JPS59184525A - Formation of pattern - Google Patents
Formation of patternInfo
- Publication number
- JPS59184525A JPS59184525A JP58059674A JP5967483A JPS59184525A JP S59184525 A JPS59184525 A JP S59184525A JP 58059674 A JP58059674 A JP 58059674A JP 5967483 A JP5967483 A JP 5967483A JP S59184525 A JPS59184525 A JP S59184525A
- Authority
- JP
- Japan
- Prior art keywords
- resist
- radiant ray
- thin film
- cyst
- film layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000015572 biosynthetic process Effects 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 239000010409 thin film Substances 0.000 claims abstract description 8
- 230000005855 radiation Effects 0.000 claims description 7
- 230000001360 synchronised effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 19
- 230000008569 process Effects 0.000 abstract description 10
- 238000006243 chemical reaction Methods 0.000 abstract description 8
- 239000010408 film Substances 0.000 abstract description 8
- 238000005530 etching Methods 0.000 abstract description 7
- 238000004132 cross linking Methods 0.000 abstract description 6
- 238000010494 dissociation reaction Methods 0.000 abstract description 3
- 230000005593 dissociations Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 230000001678 irradiating effect Effects 0.000 abstract description 3
- 238000000992 sputter etching Methods 0.000 abstract description 3
- 238000003379 elimination reaction Methods 0.000 abstract description 2
- 239000006185 dispersion Substances 0.000 abstract 1
- 208000031513 cyst Diseases 0.000 description 27
- 206010011732 Cyst Diseases 0.000 description 22
- 230000005469 synchrotron radiation Effects 0.000 description 15
- 239000004065 semiconductor Substances 0.000 description 11
- 238000012546 transfer Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 238000010884 ion-beam technique Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000012822 chemical development Methods 0.000 description 3
- 238000001259 photo etching Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000001994 activation Methods 0.000 description 2
- 238000010504 bond cleavage reaction Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、微細構造を有するLSI素子などの製造過
程において用いられているマスクパターンの大量転写に
好適なパターンの形成方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pattern forming method suitable for large-scale transfer of mask patterns used in the manufacturing process of LSI elements having fine structures.
従来のマスクパターンの転写方法を、半導体素子の作成
工程を例にとって第1図(a)〜(f)に基づいて順を
追って説明する。A conventional mask pattern transfer method will be explained step by step based on FIGS. 1(a) to 1(f), taking as an example the process of manufacturing a semiconductor element.
(1)素子作製に用いるシリコン等の半導体結晶基板1
上に酸化シリコン等の絶縁体層2を成長させる。(1) Semiconductor crystal substrate 1 such as silicon used for device fabrication
An insulator layer 2 such as silicon oxide is grown thereon.
(2)絶縁体層2上に、電子線あるいはX線など露光に
用いられる露光用ビーム5に感光する/シスト3を塗布
する(第1図(a)参照)。(2) A cyst 3 that is sensitive to an exposure beam 5 used for exposure such as an electron beam or an X-ray is coated on the insulating layer 2 (see FIG. 1(a)).
(3)Vシスト3上に転写用パターンを描画したマスク
4を置く。(3) Place the mask 4 on which the transfer pattern is drawn on the V cyst 3.
(4) マスク4側から、電子線、イオン線、紫外線
(X線)などの露光用ビーム5を照射する。この際、電
子線、イオン線、X線などの様に露光用ビーム5と大気
との相互作用が大きい場合には、高い真空状態に排気し
た真空装置6内で露光を行う(第1図(b)参照)。(4) An exposure beam 5 such as an electron beam, ion beam, or ultraviolet (X-ray) beam is irradiated from the mask 4 side. At this time, if the interaction between the exposure beam 5 and the atmosphere is large, such as with an electron beam, ion beam, or X-ray, exposure is performed in a vacuum device 6 evacuated to a high vacuum state (see Fig. 1). b)).
(5)露光した上記半導体結晶基板1を大気中にとり出
し、マスク4を外した後、化学的現像液7を作用させる
。この時、用いたレジスト3がポジ型であれば露光用ビ
ーム5との反応部分が、また、レジスト3がネガ型であ
れば露光用ビーム5との未反応部分が、それぞれ除去さ
れて、所望のパターンが転写される(第1図(c)参照
)0(6)半導体結晶基板1を再度真空装置6内に入れ
、イオン線などのエツチング用ビーム8な照射して、前
記工程(5)により/シスト3が除去された部分の絶縁
体層2をとり除く(第1図(a)参照)。(5) After the exposed semiconductor crystal substrate 1 is taken out into the atmosphere and the mask 4 is removed, a chemical developer 7 is applied. At this time, if the resist 3 used is a positive type, the part that has reacted with the exposure beam 5 is removed, and if the resist 3 is a negative type, the part that has not reacted with the exposure beam 5 is removed. (See FIG. 1(c)) 0(6) The semiconductor crystal substrate 1 is placed in the vacuum device 6 again and irradiated with an etching beam 8 such as an ion beam, and then the above step (5) is performed. The portion of the insulator layer 2 where the cyst 3 has been removed is removed (see FIG. 1(a)).
(7)前記工程(6)により絶縁体層2が除去され、下
地の半導体結晶基板1が14された箇所に、イオンイン
プランテーション、拡散などの方法により他元素を注入
し、半導体素子の活性化処理9を行う(第1図(e)参
照)。(7) Insulating layer 2 is removed in step (6) and the underlying semiconductor crystal substrate 1 is injected with other elements by methods such as ion implantation and diffusion to activate the semiconductor element. Process 9 is performed (see FIG. 1(e)).
(8) 残っているVシスト3をはく離液、あるいは
プラズマイオン照射等により除去する(第1図(f)参
照)。(8) The remaining V cysts 3 are removed using a stripping solution or plasma ion irradiation (see FIG. 1(f)).
上記(1)〜(8)の工程において、従来は、高い真空
度を要する電子線、イオン線、X線等の露光用ビーム5
による露光(第1図(b)参照)やエツチング用ビーム
8によるイオンビームエツチング(第1図(d)参照)
およびイオンインプランテーションなどの活性化処理9
(第1図(、)参照)の工程と、大気中での化学的現像
処理(第1図(C)。In the steps (1) to (8) above, conventionally, exposure beams such as electron beams, ion beams, and X-rays, which require a high degree of vacuum, are used.
(see Figure 1(b)) and ion beam etching with the etching beam 8 (see Figure 1(d)).
and activation treatment such as ion implantation9
(See Figure 1 (, )) and chemical development treatment in the atmosphere (Figure 1 (C)).
(f)参照)の工程とが共存しているため、真空排気の
観点から多大な煩雑さを伴っていた。また、Vシスト3
へのパターンの転写特性の面では、転写像の分解能が、
単にVシスト3と露光用ビーム5の反応特性だけではな
く、露光反応後の/シスト3と化学的現像液Iとの相互
作用特性に大きく影響されるため、現像だれ等の問題を
生じると同時に、/シスト3の評価2選択において複雑
さ。Since the step (see (f)) coexists with the process, it is very complicated from the viewpoint of evacuation. Also, V cyst 3
In terms of pattern transfer characteristics, the resolution of the transferred image is
It is not only affected by the reaction characteristics between the V cyst 3 and the exposure beam 5, but also by the interaction characteristics between the / cyst 3 and the chemical developer I after the exposure reaction, which may cause problems such as development dripping. ,/Cyst 3 evaluation 2 complexity in selection.
曖昧さ、また、種々の制限条件をもたらしていた。It also introduced ambiguity and various limitations.
この発明は、上述の点にかんがみてなされたもので、強
い強度を有するシンクロ)pン放射光なンジストに照射
し、Vシストを直接解離、脱離させて、上記のような問
題点を生み出す根本原因である化学現像工程を省略し、
さらに現在半導体製造工程で要求の高まっているプロセ
スのドライ化。This invention was made in view of the above-mentioned points, and it irradiates the V-cysts with synchro-pn synchrotron radiation having high intensity, directly dissociating and detaching the V-cysts, thereby causing the above-mentioned problems. Omitting the chemical development process, which is the root cause,
Furthermore, there is a growing demand for dry processes in the semiconductor manufacturing process.
真空内での一貫処理化を促進するパターン形成方法を提
供することを目的とする。以下、この発明の一実施例を
図面を用いて説明する。The object of the present invention is to provide a pattern forming method that facilitates consistent processing in a vacuum. An embodiment of the present invention will be described below with reference to the drawings.
シンクG7)Pン放射光は、紫外線、X線などの従来の
露光用ビームに比較し、輝度(単位時間。Sink G7) Pn synchrotron radiation has a higher brightness (unit time) than conventional exposure beams such as ultraviolet rays and X-rays.
単位立体角当りの放出エネルギー量)が数桁以上高く、
かつX線領域から紫外′IfM領域までの幅広い波長分
布を有している。このような従来のビームと異なる長所
を有するシンクロトロン放射光を高分子ンジストに照射
すると、単に/シスト分子鎖の切断、架橋反応だけでな
く、放射光により直接Vシスト高分子の解離、脱離反応
が起る。The amount of emitted energy per unit solid angle) is several orders of magnitude higher,
It also has a wide wavelength distribution from the X-ray region to the ultraviolet IfM region. When synchrotron radiation light, which has advantages different from conventional beams, is irradiated onto polymer cysts, it not only causes the scission and crosslinking reactions of cyst molecular chains, but also directly dissociates and detaches V-cyst polymers from the synchrotron radiation. A reaction occurs.
第2図はシンク−トロン放射光の照射により直接/シス
ト高分子の解離、脱離反応が起る一例を示す図である。FIG. 2 is a diagram showing an example in which dissociation and desorption reactions of direct/cyst polymers occur due to irradiation with synchtron radiation light.
同図において、縦軸は放射光を照射した際、/シストか
ら放出される二次電子の強度Hな示し、横軸はンジスト
に付与された放射光エネルギー総量E(7ンベア・秒:
便宜上、電子蓄積リングの蓄積電流×照射時間を単位と
して示した値)を示したものである。同図から明らかな
ように、放射光の単位時間あたりのエネルギー付与量が
大きい(同図X点から右側参照)場合には、Vシストか
らの二次電子強度は線型に増加する。In the figure, the vertical axis shows the intensity H of secondary electrons emitted from the cyst when irradiated with synchrotron radiation, and the horizontal axis shows the total amount of synchrotron radiation energy E (7 nba·sec:
For convenience, the value is expressed as the unit of storage current of the electron storage ring x irradiation time. As is clear from the figure, when the amount of energy imparted by the synchrotron radiation per unit time is large (see the right side from point X in the figure), the intensity of the secondary electrons from the V cyst increases linearly.
このンジスFからの二次電子強度変化はンジストの膜厚
変化、すなわち放射光によるンジスト高分子の直接解離
・脱離現像と対応していることが、タリステップを用い
たVシスト膜厚測定結果から明らかになっている。たと
えばVシストとして、EBR−9(束V、ポリトリフル
オロエチルα−り戸ルアクリV−))を用いた場合の膜
厚変化は、110A−aecの総照射量(便宜上、電子
蓄積リングの蓄積電流×照射時間を単位として示した値
)の時〜0.9μn1であった。The results of measuring the V cyst film thickness using Talystep show that this change in the intensity of secondary electrons from the cyst F corresponds to a change in the thickness of the cyst, that is, the direct dissociation and desorption development of the cyst polymer by synchrotron radiation. It has become clear from. For example, when EBR-9 (bundle V, polytrifluoroethyl α-ritoluacrylic V-) is used as V-cyst, the film thickness change is 110 A-aec total irradiation dose (for convenience, the accumulation of electron storage ring (value expressed in units of current x irradiation time) was ~0.9 μn1.
上記実施例においては、放射光を発生する電子蓄積リン
グの電子電流をできる限り高く保ち、高い輝度を有する
放射光を利用した光エツチング過程ニヨリ、マスクパタ
ーンをフジスト上に直接転写して所望の/シスト形状を
得ることが可能となる。In the above embodiment, the electron current of the electron storage ring that generates synchrotron radiation is kept as high as possible, and the mask pattern is directly transferred onto the fusist during a photo-etching process using synchrotron radiation with high brightness. It becomes possible to obtain a cyst shape.
Vシストによっては、光エッチングと同時に進行する分
子鎖架橋のために第3図(a)に示すように、わずかな
膜厚が残存することがある。同図において、1.2 f
i m膜厚のEBR−9の/シスト3について放射光照
射部に0.3μm膜厚の分子鎖架橋層(クロスリンク層
)10が残る場合がある。Depending on the V cyst, a slight film thickness may remain as shown in FIG. 3(a) due to molecular chain crosslinking that progresses simultaneously with photoetching. In the same figure, 1.2 f
Regarding the EBR-9/cyst 3 having a film thickness of i m, a molecular chain cross-linked layer (crosslink layer) 10 having a film thickness of 0.3 μm may remain in the synchrotron radiation irradiation area.
この場合は第3図(b)に示すように次の工程で、その
ままイオンエツチングを施せば、クロスリンク層10は
完全に除去され、しかも未照射部にはなお09μm膜厚
のレジスト3が残っている構造がえられる。従って継続
して開口部の基板をイオンエツチングする工程が何ら支
障なく行うことができ、クロスリンク層10によるわず
がな膜残りは実用上問題にならない。In this case, as shown in FIG. 3(b), if ion etching is performed in the next step, the crosslink layer 10 will be completely removed, and the resist 3 with a thickness of 0.9 μm will remain in the unirradiated area. You can get the structure that Therefore, the step of continuously ion etching the substrate in the opening can be performed without any problem, and the slight film remaining due to the crosslink layer 10 does not pose a practical problem.
上記実施例によれば、上述の様にす〆て真空内での一貫
したプロセスとしてパターン転写を行うことができるた
め、くり返し真空排気をする煩雑さから解放されて生産
効率の向上を期待できる。According to the above-described embodiment, pattern transfer can be performed as a consistent process in vacuum as described above, so that it is possible to eliminate the trouble of repeatedly evacuation and to improve production efficiency.
特に今後必要性が増すであろう三次元的構造を有する半
導体素子製造では、従来の方法に従えば真空排気操作に
伴う煩雑さもますます増加することになるのに対し、こ
の実施例では工程省略化の価値は一層高まるものと考え
られる。In particular, in the production of semiconductor devices with three-dimensional structures, which will become increasingly necessary in the future, if conventional methods were followed, the complexity associated with evacuation operations would increase, but this example omits the process. It is thought that the value of this technology will further increase.
また、従来の化学的現像過程では、/シスト高分子鎖の
切断、架橋に伴う現像速度変化を利用してエツチングを
行うため、露光用ビーム5(第1図)による励起された
一次電子による露光部周辺へのエネルギーの散逸が現像
だれを生じ、マスクパターンの転写分解能を高める上で
大きな問題となっていたのに対し、上記実施例の方法は
高いエネルギー密度を必要とするレジストのM離、脱離
反応を利用するものであり、第2図X点より左側に示す
ように、低いエネルギー密度ではtaエッヂングが検出
できない種度に押えられることから二次電子散逸部の現
像ダ/の効果をより低減できる。In addition, in the conventional chemical development process, since etching is performed by utilizing changes in development speed due to scission and crosslinking of cyst polymer chains, exposure by primary electrons excited by the exposure beam 5 (Figure 1) is performed. Dissipation of energy to the periphery of the area causes development sag, which is a major problem in improving the transfer resolution of the mask pattern.In contrast, the method of the above embodiment can reduce the M separation of the resist, which requires high energy density. This method utilizes an elimination reaction, and as shown on the left side of point It can be further reduced.
従って従来よりも微細なパターン転写が可能になる。Therefore, finer pattern transfer than before is possible.
上記の実施例では半導体結晶基板1を用いたが、これは
その他の基板であってもよい。また、/シスト3はポジ
型レジストに限らずネガ型レジスト、あるいは有機高分
子系膜等、要するに感放射線薄膜層であれば全く同様の
効果が得られる。Although the semiconductor crystal substrate 1 is used in the above embodiment, other substrates may be used. Furthermore, the /cyst 3 is not limited to a positive type resist, but can be a negative type resist, an organic polymer film, or the like, in short, the same effect can be obtained as long as it is a radiation-sensitive thin film layer.
なお、従来、紫外域に対する増感剤を添加したポリメチ
ルメタクリv−)(PMMA)にエキシマンーザ元を照
射してパターンを形成した例が報告されている(材原他
:応用物理52巻 1号(1983年)ps3)が、こ
の発明は増感剤を添加しない市販の感放射薄膜層に適用
でき、照射部分のほとんど全部が除去できる点で、全く
相違している。Incidentally, an example has been reported in which a pattern was formed by irradiating polymethyl methacrylate (PMMA) with a sensitizer for the ultraviolet region with an excimanzer source (Maihara et al.: Applied Physics Vol. 52, No. 1). (1983) ps3), but the present invention is completely different in that it can be applied to a commercially available radiation-sensitive thin film layer without the addition of a sensitizer, and almost all of the irradiated area can be removed.
以上詳細に説明したように、この発明に係るパターンの
形成方法は、基板表面に形成された感放射線薄膜層の所
望の箇所にシンクロトロン放射光を照射(−1感放射線
薄膜層を直接除去するようKしたので、従来のエツチン
グ方法で問題となった二次電子散逸部分の現像だれの効
果を低減でき、そのため従来よりも微細なパターン転写
が可能である。さらに、この発明は従来の現像液に対す
る反応特性も考え併せたレジストの評価から、単に放射
光に対する反応特性のみに着目すればよいレジスト評価
への道を開くものであり、実際のパターン転写工程で用
いられるレジストの選択上、融通性を高めることができ
る等の優れた利点を有する。As explained in detail above, the pattern forming method according to the present invention includes irradiating synchrotron radiation onto a desired location of the radiation-sensitive thin film layer formed on the surface of the substrate (directly removing the -1 radiation-sensitive thin film layer). As a result, it is possible to reduce the effect of development sagging in the secondary electron dissipation area, which was a problem with conventional etching methods, and it is therefore possible to transfer finer patterns than before.Furthermore, this invention This opens the way from evaluating resists that also consider their reaction characteristics to synchrotron radiation to simply focusing on their reaction characteristics to synchrotron radiation, providing greater flexibility in selecting resists used in the actual pattern transfer process. It has excellent advantages such as being able to increase the
第1図(a)〜(f)は従来の半導体素子の製造工程を
説明するための図、第2図はシンクロトロン放射光によ
る/シストの光エツチング現像の測定結果を示す図、第
3図(a)、 (b)はクロスリンクにより分子鎖架
橋層が存在する場合のパターン形成方法を説明するため
の図である。
図中、1は半導体結晶基板、2は絶縁体層、3はレジス
ト、4はマスク、5は露光用ビーム、6は真空装置、7
は化学的現像液、8はエツチング用ビーム、9は活性化
処理、10はクロスリンク第1図
(a)
(f)
第2図
第3図
(a) (b)Figures 1 (a) to (f) are diagrams for explaining the conventional manufacturing process of semiconductor devices, Figure 2 is a diagram showing measurement results of photoetching development of cysts using synchrotron radiation, and Figure 3 (a) and (b) are diagrams for explaining a pattern forming method when a molecular chain crosslinked layer is present due to crosslinks. In the figure, 1 is a semiconductor crystal substrate, 2 is an insulating layer, 3 is a resist, 4 is a mask, 5 is an exposure beam, 6 is a vacuum device, and 7
8 is a chemical developer, 8 is an etching beam, 9 is an activation process, and 10 is a cross link (Fig. 1 (a) (f)) Fig. 2 (a) (b)
Claims (1)
所望箇所にのみシンクロ)pン放射光を照射し、前記所
望Φ箇所のレジスト層を直接除去して所要のパターンを
形成することを特徴とするパターンの形成方法。A radiation-sensitive thin film layer formed on the surface of a substrate is irradiated with synchronized p-n radiation only at desired locations on the surface, and the resist layer at the desired Φ locations is directly removed to form a desired pattern. How to form a pattern.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58059674A JPS59184525A (en) | 1983-04-05 | 1983-04-05 | Formation of pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58059674A JPS59184525A (en) | 1983-04-05 | 1983-04-05 | Formation of pattern |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59184525A true JPS59184525A (en) | 1984-10-19 |
JPH0427686B2 JPH0427686B2 (en) | 1992-05-12 |
Family
ID=13119972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58059674A Granted JPS59184525A (en) | 1983-04-05 | 1983-04-05 | Formation of pattern |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59184525A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6833239B1 (en) * | 2020-10-28 | 2021-02-24 | 日本ゲームカード株式会社 | Paper leaf transport device |
-
1983
- 1983-04-05 JP JP58059674A patent/JPS59184525A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0427686B2 (en) | 1992-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7527918B2 (en) | Pattern forming method and method for manufacturing a semiconductor device | |
US5041361A (en) | Oxygen ion-beam microlithography | |
US4298803A (en) | Process and apparatus for making fine-scale patterns | |
US20020064958A1 (en) | Exposure method | |
US4101782A (en) | Process for making patterns in resist and for making ion absorption masks useful therewith | |
US6864144B2 (en) | Method of stabilizing resist material through ion implantation | |
JP3965213B2 (en) | 3D etching process | |
JPS59184525A (en) | Formation of pattern | |
JPS6399526A (en) | Method for compensating proximity effect of electron beam | |
US4476216A (en) | Method for high resolution lithography | |
KR900006284B1 (en) | Pre-exprosure method for increased sensitivity in high contrast resist development | |
JPH04151668A (en) | Formation of pattern | |
JPS6013432B2 (en) | Method for forming Al or Al alloy pattern | |
JPS6043824A (en) | Manufacture of semiconductor device | |
JPH0442533A (en) | Forming method for microscopic pattern | |
US4357417A (en) | High resolution lithography using protons or alpha particles | |
Mader | Microstructuring in semiconductor technology | |
Heuberger et al. | Open silicon stencil masks for demagnifying ion projection | |
JP2894772B2 (en) | X-ray window manufacturing method | |
JPS60216555A (en) | Manufacture of semiconductor device | |
RU2072644C1 (en) | Method of formation of structures in microlithography | |
JPH0147009B2 (en) | ||
KR970009856B1 (en) | Fine patterning apparatus using electron beam grid | |
JPS61110427A (en) | Formation of pattern | |
KR100219399B1 (en) | A manufacturing method photomask of semiconductor |