JPS5929366A - Manufacture of paste type electrode for lead storage battery - Google Patents

Manufacture of paste type electrode for lead storage battery

Info

Publication number
JPS5929366A
JPS5929366A JP57140203A JP14020382A JPS5929366A JP S5929366 A JPS5929366 A JP S5929366A JP 57140203 A JP57140203 A JP 57140203A JP 14020382 A JP14020382 A JP 14020382A JP S5929366 A JPS5929366 A JP S5929366A
Authority
JP
Japan
Prior art keywords
grid
lead
paste
phosphoric acid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57140203A
Other languages
Japanese (ja)
Inventor
Keiichi Watanabe
啓一 渡辺
Katsuhiro Takahashi
勝弘 高橋
Naoto Hoshihara
直人 星原
Sadao Fukuda
貞夫 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57140203A priority Critical patent/JPS5929366A/en
Publication of JPS5929366A publication Critical patent/JPS5929366A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress deterioration of initial capacity in slow discharge cycle, by immersing a grid in aqueous solution containing hydrogen perioxide and phosphoric acid then applying lead paste. CONSTITUTION:Lead paste is applied on a grid immersed in aqueous solution containing hydrogen peroxide and phosphoric acid, then dried, cured and formation charged to produce a protection layer of fine phosphoric compound on the surface of the grid, and when it is charged during the cycle it will suppress diffusion of sulfuric acid to the grid interface thereby pH in the vicinity of the interface will approach to the neutral region to form alpha-PbO2 layer having high electron conductivity, slow reaction and high binding force with high probability thus to maintain binding with the active substance. Prior to reaction of the portion near to the grid, beta-PbO2 on the plate surface or at the fine hole inlet will react to be covered with lead sulfate to complete discharge where the protection layer in the vicinity of the grid will not concern to the charging reaction considerably thus to maintain the tightness and conductivity between the grid and active substance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鉛蓄電池のペースト式電極の製造法に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing paste-type electrodes for lead-acid batteries.

従来例の構成とその問題点 鉛蓄電池の電極製法として最も多く用いられるペースト
式は、旧来、鉛や鉛合金を格子状の鋳型で鋳造し、少な
くとも小規模の数をまとめたパネルにペーストを塗着乾
燥して電極を構成してきた0とくに、近年、メンテナン
スフリー化の要求から各種合金が探索されるにしたがっ
て、なかには、鉛−カルシウム系合金のように、鋳造性
が悪く、著しく能率が低下するものがあることもあいま
って、鋳造性には無関係に、能率のよい、新しい製法が
探索されてきた。
Conventional structure and problems The paste method, which is the most commonly used electrode manufacturing method for lead-acid batteries, traditionally involves casting lead or lead alloy in a lattice mold, and applying paste to at least a small number of panels. In recent years, as various alloys have been searched for due to the demand for maintenance-free materials, some alloys, such as lead-calcium alloys, have poor castability and significantly reduce efficiency. Coupled with the availability of such materials, new and efficient manufacturing methods have been searched for, regardless of castability.

そこで登場してきたのがエクスパンドメタルや、通称パ
ンチングメタルといわれる穿孔板をグリッドに用い、連
続帯状のままで、ペーストを塗着する方法である。とこ
ろが、これらの製法にも実際にはいくつかの弱点があっ
て、これら解決すべき課題の多くは、用いるグリッドの
基板そのものが鋳造に比較して、きわめて平滑であり、
グリッド化するための切口もやはり鋳造品のように微細
な凹凸を表面に持たないことに起因する場合が多い。
Therefore, a method has been developed that uses a perforated plate, commonly known as expanded metal or perforated metal, as a grid and applies the paste in a continuous strip. However, these manufacturing methods actually have some weaknesses, and many of these problems to be solved are that the grid substrate itself used is extremely smooth compared to casting,
This is often due to the fact that the cuts used to form the grid do not have fine irregularities on the surface unlike cast products.

このような構造においては、塗着するペーストと、これ
ら平滑なグリッド表面との結合が不十分となるO 上記のような構造では、今捷で鋳造格子の場合に見られ
なかった新だな現象が発生することが′iフかった。つ
捷り、従来の鋳造式では、寿命は、t’tとんとか、活
物質の微細化による軟化脱落が主原因であったのに対し
て、これら連続帯状グリッドでは、活物質が微細化する
よりもはるか短期に著しい容量の劣化が生じる傾向にあ
る。この現象は、とくに、o、1Cあるいは0.20と
いう比較的低率放電で、しかも容量一杯の深い放電を含
むサイクル(緩放電サイクル)で起こりやすく、また、
この現象は正極側で起こる。この現象は、恐らく充放電
の繰り返し時に、グリッド、活物質がそれぞれ膨張、収
縮を受け、結合の弱いグリ、ノ)゛と活物質の間に、亀
裂を生じるのみでなく、その結合界面の近傍に比較的、
高濃度の硫酸が侵入し、界面に強力な不働態層が形成さ
れることによるものと思われる。
In such a structure, the bond between the applied paste and these smooth grid surfaces is insufficient. In the above structure, a new phenomenon that has not been observed in the case of cast grids has been observed. It was unlikely that this would occur. In the conventional casting method, the main cause of the service life was the softening and falling off due to the fineness of the active material, whereas with these continuous strip grids, the active material became finer. Significant capacity deterioration tends to occur in a much shorter period of time. This phenomenon is particularly likely to occur in a cycle (slow discharge cycle) that involves a relatively low discharge rate of o, 1C or 0.20, and a deep discharge to full capacity.
This phenomenon occurs on the positive electrode side. This phenomenon is probably caused by the expansion and contraction of the grid and active material, respectively, during repeated charging and discharging, which not only causes cracks between the weakly bonded grid and the active material, but also causes cracks in the vicinity of the bonding interface. relatively,
This is thought to be due to the intrusion of high concentration sulfuric acid and the formation of a strong passive layer at the interface.

発明の目的 本発明は、格子処理条件の改良により、緩放電サイクル
における早期容量劣化を抑制することを目的とする。
OBJECTS OF THE INVENTION The present invention aims to suppress early capacity deterioration during slow discharge cycles by improving lattice processing conditions.

発明の構成 本発明は、格子に鉛ペーストを塗着する前に、格子を過
酸化水素とリン酸とを含む水溶液に浸漬することを特徴
とする。ここで、前言己水溶液への浸漬前に、格子の前
処理をしておくの75′−好ましい。
Structure of the Invention The present invention is characterized in that, before applying the lead paste to the grid, the grid is immersed in an aqueous solution containing hydrogen peroxide and phosphoric acid. Here, it is preferred that the grid be pretreated before being immersed in the aqueous solution.

このような方法によって処理された格子に、鉛ペースト
を塗着して、乾燥、熟成、(1成充電と工程を経て鉛電
池とする。このようにしてできた鉛蓄電池の詳細な機構
については、推I11の域を口)ないが、おそらく、本
発明にもとづいてイし成充電を行うと、格子と活物質と
の界面に、優先的に、反応性は乏しいが、導通性を持ち
、格子への弓条い結合力を有する鉛あるいは鉛と1ノン
酸の化合′1勿などの層が形成され、これが一種の保護
層となる。その上に反応性に富むが格子への結合ブJカ
ニ弱いβ−PbO2が生成するとしても寿命の劣イヒカ
玉担l?1illさ′I′I。
Lead paste is applied to the lattice treated in this way, dried, aged, and made into a lead battery through a single charge process.For the detailed mechanism of the lead acid battery made in this way, Although this is beyond the scope of suggestion I11), it is probably that when charge is carried out based on the present invention, the interface between the lattice and the active material preferentially has poor reactivity but conductivity. A layer of lead or a compound of lead and 1-nonacid, which has an arcuate bonding force to the lattice, is formed and serves as a kind of protective layer. On top of that, even if β-PbO2, which is highly reactive but has weak binding to the lattice, is produced, it has a poor lifespan. 1illsa'I'I.

ると考えられる。It is thought that

このように格子表面に、緻密な1ノンイし合1勿などの
上記保護層を生成した構造では、さらにその上VC充て
んされているペースト活物質を化成充電したり、サイク
ル中での充電を行うとき、格子界面への硫酸拡散を抑制
する働きがあるので、界面近傍のpHは、中性領域に近
くなり、その層の内側で、仮に格子が酸化されるとして
も、電子電導性は良いが、反応性に乏しく、結合力に富
むa −PbO。
In such a structure in which the above-mentioned protective layer, such as a dense 1-Non-I-Non-Ni-Ni-Nonzu layer, is formed on the surface of the lattice, the paste active material filled with VC may be chemically charged or charged during the cycle. When the lattice is oxidized, the pH near the interface is close to the neutral region because the sulfuric acid diffusion to the lattice interface is suppressed, and even if the lattice is oxidized inside the layer, the electron conductivity is good, but , a-PbO, which has poor reactivity and rich bonding strength.

の層が形成される確率が高く、活物質との結合を保つこ
とになる。上記の状況下では、格子と活物質との界面近
傍は、反応性に乏しいa−Pb02あるいは他、のリン
酸が関与する鉛の化合物であるので、結局、格子近傍が
反応する前に極板表面あるいは微孔入口のβ−PbO2
が優先的に反応して、硫酸鉛に覆われ、放電を終了する
ことになる。そこ人、格子近傍の保護層の化合物は、そ
れ自体放電反応に大きく関与せず、従って、格子と活物
質との密着性、導電性を維持するものと考えられる。
There is a high probability that this layer will be formed, and the bond with the active material will be maintained. Under the above situation, the area near the interface between the lattice and the active material is a lead compound involving a-Pb02 or other phosphoric acid, which has poor reactivity, so that the electrode plate may eventually react before the area near the lattice reacts. β-PbO2 on the surface or at the entrance of micropores
reacts preferentially, becomes covered with lead sulfate, and ends the discharge. It is believed that the compound in the protective layer near the lattice itself does not significantly participate in the discharge reaction, and therefore maintains the adhesion and conductivity between the lattice and the active material.

従来、早期容量劣化抑制又は寿命向上を目的として、電
解液硫酸中にリン酸を添加したという例はあり、容量化
抑制の効果はあるが、それと同時Vこ、初期容量の低下
、急放電特性の低下も伴うため、起動特性が中心である
自動車用鉛蓄電池には向かない。上記のような現象にな
る理由は、推測の域を出ないが、次のように考えられる
。充電中に、格子と活物質近傍だけでなく、活物質表面
全体にわたって優先的に反応性の乏しいα−Pb022
 やリン酸と鉛の化合物の層が形成されるためと考えら
れる。つまり、サイクルにおける容量劣化抑制に対して
は、効果は認められるが、初期容量の低下と、急放電容
量の低下も伴うということになる。
In the past, there have been examples of adding phosphoric acid to the sulfuric acid electrolyte for the purpose of suppressing early capacity deterioration or improving lifespan, and this has the effect of suppressing capacity increase, but at the same time, it causes problems such as V, decrease in initial capacity, and rapid discharge characteristics. It is not suitable for automotive lead-acid batteries, where starting characteristics are the main concern. Although the reason for the above phenomenon is beyond speculation, it is thought to be as follows. During charging, α-Pb022, which has poor reactivity, is preferentially distributed not only in the lattice and the vicinity of the active material but also over the entire surface of the active material.
This is thought to be due to the formation of a layer of phosphoric acid and lead compounds. In other words, although it is effective in suppressing capacity deterioration during cycling, it is accompanied by a decrease in initial capacity and a decrease in rapid discharge capacity.

本発明によれば、格子と活物質界面近傍だけに不活性な
導電層を生成させるため、急放電容量の低下を招かずに
緩放電サイクル寿命を大幅に向上することができる。さ
らに、リン酸・過酸化水素水混合液に浸漬する前に、格
子表面の酸化物の膜を除去して、リン化合物の生成する
反りがスムーズに進むように格子表面を洗浄する前処理
を行うと、さらに一層効果がある。
According to the present invention, since an inactive conductive layer is generated only near the interface between the lattice and the active material, the slow discharge cycle life can be significantly improved without causing a decrease in rapid discharge capacity. Furthermore, before immersing in the phosphoric acid/hydrogen peroxide mixture, a pretreatment process is performed to remove the oxide film on the lattice surface and clean the lattice surface so that the warping caused by phosphorus compounds proceeds smoothly. And it's even more effective.

なお、この現象は、とくにグリッド表面に、強い不働態
酸化膜の形成が起とシやすい鉛−カルシラム系合金また
平滑金属を出発点とするエフろバンドメタルや穿孔板の
場合に顕著である。したがって、以下の実施例について
は、一般に、多く用いられる鉛−カルシウム−スズ合金
を用いた場合について示すことにする。
This phenomenon is particularly noticeable in the case of E-Froband metal or perforated plates made from lead-calcylum alloys or smooth metals, which tend to form a strong passive oxide film on the grid surface. Therefore, the following examples will be described using lead-calcium-tin alloy, which is commonly used.

実施例の説明 横幅135膿、高さ110岨、厚さ1.4咽の鉛−カル
シウム系合金のエクスパンドグリッドを30チの硝酸水
溶液に1o秒間浸漬しただけのものを(A)、30%の
硝酸水溶液に10秒間浸漬後さらに15%過酸化水素水
と30%リン酸水溶液との体積比1:1の混合液に10
秒間浸漬したものを(B)、16係の過酸化水素水と3
0%のリン酸水溶液との体積比1:1の混合液に10秒
間浸漬しただけのものを(C)、いずれの液にも浸漬し
ないそのifのものt (D)として、その後ペースト
を充てんして、常法により熟成、化成を行った。電池の
極板群構成は、上記の正極板4枚と、従来の負極板6枚
である。電解液は、比重1.280の希硫酸である。
Description of Examples An expanded grid made of a lead-calcium alloy with a width of 135 mm, a height of 110 mm, and a thickness of 1.4 mm was immersed for 10 seconds in a 30 mm nitric acid aqueous solution (A), and a 30% After immersing in a nitric acid aqueous solution for 10 seconds, it was further immersed in a 1:1 volume ratio mixture of 15% hydrogen peroxide and 30% phosphoric acid aqueous solution.
(B), 16 parts hydrogen peroxide solution and 3 parts soaked for 2 seconds.
(C) is a sample that has been immersed for 10 seconds in a 1:1 volume ratio mixture with 0% phosphoric acid aqueous solution, and (D) is a sample that is not immersed in any liquid, and then filled with paste. Then, ripening and chemical conversion were performed using conventional methods. The electrode plate group configuration of the battery is the above-mentioned four positive electrode plates and six conventional negative electrode plates. The electrolyte is dilute sulfuric acid with a specific gravity of 1.280.

試験条件は、−15℃の温度のもとで、300Aの定電
流低温急放電を行い、端子電圧1 、OV/(!/しま
で放電することとし、そのときの放電時間をみた。また
、8A/セルの電流で電池電圧が1.75V/七しにな
るまで放電し、充電は4A/セルで、前回放電容量の1
20チまで行い、これを1サイクルとして充放電をくり
・返した(緩放電サイクル)。
The test conditions were to conduct constant current low temperature rapid discharge at 300A at a temperature of -15°C until the terminal voltage was 1, OV/(!/), and to observe the discharge time at that time. Discharge at a current of 8A/cell until the battery voltage reaches 1.75V/cell, and charge at 4A/cell, 1 of the previous discharge capacity.
This was carried out up to 20 cycles, and charging and discharging were repeated with this as one cycle (slow discharge cycle).

低温急放電試験の結果については、第1図に示すように
、放電持続時間について、(5)、 (B) 、 (C
)共p)に比較して、はとんど大きな低減はみとめられ
ず、格子だけの処理は、急放電特性にほとんど影響を与
えないということがわかる。
Regarding the results of the low-temperature rapid discharge test, as shown in Figure 1, the discharge duration is (5), (B), (C
) and p), no significant reduction was observed, and it can be seen that the treatment of only the lattice has almost no effect on the rapid discharge characteristics.

また、緩放電サイクル試験の結果については、第2図に
示すように、■は最も早期に劣化し、はとんど同時に(
〜が劣化する。(qは相当サイクル寿命があり、さらに
(B)は(qよりさらにサイクル寿命があることがわか
る。この実験より、硝酸で前処理を行い、格子表面を洗
浄した後、硼酸化水素とリン酸との混合液に浸漬するの
が最も効果が大きいことがわかる。硝酸によって、前処
理をせずに混合液に浸漬すると、効果は少しおちる。こ
れは、格子表面に酸化物の膜が付いたままでは、過酸化
水素水やリン酸と格子合金との反応が阻害されがちのた
め、期待される格子表面の化合物の生成量が少ないため
と考えられる。
In addition, regarding the results of the slow discharge cycle test, as shown in Figure 2, ■ deteriorates earliest, and almost simultaneously (
~ deteriorates. It can be seen that (q has a considerable cycle life, and that (B) has an even longer cycle life than (q). From this experiment, after pretreatment with nitric acid and cleaning the lattice surface, hydrogen borate and phosphoric acid It can be seen that immersion in a mixed solution with nitric acid has the greatest effect. If immersed in a mixed solution without pretreatment with nitric acid, the effect is slightly reduced. This is thought to be due to the fact that if left as is, the reaction between the hydrogen peroxide solution or phosphoric acid and the lattice alloy tends to be inhibited, so the expected amount of compounds on the lattice surface to be produced is small.

なお、実施例においては、エクスパンドグリッドを使用
したペースト式極板について述べたが、本発明の効果は
この実施例に限らず、格子がパンチングメタル、さらに
は鋳造メタルであっても、同様の効果が得られる。
In the embodiment, a paste-type electrode plate using an expanded grid was described, but the effects of the present invention are not limited to this embodiment, and the same effect can be obtained even if the grid is made of punched metal or cast metal. is obtained.

発明の効果 以上のように、本発明は鉛蓄電池のとぐに合理化を目指
して開発されたエクスパンドメタルやパンチングメタル
をグリッドに用いる電池において、これらグリッドが有
する平滑表面性に関連する緩放電時、早期容量劣化抑制
に極めて有効である。
Effects of the Invention As described above, the present invention has been developed with the aim of immediately streamlining lead-acid batteries, and has been developed in batteries using expanded metal or punched metal for the grid. This is extremely effective in suppressing capacity deterioration.

【図面の簡単な説明】[Brief explanation of drawings]

第・1図は低温急放電試験の放電電圧と放電持続時間の
関係を示す図、第2図は緩放電サイクル試験のサイクル
と容量維持率との関係を示す図である0
Figure 1 is a diagram showing the relationship between discharge voltage and discharge duration in a low-temperature rapid discharge test, and Figure 2 is a diagram showing the relationship between cycles and capacity retention rate in a slow discharge cycle test.

Claims (3)

【特許請求の範囲】[Claims] (1)格子を過酸化水素とリン酸を含む水溶液に浸漬し
、しかる後鉛ペーストを塗着することを特徴とする鉛蓄
電池用ペースト式電極の製造法。
(1) A method for producing a paste-type electrode for a lead-acid battery, which comprises immersing a grid in an aqueous solution containing hydrogen peroxide and phosphoric acid, and then applying lead paste.
(2)前処理として格子を洗浄する工程を有する特許請
求の範囲第1項記載の鉛蓄電池用ペースト式電極の製造
法。
(2) The method for manufacturing a paste-type electrode for a lead-acid battery according to claim 1, which comprises a step of cleaning the grid as a pretreatment.
(3)前記前処理が格子を硝酸水溶液で洗浄することか
らなる特許請求の範囲第2項記載の鉛蓄電池用ペースト
式電極の製造法。
(3) The method for manufacturing a paste-type electrode for a lead-acid battery according to claim 2, wherein the pretreatment comprises cleaning the grid with an aqueous nitric acid solution.
JP57140203A 1982-08-11 1982-08-11 Manufacture of paste type electrode for lead storage battery Pending JPS5929366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57140203A JPS5929366A (en) 1982-08-11 1982-08-11 Manufacture of paste type electrode for lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57140203A JPS5929366A (en) 1982-08-11 1982-08-11 Manufacture of paste type electrode for lead storage battery

Publications (1)

Publication Number Publication Date
JPS5929366A true JPS5929366A (en) 1984-02-16

Family

ID=15263313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57140203A Pending JPS5929366A (en) 1982-08-11 1982-08-11 Manufacture of paste type electrode for lead storage battery

Country Status (1)

Country Link
JP (1) JPS5929366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1614927A1 (en) 2004-07-09 2006-01-11 Nissan Motor Co., Ltd. Vehicle roof structure with dampening bracket
CN108630902A (en) * 2018-03-28 2018-10-09 天能电池集团有限公司 A kind of chloride plate manufacturing process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1614927A1 (en) 2004-07-09 2006-01-11 Nissan Motor Co., Ltd. Vehicle roof structure with dampening bracket
CN108630902A (en) * 2018-03-28 2018-10-09 天能电池集团有限公司 A kind of chloride plate manufacturing process
CN108630902B (en) * 2018-03-28 2021-06-29 天能电池集团股份有限公司 Manufacturing process of lead storage battery pole plate

Similar Documents

Publication Publication Date Title
JPS5929366A (en) Manufacture of paste type electrode for lead storage battery
JPS6127066A (en) Grid for lead-acid battery and its manufacture
JPS61124052A (en) Manufacture of pole plate for lead storage battery
JPS6216506B2 (en)
JPH11312533A (en) Manufacture of sealed lead-acid battery
JPS58115775A (en) Lead-acid battery
JPH0569263B2 (en)
JPH04345756A (en) Manufacture of lead storage battery electrode
JPH1064530A (en) Manufacture of electrode plate for lead-acid battery
JPH01302661A (en) Lead acid battery and its manufacture
JPS61142668A (en) Manufacture of lead storage battery
KR100217786B1 (en) Manufacturing method of lead storage battery
JPS59138063A (en) Lead storage battery
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPS5960965A (en) Manufacture of lead-acid battery
JPS59138062A (en) Lead storage battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPH05325950A (en) Manufacture of lead-acid battery of negative electrode absorbing sealed type
SU694920A1 (en) Method of the manufacture of current lead for a lead storage battery
JPH08115718A (en) Manufacture of lead-acid battery
JPS607059A (en) Manufacture of positive plate for sealed lead storage battery
JPS58209063A (en) Manufacture of plate for lead-acid battery
JPH01107462A (en) Manufacture of anode absorbing type sealed lead-acid battery
JPH11111275A (en) Manufacture of plate for lead-acid battery
JPH10106574A (en) Sealed lead-acid battery