JPS59184456A - Formation of sealed lead storage battery - Google Patents

Formation of sealed lead storage battery

Info

Publication number
JPS59184456A
JPS59184456A JP58058150A JP5815083A JPS59184456A JP S59184456 A JPS59184456 A JP S59184456A JP 58058150 A JP58058150 A JP 58058150A JP 5815083 A JP5815083 A JP 5815083A JP S59184456 A JPS59184456 A JP S59184456A
Authority
JP
Japan
Prior art keywords
formation
electrolyte
amount
forming
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58058150A
Other languages
Japanese (ja)
Other versions
JPH0472352B2 (en
Inventor
Kenji Kobayashi
健二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58058150A priority Critical patent/JPS59184456A/en
Publication of JPS59184456A publication Critical patent/JPS59184456A/en
Publication of JPH0472352B2 publication Critical patent/JPH0472352B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the overcharge resistant performance of a sealed lead storage battery, in which unformed positive and negative plates are subjected to formation in a container, by carrying out the formation in two stages. CONSTITUTION:The first formation in which a positive plate influencing the overcharge performance is principally formed and the second formation in which the amount and the concentration of electrolyte is adjusted to given levels during and at the end are separately carried out. In the first formation, it is preferred that a small amount of dilute sulfuric acid with a low concentration is used as electrolyte to be poured. It has been found that a good result is obtained by adjusting the formation efficiency (content of lead oxide in an active material) to over 50%. In the second formation, oxygen gas is not absorbed by the negative electrode in the early stage, and formation of the positive and the negative plates is completed by adding electrolyte consisting of dilute sulfuric acid with a higher concentration than that poured in the first formation so that given amount and concentration of electrolyte is achieved at the end of the formation. As a result, the overcharge resistant performance is improved, a high formation efficiency of the positive plate is achieved, and a high capacity is obtained in the early stage.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電解液量が少なく制限され、遊離したフリー
な電解液のない密閉形鉛蓄電池の電槽内化成方法に関す
るものである0 従来例の構成とその問題点 密閉形鉛蓄電池は、充電時に正極より発生する酸素ガス
を負極に吸収させることで電解液の減少を防いでいる0
−そこで負極には酸素を吸収できる様に、気層(酸素)
および液層(電解液)が同時に接触しなければならない
。この状態では負極は充電と同時に放電をしているため
、未化成極板を≧、化成することはできない。そのため
一般に密閉形鉛蓄電池は正極活物質を二酸化鉛に、負極
活物質を鉛にそれぞれ変化させる化成工程を電池組立以
前に電槽外で行なっている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for chemically forming a sealed lead-acid battery in a container in which the amount of electrolyte is limited and there is no free electrolyte. Structure and its problems Sealed lead-acid batteries prevent electrolyte loss by absorbing oxygen gas generated from the positive electrode into the negative electrode during charging.
−Therefore, a gas layer (oxygen) is added to the negative electrode so that it can absorb oxygen.
and the liquid layer (electrolyte) must be in contact at the same time. In this state, the negative electrode is charging and discharging at the same time, so it is impossible to chemically form the unformed electrode plate. Therefore, in sealed lead-acid batteries, a chemical conversion process is generally performed outside the battery case to change the positive electrode active material to lead dioxide and the negative electrode active material to lead, respectively, before battery assembly.

しかし、電槽外で化成することは、活物質の酸化劣化を
防止する即用乾燥処理をともなうこと、さらに電池組立
後に活性化のための充電を必要とするなど電池製造工程
が煩雑となり、コスト高となっていた。
However, chemical conversion outside the battery case requires immediate drying treatment to prevent oxidative deterioration of the active material, and requires charging for activation after battery assembly, making the battery manufacturing process complicated and costly. It was high.

これらの問題を解決する方法として電槽内で極板化成す
ることが提案された0 すなわち、未化成の正極板と負極板および電解液を保持
吸収できるガラスマットセパレータからなる極板群を電
槽内に収容するとともに、電解液゛ゝ      を負
極が酸素ガスを吸収しない量だけ加えて充電する。負極
が化成を完了した後、さらに充電することより正極の化
成が完了し、同時に電解液を所させて負極の酸素ガス吸
収能力を高くしたものである。
As a way to solve these problems, it has been proposed to chemically form the electrode plates inside the battery container.In other words, a group of electrode plates consisting of an unformed positive electrode plate, a negative electrode plate, and a glass mat separator that can hold and absorb electrolyte is placed inside the battery container. At the same time, it is charged by adding electrolyte solution in an amount that does not cause the negative electrode to absorb oxygen gas. After the negative electrode has completed its formation, the formation of the positive electrode is completed by further charging, and at the same time, the electrolyte is applied to increase the oxygen gas absorption capacity of the negative electrode.

これによ)、電槽外で化成した場合に必要な、即用乾燥
処理および電池組立後の充電が不必要となった。このこ
とは量産化の上で非常に利点のあることであったが、こ
のような製造法で作られた電池は正極格子と正極活物質
との界面に不働態膜を生じて過充電に弱く、早期に容量
が低下することがわかった。
As a result, immediate drying treatment and charging after battery assembly, which are required when chemical conversion is performed outside the battery case, are no longer necessary. Although this was a great advantage in terms of mass production, batteries made using this manufacturing method were susceptible to overcharging due to the formation of a passive film at the interface between the positive electrode lattice and the positive electrode active material. It was found that the capacity decreases early.

発明の目的 本発明は正極、負極とも未化成極板を用いて電槽内化成
を行なう密閉形鉛蓄電池において、化成方法を改良する
ととで耐過充電性能を向上させることを目的とする。
OBJECTS OF THE INVENTION The object of the present invention is to improve the overcharge resistance of a sealed lead-acid battery in which both the positive and negative electrodes are chemically formed in the battery case using unformed plates, by improving the chemical formation method.

発明の構成 本発明は、過充電性能に影響を及ぼす正極板を主に化成
する第10化成工程と、負極板の化成および化成終了時
に所定の電解液量および濃度とする第2の化成工程とを
分離させ、第1の化成工程においては電解液量を少なく
し、好ましくは少量低濃度の希硫酸中で化成全行なうこ
とを特徴とするものである1、 従来性なわれている電槽内化成を行なった密閉形鉛蓄電
池は、耐過充電性能が悪く、電池容量(10時間率)の
15〜20倍の過充電電気量により、容量が低下するこ
とがわかった。これは、正極板の劣化によるもので、正
極格子と正極活物質との間の密着性が低下するため起こ
ることが判明した。この原因は化成終了時に所定の電解
液量および濃度とするため、高濃度の希硫酸電解液ヲ多
庇に加えて化成全行なうためである。このような化成を
行なうと、正極格子と活物質との密着性が低下し、正極
格子周囲部分が放電した場合に不働態膜を形成して放電
できなくなると堆定できる。
Structure of the Invention The present invention comprises a tenth chemical formation step in which the positive electrode plate, which affects overcharge performance, is mainly chemically formed, and a second chemical formation step in which the negative electrode plate is formed and a predetermined electrolyte amount and concentration are achieved at the end of the formation. It is characterized by separating the electrolyte, reducing the amount of electrolyte in the first chemical conversion step, and preferably performing the entire chemical conversion in a small amount of low-concentration dilute sulfuric acid.1. It has been found that sealed lead-acid batteries subjected to chemical formation have poor overcharging resistance, and their capacity decreases due to an overcharged electricity amount of 15 to 20 times the battery capacity (10 hour rate). It has been found that this is due to deterioration of the positive electrode plate, and occurs because the adhesion between the positive electrode grid and the positive electrode active material decreases. The reason for this is that in order to obtain a predetermined amount and concentration of electrolyte at the end of chemical formation, a high concentration dilute sulfuric acid electrolyte is added to the entire chemical formation. If such chemical formation is performed, the adhesion between the positive electrode lattice and the active material decreases, and when a portion around the positive electrode lattice is discharged, a passive film is formed and deposits occur, making it impossible to discharge.

そのため第1の化成工程においては、注液する電解液は
少量で、しかも低濃度の希硫酸が好ましく、第1の化成
工程での正極板の化成進捗度(活物質中の二酸化鉛含有
量)を50%以上にすると効果的であることがわかった
。また、第1の化成工程の電解液は、注液後に正、負極
板と反応して硫酸鉛となるため、液量が少なく、濃度が
低い場合には化成中の電解液はほとんど中性に近くなり
、鉛の溶解度が上昇し、サルフェー/ヨンとなるので内
部短絡を起こし易い。しかし、硫酸すl−IJウム又は
硫酸マグネシウムからなる中性塩’((0,1〜5重量
%電解液に加えることによりこれらを防止することがで
きる。またその中性塩の添加濃度は0.1重量%以下で
は効果はなく、5重量%以上では放電容量が低下するの
で好捷しくない。
Therefore, in the first chemical formation step, the amount of electrolyte injected is preferably a small amount, and dilute sulfuric acid with a low concentration is preferable. It was found that it is effective to increase the ratio to 50% or more. In addition, the electrolyte in the first chemical formation process reacts with the positive and negative electrode plates to form lead sulfate after injection, so if the amount of liquid is small and the concentration is low, the electrolyte during formation will be almost neutral. As the lead becomes closer to the lead, the solubility of lead increases and becomes sulfur/yon, which tends to cause internal short circuits. However, these can be prevented by adding a neutral salt consisting of sulfuric acid or magnesium sulfate to the electrolytic solution at 0.1 to 5% by weight. If it is less than .1% by weight, there is no effect, and if it is more than 5% by weight, the discharge capacity decreases, which is not preferable.

第2の化成工程は、第10化成工程の後に引続き行なう
。第1の化成工程においては正極の化成進捗度は50%
以上であるが、負極板は少ない電解液状態のため正極よ
り発生した酸素ガス全吸収して化成進捗度は60%前後
で停止する。そこで第2の化成工程においては、負極で
の酸素ガス吸収が化成初期には行なげ峯かつ、化成終了
時に所定の電解液量および濃度となるように、第10化
成工程で注液したよりも高濃度の希硫酸からなる電解液
を加えて正極および負極板の化成を完了させる。
The second chemical conversion step is performed continuously after the tenth chemical conversion step. In the first chemical formation step, the positive electrode formation progress is 50%
As described above, the negative electrode plate absorbs all the oxygen gas generated from the positive electrode due to the low electrolyte state, and the conversion progress rate stops at around 60%. Therefore, in the second chemical formation step, the amount of the electrolyte is lower than that injected in the tenth chemical formation step, so that oxygen gas absorption at the negative electrode is not carried out at the early stage of formation, and at the end of formation, the electrolyte has a predetermined amount and concentration. An electrolytic solution consisting of highly concentrated dilute sulfuric acid is added to complete the formation of the positive and negative electrode plates.

実施例の説明 未化成の正極板と、負極板および電解Me保持吸収でき
るガラスマットセパレータからなる極板群を、電槽内に
収容した1o時間率容量3 Ah  の電池の電槽化成
方法の具体例を以下に述べる。
DESCRIPTION OF EMBODIMENTS Specification of a method for forming a battery case for a battery having a 1o hour rate capacity of 3 Ah, in which a group of electrode plates consisting of an unformed positive electrode plate, a negative electrode plate, and a glass mat separator capable of retaining and absorbing electrolytic Me is housed in a battery case. An example is given below.

(第1の化成工程) 濃度1Q重量%の希硫酸16゜5mlに硫酸ナトリウム
0.39を加えた電解液を電槽内に注入し、電池内に外
部より酸素が入らないように升をした後、0.3Aの電
流で26時間通電し、化成を行なう。この際の正極板の
化成進捗度はおよそ70%であった。
(First chemical conversion step) An electrolytic solution prepared by adding 0.39 sodium sulfate to 16.5 ml of dilute sulfuric acid with a concentration of 1Q% by weight was injected into the battery cell, and a square was placed to prevent oxygen from entering the battery from the outside. Thereafter, a current of 0.3 A is applied for 26 hours to perform chemical conversion. At this time, the degree of chemical formation of the positive electrode plate was approximately 70%.

(第2の化成工程) 第1の化成工程終了後に電槽内の電解液に濃度46重量
%の希硫酸1a、9m(l を加え、第1の化成工程と
同様に弁を施した後、0.3Aの電流で15時間通電し
、化成全行なう。
(Second chemical conversion step) After the first chemical conversion step, 9 mL of dilute sulfuric acid 1a, 46% by weight was added to the electrolytic solution in the container, and after applying a valve in the same manner as in the first chemical conversion step, A current of 0.3 A was applied for 15 hours to complete the chemical formation.

この第1の化成工程と、第2の化成工程ヲ、電ることに
より、電槽化成は完了する。化成完了後に希硫酸電解液
は濃度41゜5重量%液量27m4に\ 調整されていた。この電解液量は遊離したフリーな電解
液のない状態である。
By performing this first chemical conversion step and the second chemical conversion step, the battery container formation is completed. After completion of chemical formation, the dilute sulfuric acid electrolyte was adjusted to a concentration of 41.5% by weight and a liquid volume of 27m4. This amount of electrolyte is free of loose and free electrolyte.

次に本発明の化成方法による電池(A)と、従来の化成
方法による電池(B)の過充電性能の結果を以下に示す
Next, the results of the overcharge performance of the battery (A) produced by the chemical formation method of the present invention and the battery (B) produced by the conventional chemical formation method are shown below.

本発明の化成方法による電池は、前記実施例で示した1
o時間率で3 Ah  の容量である。
The battery produced by the chemical conversion method of the present invention is as follows.
o hourly rate and a capacity of 3 Ah.

一方、従来の電槽化成は濃度31重量%の希硫酸36.
3m(l に、硫酸す11ウム金加えて注液した後、電
池内に外部より酸素が入らないように弁を施した後、0
.3−Aで4Q時間充電したものである。充電後の電解
液量および濃度は本発明と同様となった。本発明の化成
方法による電qAおよび従来の化成方法の電池Bを0.
050(0,154)で過充電を行なった時の容量の変
化を図に示す。
On the other hand, conventional tank chemical treatment uses dilute sulfuric acid with a concentration of 31% by weight.
After adding 11 um gold sulfate to 3 ml (l) and injecting the solution, a valve was installed to prevent oxygen from entering the battery from the outside, and the temperature was 0.
.. The battery was charged at 3-A for 4Q hours. The amount and concentration of electrolyte after charging were the same as those of the present invention. The charge qA obtained by the chemical conversion method of the present invention and the battery B obtained by the conventional chemical conversion method were set to 0.
The figure shows the change in capacity when overcharging is performed at 050 (0,154).

なお容量は過充電量25Ah 毎に0.20 (o、e
A )で放電し、電圧が10.5Vに低下するまでの放
電持続時間をもとに測定した。この結果より本発明の化
成方法は従来の化成方法に比較しきわめて耐過充電性能
が向上していることがわかった。また正極板の化成進捗
度が高く、初期に高容量が得られることがわかった。
The capacity is 0.20 (o, e
Measurements were made based on the discharge duration until the voltage decreased to 10.5V after discharging at A). From these results, it was found that the chemical conversion method of the present invention has significantly improved overcharge resistance performance compared to the conventional chemical conversion method. It was also found that the positive electrode plate had a high degree of chemical formation and a high capacity could be obtained in the initial stage.

発明の効果 本発明の化成方法によれば、従来電槽内化成では弱かっ
た嗣過充電性能をきわめて向上させることができ、かつ
密閉形電池の製造工程の簡素化によりコストの低減も可
能としたものである。
Effects of the Invention According to the chemical formation method of the present invention, it is possible to significantly improve the overcharging performance, which was weak in conventional chemical formation in a battery case, and it is also possible to reduce costs by simplifying the manufacturing process of sealed batteries. It is something.

【図面の簡単な説明】 図は本発明の化成方法による電池人と、従来の化成方法
による電油Bとの過充電による容量変化を示す。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名通り
定電気t (、qh+
BRIEF DESCRIPTION OF THE DRAWINGS The figure shows a change in capacity due to overcharging between a battery cell formed by the chemical formation method of the present invention and an electric oil B formed by the conventional chemical formation method. Name of agent: Patent attorney Toshio Nakao and one other person Constant electricity t (, qh+

Claims (1)

【特許請求の範囲】 (1)電解液の吸収保持体をなすセパレータで正、負極
板間を隔離し、かつ電解液量が少なく制限された密閉形
鉛蓄電池の化成方法であって、極板群を収容した電槽内
に、所定の濃度および液量に満たない希硫酸電解液を注
入して極板群に電解液を浸透させる第1の注液工程と、
充電電流を流して化成する第1の化成工程と、次に前成
し、化成終了時に所定の電解液量および濃度とする第2
の化成工程とを有することを特徴とするl形鉛蓄電池の
化成方法。 (2)第1の化成工程において、極板群中の正極板の化
成進捗度が一60係以上である特許請求の範囲第1項記
載の密閉形鉛蓄電池の化成方法。 (3)第一1の注液工程の電解液注入量が、容量比で化
成終了時の電解液の30〜70チである特許請求の範囲
第1項あるいは第2項記載の密閉形鉛蓄電池の化成方法
0 (4)第1の注液工程で注液する電解液濃度が第2の注
液工程で注液する電解液より低い濃度である特許請求の
範囲第1項〜第3項のいずれかに記載の密閉形鉛蓄電池
の化成方法0 (6)第1の注液工程における注液電解液に硫酸ナトリ
ウムまだは硫酸マグネシウムを0.1〜6重量係加えた
特許請求の範囲第1〜第4項のいずれかに記載の密閉形
蓄電池の化成方法。
[Scope of Claims] (1) A method for forming a sealed lead-acid battery in which positive and negative electrode plates are isolated by a separator serving as an electrolyte absorbing and holding body, and in which the amount of electrolyte is limited to a small amount, which A first injection step of injecting a dilute sulfuric acid electrolyte of less than a predetermined concentration and liquid amount into the battery container containing the electrode plate group, and infiltrating the electrolyte into the electrode plate group;
A first chemical formation process in which a charging current is applied to form a chemical substance, and a second chemical formation process in which a preforming process is performed and a predetermined electrolyte amount and concentration are achieved at the end of the chemical formation process.
1. A method for forming an L-type lead-acid battery, comprising the steps of: (2) The method for forming a sealed lead-acid battery according to claim 1, wherein in the first forming step, the progress of forming the positive electrode plate in the electrode plate group is 160 parts or more. (3) The sealed lead-acid battery according to claim 1 or 2, wherein the amount of electrolyte injected in the first injection step is 30 to 70 g of the electrolyte at the end of chemical formation in terms of capacity ratio. (4) The electrolytic solution injected in the first injecting step has a lower concentration than the electrolytic solution injected in the second injecting step. Method for forming a sealed lead-acid battery according to any one of the above claims 0 (6) Claim 1, in which 0.1 to 6 weight of sodium sulfate or magnesium sulfate is added to the injected electrolyte in the first injecting step. ~The method for chemically forming a sealed storage battery according to any one of Items 4 to 4.
JP58058150A 1983-04-01 1983-04-01 Formation of sealed lead storage battery Granted JPS59184456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58058150A JPS59184456A (en) 1983-04-01 1983-04-01 Formation of sealed lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58058150A JPS59184456A (en) 1983-04-01 1983-04-01 Formation of sealed lead storage battery

Publications (2)

Publication Number Publication Date
JPS59184456A true JPS59184456A (en) 1984-10-19
JPH0472352B2 JPH0472352B2 (en) 1992-11-18

Family

ID=13075956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58058150A Granted JPS59184456A (en) 1983-04-01 1983-04-01 Formation of sealed lead storage battery

Country Status (1)

Country Link
JP (1) JPS59184456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216839A (en) * 2001-01-17 2002-08-02 Furukawa Battery Co Ltd:The Battery container chemical treatment method of lead storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216839A (en) * 2001-01-17 2002-08-02 Furukawa Battery Co Ltd:The Battery container chemical treatment method of lead storage battery
JP4601834B2 (en) * 2001-01-17 2010-12-22 古河電池株式会社 Battery case formation method for lead acid battery

Also Published As

Publication number Publication date
JPH0472352B2 (en) 1992-11-18

Similar Documents

Publication Publication Date Title
Hullmeine et al. Effect of previous charge/discharge history on the capacity of the PbO2/PbSO4 electrode: the hysteresis or memory effect
JPH10188963A (en) Sealed lead-acid battery
JPS59184456A (en) Formation of sealed lead storage battery
JP4224729B2 (en) Sealed lead-acid battery and method for manufacturing the same
JPS5894770A (en) Leakage-less closed type lead battery
JPS59184457A (en) Formation of sealed lead storage battery
JPH0815075B2 (en) Method for forming sealed lead-acid battery
JPH01302661A (en) Lead acid battery and its manufacture
JPS62145664A (en) Manufacture of sealed lead storage battery
JPH01149376A (en) Sealed lead-acid battery
JPS59157966A (en) Sealed type lead storage battery
JPS59138062A (en) Lead storage battery
JPH05151987A (en) Manufacture of sealed type lead acid battery
JPH03163755A (en) Clad type sealed lead-acid battery
JPS5929366A (en) Manufacture of paste type electrode for lead storage battery
JPH10188964A (en) Sealed lead-acid battery
JPS62193060A (en) Sealed lead storage battery
JPH10134810A (en) Manufacture of lead-acid battery
JPS63187572A (en) Sealed lead acid battery
JPS6321761A (en) Sealed lead-acid battery
JPS63146358A (en) Enclosed lead storage battery
JPS61151972A (en) Paste type lead storage battery
JPH01117270A (en) Manufacture of anode plate of lead-acid battery
JPS6065458A (en) Manufacture of electrode for lead storage battery
JPH0221574A (en) Enclosed type lead storage battery