devices that are desired to have both a large portion and a small portion.

【図面の簡単な説明】[Brief explanation of drawings]

第11〜第3図はそれぞれ従来の電界効果トランジスタ
の路線的断面図、第4図〜第6図はそれぞれ本発明製法
によって得た電界効果トランジスタの路線的断面図であ
る。 (11)は化合物半導体基板、α尋は動作層、(14A
)はその厚さの大なる部分、  (14B)は厚さの小
なる部分、09はゲート電極、αe及びα力はドレイン
及びソース電極である。 511図 第2図 第3図
11 to 3 are cross-sectional views of conventional field effect transistors, and FIGS. 4 to 6 are cross-sectional views of field effect transistors obtained by the manufacturing method of the present invention. (11) is a compound semiconductor substrate, α fathom is an active layer, (14A
) is the large thickness part, (14B) is the small thickness part, 09 is the gate electrode, αe and α force are the drain and source electrodes. 511Figure 2Figure 3

Claims (1)

【特許請求の範囲】 化合物半導体基板の表面に(111)B結晶面と他の結
晶面とが隣接して現われるようにする工程と。 その後上記化合物半導体基板の表面に化合物半導体の熱
分解気相成長を行って(111) B結晶面における結
晶成長速度が比較的小さいことによって該結晶面に比較
的薄い成長層を形成する工程を有する半導体装置の製法
[Scope of Claims] A step of causing a (111)B crystal plane and another crystal plane to appear adjacent to each other on the surface of a compound semiconductor substrate. Thereafter, there is a step of performing pyrolytic vapor phase growth of a compound semiconductor on the surface of the compound semiconductor substrate (111) to form a relatively thin growth layer on the crystal plane B since the crystal growth rate on the crystal plane is relatively low. Manufacturing method for semiconductor devices.
JP12724082A 1982-07-21 1982-07-21 Manufacture of semiconductor device Granted JPS5918678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12724082A JPS5918678A (en) 1982-07-21 1982-07-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12724082A JPS5918678A (en) 1982-07-21 1982-07-21 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5918678A true JPS5918678A (en) 1984-01-31
JPH0328816B2 JPH0328816B2 (en) 1991-04-22

Family

ID=14955176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12724082A Granted JPS5918678A (en) 1982-07-21 1982-07-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5918678A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278881A (en) * 1985-09-30 1987-04-11 Sharp Corp Semiconductor device
JPS62119915A (en) * 1985-11-20 1987-06-01 Fujitsu Ltd Semiconductor device
JPS6482676A (en) * 1987-09-25 1989-03-28 Nec Corp Iii-v compound semiconductor field-effect transistor and manufacture thereof
JPH0482275A (en) * 1990-01-31 1992-03-16 Res Dev Corp Of Japan Semiconductor device and manufacture thereof
JP2011134971A (en) * 2009-12-25 2011-07-07 Denso Corp Semiconductor device and method of manufacturing the same
JP2015523733A (en) * 2012-07-13 2015-08-13 レイセオン カンパニー Gallium nitride devices with low ohmic contact resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278881A (en) * 1985-09-30 1987-04-11 Sharp Corp Semiconductor device
JPS62119915A (en) * 1985-11-20 1987-06-01 Fujitsu Ltd Semiconductor device
JPS6482676A (en) * 1987-09-25 1989-03-28 Nec Corp Iii-v compound semiconductor field-effect transistor and manufacture thereof
JPH0482275A (en) * 1990-01-31 1992-03-16 Res Dev Corp Of Japan Semiconductor device and manufacture thereof
JP2011134971A (en) * 2009-12-25 2011-07-07 Denso Corp Semiconductor device and method of manufacturing the same
JP2015523733A (en) * 2012-07-13 2015-08-13 レイセオン カンパニー Gallium nitride devices with low ohmic contact resistance

Also Published As

Publication number Publication date
JPH0328816B2 (en) 1991-04-22

Similar Documents

Publication Publication Date Title
US4404732A (en) Self-aligned extended epitaxy mesfet fabrication process
EP0551110B1 (en) Compound semiconductor devices
JPS6215863A (en) Manufacture of self-aligning metal-semiconductor fet
JP2002541660A (en) Method for manufacturing semiconductor device
DE102016124207A1 (en) TRADITIONAL INSULATION AREAS AND METHOD FOR THEIR EDUCATION
US4503600A (en) Process for manufacturing a buried gate field effect transistor
JPS5918678A (en) Manufacture of semiconductor device
US4077111A (en) Self-aligned gate field effect transistor and method for making same
JPH0613411A (en) Field effect transistor and manufacture thereof
JPS6323666B2 (en)
US4569118A (en) Planar gate turn-off field controlled thyristors and planar junction gate field effect transistors, and method of making same
JPS6237890B2 (en)
JPS6122873B2 (en)
JPS6034073A (en) Manufacture of schottky gate type field-effect transistor
JPS60229375A (en) Manufacture of compound semiconductor device
JPH0360076A (en) Manufacture of vertical field effect transistor
JPS5986268A (en) Schotkky gate field effect transistor with modulated doping layer as operation layer
JPS5910591B2 (en) Method of manufacturing field effect transistor
JP2707436B2 (en) Method for manufacturing field effect transistor
JPS63198373A (en) Semiconductor device and its manufacture
JPS588590B2 (en) Method for manufacturing Schottky barrier gate field effect transistor
JPS6351677A (en) Semiconductor device provided with junction-type effect transistor
JP2616032B2 (en) Method for manufacturing field effect transistor
JPH05267276A (en) Etching method of ingap and manufacture of semiconductor device using the etching method
JPH0123955B2 (en)