JPH01117270A - Manufacture of anode plate of lead-acid battery - Google Patents

Manufacture of anode plate of lead-acid battery

Info

Publication number
JPH01117270A
JPH01117270A JP62276959A JP27695987A JPH01117270A JP H01117270 A JPH01117270 A JP H01117270A JP 62276959 A JP62276959 A JP 62276959A JP 27695987 A JP27695987 A JP 27695987A JP H01117270 A JPH01117270 A JP H01117270A
Authority
JP
Japan
Prior art keywords
anode plate
active substance
base board
current
immediate use
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62276959A
Other languages
Japanese (ja)
Inventor
Toshiyuki Matsumura
敏之 松村
Tadashi Yoneda
米田 忠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP62276959A priority Critical patent/JPH01117270A/en
Publication of JPH01117270A publication Critical patent/JPH01117270A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To restrain the growth of a high resistance body at a boundary between a base board and active substance and to keep the performance of immediate use at a high level for a long period of time by forming with intermittent application of a current so that a cell voltage becomes a specified value after applying a current of a specific ratio with respect to a theoretical capacity of anode plate active substance. CONSTITUTION:Electrode plates finished with charging are water-rinsed, dried, and stored with separators interposed therebetween in a group of electrodes in a sealed case as a lead-acid battery of an immediate use type. During the storage, however, the anode plate develops grid oxidation due to active substances and a high resistance body produced at the boundary between a base board and the active substance reduces the immediate use performance of the battery. To prevent this, formation is performed with an intermittent weak current so that a cell voltage becomes 2.2-2.3V after applying a current 200% of a theoretical capacity of the anode active substance. As a result, a compact PbO2 layer is formed on the base board surface to restrict the growth of the high resistance body at the base board-active substance boundary of the anode plate during the storage so that the immediate use performance can be kept at a high level for a long period of time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鉛蓄電池陽極板の製造方法の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to an improvement in the manufacturing method of a lead-acid battery anode plate.

従来の技術 従来即用式鉛蓄電池は、陽極板および陰極板を化成し、
水洗・乾燥後セパレータを使用して極板群として電槽に
収納して密封保存し、使用時に電解液を注入する電池で
ある。即用式鉛蓄電池に必要とされる性能は、注液後数
分で自動車のエンジンを始動させるに充分な電圧と容量
を有することであり、特に、電圧の確保が重要である。
Conventional technology Conventional ready-to-use lead-acid batteries have chemically formed anode plates and cathode plates.
After washing and drying, the battery is sealed and stored in a battery case using a separator as a group of electrode plates, and then filled with electrolyte when used. The performance required of a ready-to-use lead-acid battery is that it has enough voltage and capacity to start an automobile engine within a few minutes after being injected, and securing the voltage is especially important.

以後、注液後の放電電圧性能を即用性能とする。即用式
鉛蓄電池は、保存中に陽極板の基板−活物質界面での高
抵抗体の生成により即用性能が徐々に低下する。即用性
能の低下は、温度や電池内の水分により加速される。そ
のため、性能の低下を抑制するために、電池を低温で保
管する方法や、電池内の水分を少なくする方法が採用さ
れている。
Hereinafter, the discharge voltage performance after injection will be considered as the immediate performance. The ready-to-use performance of a ready-to-use lead-acid battery gradually deteriorates during storage due to the formation of a high resistance material at the substrate-active material interface of the anode plate. The decline in ready-to-use performance is accelerated by temperature and moisture in the battery. Therefore, in order to suppress the decline in performance, methods have been adopted to store batteries at low temperatures and to reduce the amount of moisture inside the batteries.

発明が解決しようとする問題点 即用式鉛蓄電池は、充電済の陽極板および陰極板を水洗
・乾燥して電槽にセパレータを使用して極板群として収
納し密封している。しかし、陽極板は、保存中活物質に
よる格子の酸化が起、こり、基板−活物質界面に高抵抗
体が生成する。
Problems to be Solved by the Invention In a ready-to-use lead-acid battery, charged anode plates and cathode plates are washed with water, dried, and then stored as a group of plates in a battery case using a separator and sealed. However, during storage, the lattice of the anode plate is oxidized by the active material, resulting in stiffness and formation of a high resistance element at the substrate-active material interface.

この反応速度は、温度及び水分により加速されるが、基
板表面の酸化被膜の組成の影響を大きく受け、酸化被膜
中に酸化数の低い物質が多い場合、早期に即用性能の低
下を招くという欠点を有していた。
This reaction rate is accelerated by temperature and moisture, but is greatly affected by the composition of the oxide film on the surface of the substrate, and if the oxide film contains many substances with low oxidation numbers, the ready-to-use performance will quickly deteriorate. It had drawbacks.

化或は、格子表面から始まり、次に極板表面から内部へ
と進行する。しかし、基板表面の一部がpbo、化する
とその場所から表面に向って化成が進行するため、化成
終期においても酸化被膜中に低級酸化物が存在する場合
がある。そのため第2図に示す化成時の電流パターンの
様に、化成終期に断続的に休止を行い、未化成の低級酸
化物を硫酸鉛化し化成を容易にする方法がある。ただし
、第2図の電流パターンは12Ahの陽極板1枚を化成
する時の一例であり、化成電流は1.5Aで、陽極板活
物質の理論容量の200%(1,5Aで16h)通電し
たあと1時間づつ3回休止を行っている。これにより、
基板表面の酸化被膜および活物質の低級酸化物をpbo
、化することができる。しかし、休止中の陽極板の電位
はpbo、とpbso、の平衡電位と等しく、休止中に
生成したPb5O,は、休止中にpbo、化することな
く化成状態が悪い場合や休止時間が長い場合にはpbs
o 、は安定化し、その後化成(充電)してもそのまま
残存する。この様な状態の極板を使用した電池は、保存
中の即用性能が早期に低下する。
The process begins at the grating surface and then progresses inward from the plate surface. However, when a part of the substrate surface becomes pbo, the chemical conversion progresses from that location toward the surface, so lower oxides may be present in the oxide film even at the final stage of chemical formation. Therefore, as shown in the current pattern during chemical formation shown in FIG. 2, there is a method in which the process is intermittently paused at the end of chemical formation, and the unformed lower oxide is turned into lead sulfate to facilitate chemical formation. However, the current pattern in Figure 2 is an example when forming one 12Ah anode plate, and the forming current is 1.5A, which is 200% of the theoretical capacity of the anode plate active material (16 hours at 1.5A). After that, I took three breaks of one hour each. This results in
The oxide film on the substrate surface and the lower oxide of the active material are removed by pbo.
, can be converted into However, the potential of the anode plate during rest is equal to the equilibrium potential of pbo and pbso, and the Pb5O generated during rest does not change to pbo during rest. pbs for
o is stabilized and remains as it is even after subsequent chemical formation (charging). A battery using an electrode plate in such a state quickly loses its ready-to-use performance during storage.

問題点を解決するための手段 本発明は上記の点に鑑み、陽極板活物質の理論容量の2
00%通電後の化成途中に、断続的に、セル電圧が2.
2〜2.3Vになる微少電流で化成するものである。
Means for Solving the Problems In view of the above points, the present invention solves the problem by reducing the theoretical capacity of the anode plate active material to 2.
During chemical formation after 00% energization, the cell voltage intermittently dropped to 2.
Chemical formation is performed using a minute current of 2 to 2.3V.

作用 基板表面にコンパクトなpbo、の層が形成され保存中
の陽極板の基板−活物質界面の高抵抗体の生成が加速さ
れることな(、即用性能が長期間高いレベルに保たれる
A compact PBO layer is formed on the surface of the working substrate, which prevents the acceleration of the formation of high resistance at the substrate-active material interface of the anode plate during storage (and keeps the immediate performance at a high level for a long time). .

実施例 36 B 20系鉛蓄電池用陽極板(12Ah)を第1
図に示す電流パターンで化成した。a部における微少電
流値によりセル電圧を変化させた陽極板を作製した。こ
の時の電解液すの時点比重は、20℃換算で1ρ60、
温度は30℃である。これらの基板を用いた電池を作製
し60℃で7月保存した後の即用性能を調べた。即用性
能は0℃で150日で放電した時の5秒目電圧であり、
その結果を第2図に示す。放電方向(セル電圧が低い)
の場合は初期より即用性能が低下している。また、充電
方向も電池圧が高くなると保存後の即用性能が低下した
Example 36 B The anode plate (12Ah) for 20 series lead acid battery was
Chemical formation was performed using the current pattern shown in the figure. An anode plate was produced in which the cell voltage was changed depending on the minute current value in part a. The specific gravity of the electrolyte at this time is 1ρ60 at 20℃,
The temperature is 30°C. Batteries using these substrates were prepared and stored at 60° C. for July, and then their ready-to-use performance was examined. Immediate performance is the voltage at the 5th second when discharged for 150 days at 0℃,
The results are shown in FIG. Discharge direction (low cell voltage)
In the case of , the ready-to-use performance has deteriorated from the initial stage. In addition, in the charging direction, as the battery pressure increased, the ready-to-use performance after storage decreased.

発明の効果 上述したように、本発明によれば基板表面の酸化被膜の
pbo、化率を向上することにより、陽極板基板−活物
質界面の高抵抗体の成長が抑制され、即用性能が長期間
高いレベルに保たれる等工業的価値極めて大なるもので
ある。
Effects of the Invention As described above, according to the present invention, by improving the pbo, conversion rate of the oxide film on the substrate surface, the growth of a high resistance element at the anode plate substrate-active material interface is suppressed, and the ready-to-use performance is improved. It has great industrial value as it can be maintained at a high level for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による化成時における電流パターンを示
す説明図、第2図は第1図におけるb部の時のセル電圧
と60℃で7日間保存した後の即用性能の関係を示す曲
線図で、第3図は従来の化成時における電流パターンの
一例を示す説明図である。 ¥1図 時間(1′L) 第3図 時間(h)
Figure 1 is an explanatory diagram showing the current pattern during chemical formation according to the present invention, and Figure 2 is a curve showing the relationship between the cell voltage at section b in Figure 1 and the ready-to-use performance after storage at 60°C for 7 days. In the figure, FIG. 3 is an explanatory diagram showing an example of a current pattern during conventional chemical formation. ¥1 Figure Time (1'L) Figure 3 Time (h)

Claims (1)

【特許請求の範囲】[Claims] 鉛蓄電池用陽極板の化成工程において、陽極板活物質の
理論容量の200%通電後の化成途中に断続的にセル電
圧が2.2〜2.3Vなる微少電流で化成することを特
徴とする鉛蓄電池陽極板の製造方法。
In the chemical formation process of anode plates for lead-acid batteries, the process is characterized in that during formation after 200% of the theoretical capacity of the anode plate active material is energized, chemical formation is carried out intermittently with a minute current that produces a cell voltage of 2.2 to 2.3V. A method for producing a lead-acid battery anode plate.
JP62276959A 1987-10-30 1987-10-30 Manufacture of anode plate of lead-acid battery Pending JPH01117270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62276959A JPH01117270A (en) 1987-10-30 1987-10-30 Manufacture of anode plate of lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62276959A JPH01117270A (en) 1987-10-30 1987-10-30 Manufacture of anode plate of lead-acid battery

Publications (1)

Publication Number Publication Date
JPH01117270A true JPH01117270A (en) 1989-05-10

Family

ID=17576792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62276959A Pending JPH01117270A (en) 1987-10-30 1987-10-30 Manufacture of anode plate of lead-acid battery

Country Status (1)

Country Link
JP (1) JPH01117270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151657A (en) * 2005-12-01 2007-06-21 Matsushita:Kk Hanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151657A (en) * 2005-12-01 2007-06-21 Matsushita:Kk Hanger

Similar Documents

Publication Publication Date Title
JPH01117270A (en) Manufacture of anode plate of lead-acid battery
JPH09289020A (en) Positive plate for lead-acid battery and its manufacture
JPS58115775A (en) Lead-acid battery
JPH0793135B2 (en) Lead acid battery and manufacturing method thereof
JP3475650B2 (en) Manufacturing method of current collector for lead-acid battery
JP3458594B2 (en) Current collector for lead-acid battery, method of manufacturing the same, and electrode plate using the same
JPS62145664A (en) Manufacture of sealed lead storage battery
JP2556056B2 (en) Manufacturing method of sealed lead-acid battery
JPS59138062A (en) Lead storage battery
JPS61142668A (en) Manufacture of lead storage battery
JPS5960965A (en) Manufacture of lead-acid battery
JPH0410181B2 (en)
JP2964555B2 (en) Battery storage method for lead-acid batteries
JPS59186254A (en) Method for manufacture of lead storage battery
JPH10134810A (en) Manufacture of lead-acid battery
JPS5929366A (en) Manufacture of paste type electrode for lead storage battery
JPH11273666A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPH04345756A (en) Manufacture of lead storage battery electrode
JPS63213259A (en) Manufacture of lead storage battery
JPS61161660A (en) Lead-acid battery
JPS59157968A (en) Manufacture of sealed type lead storage battery
JPH0444389B2 (en)
JPH0480511B2 (en)
JPH0815075B2 (en) Method for forming sealed lead-acid battery
JPS607059A (en) Manufacture of positive plate for sealed lead storage battery