JPS59182884A - Measurement of circulating gas flow in coke dry extinguishing equipment - Google Patents

Measurement of circulating gas flow in coke dry extinguishing equipment

Info

Publication number
JPS59182884A
JPS59182884A JP5525183A JP5525183A JPS59182884A JP S59182884 A JPS59182884 A JP S59182884A JP 5525183 A JP5525183 A JP 5525183A JP 5525183 A JP5525183 A JP 5525183A JP S59182884 A JPS59182884 A JP S59182884A
Authority
JP
Japan
Prior art keywords
circulating gas
boiler
gas
amount
enthalpy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5525183A
Other languages
Japanese (ja)
Other versions
JPH036954B2 (en
Inventor
Yoshimaru Suzuki
鈴木 義丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP5525183A priority Critical patent/JPS59182884A/en
Publication of JPS59182884A publication Critical patent/JPS59182884A/en
Publication of JPH036954B2 publication Critical patent/JPH036954B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:To achieve a macroscopic reliable flow measurement free from disturbance by dust, by indirectly measuring a circulating gas flow based on the boiler heat balance determined from detected values such as circulating gas temperature at the boiler entrance and exit, etc. CONSTITUTION:While the circulating gas (hereafter referring as gas) temperatures at the boiler entrance and exit of titled equipment, gas pressure, and gas composition are detected by means of the entrance gas temperature sensor 6, exit gas temperature sensor 7, pressure sensor 8, and composition sensor 9, respectively, to determine, using the computor 15, the gas enthalpy loss in the boiler, the vapor temperature and pressure and feedwater temperature and quantity are detected by means of the temperature sensor 18, pressure sensor 19, feedwater temperature sensor 16, and quantity sensor 17, respectively, to determine the receiving enthalpy of the feedwater and vapor from the boiler 3, using the computer 25, the objective gas flow being then derived from the resulting enthalpy balance and said feedwater qantity by means of the computer 26.

Description

【発明の詳細な説明】 測定方法に関し、特に循環ガス量を直接求める方法に対
して、ボイラの熱収支から循環ガス量を間接的に求める
コークス乾式消火設備の循環ガス量測定方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring method, and particularly relates to a method for measuring the amount of circulating gas in coke dry extinguishing equipment, which indirectly determines the amount of circulating gas from the heat balance of the boiler, as opposed to a method of directly determining the amount of circulating gas.

コークス乾式消火設備において、コークス処理量に合わ
せて送風量を調整する必要上から循環ガス量の測定が行
なわれている。従来、この循環ガス量の測定方法として
循環ガスダクト内のガスの動圧をピトー管に代表される
動圧測定器で測定する方法が採用されていた。しかし、
この方法によると動圧測定用の孔に循環ガス中の塵が詰
捷り信頼性に問題があった。また、動圧測定器1台では
ダクト内の一点しか測定できないので、流速分布が一定
しない循環ガス量をミクロ的に把握できるだけで、本来
的に必要とされる循環ガス量のマクロチェックが不可能
であった。
In coke dry extinguishing equipment, the amount of circulating gas is measured because it is necessary to adjust the amount of air blown according to the amount of coke processed. Conventionally, as a method for measuring the amount of circulating gas, a method has been adopted in which the dynamic pressure of the gas in the circulating gas duct is measured using a dynamic pressure measuring device such as a pitot tube. but,
According to this method, the holes for measuring dynamic pressure were clogged with dust in the circulating gas, resulting in reliability problems. In addition, since a single dynamic pressure measuring device can only measure one point in the duct, it is possible to only grasp the amount of circulating gas on a microscopic level, where the flow velocity distribution is not constant, and it is not possible to check the amount of circulating gas on a macroscopic level, which is originally required. Met.

本発明は上述のごとき従来方式の有する欠点を除去すべ
く創案されたもので、その目的とするところは、ボイラ
の熱収支から循環ガス量を間接的に求めることによシ、
塵の影響を受けない信頼性ある測定とマクロ的な流量の
測定を可能にすることができ、もって操業の最適化に寄
与し得るコ−クス乾式消火設備の循環ガス量測定方法を
提供するにある。
The present invention was devised to eliminate the drawbacks of the conventional system as described above, and its purpose is to indirectly determine the amount of circulating gas from the heat balance of the boiler.
To provide a method for measuring the amount of circulating gas in coke dry extinguishing equipment, which enables reliable measurement unaffected by dust and macroscopic flow rate measurement, thereby contributing to operational optimization. be.

上記目的は、本発明によれば、次のようにして達成され
る。即ち、コークス乾式消火設備のボイラ人口の循環ガ
ス温度とボイラ出口の循環ガス温度、循環ガス圧力及び
循環ガス成分とを検出し、これら検出値からボイラで失
なう循環ガスのエンタルピ支出を求め、一方、ボイラの
蒸気温度、蒸気圧力及び給水温度とボイラの給水量とを
検出し、該蒸気温度、蒸気圧力及び給水温度からボイラ
から受ける水及び蒸気のエンタルピ収入を求め、該エン
タルピ収入と上記エンタルピ支出と上記検出された給水
量とから循環ガス量を算出して、直接測定からくる弊害
を防止し正確かつ安定した循環ガス酸の測定が行なえる
ようにしたものである。
According to the present invention, the above object is achieved as follows. That is, the circulating gas temperature of the boiler population of the coke dry extinguishing equipment, the circulating gas temperature at the boiler outlet, the circulating gas pressure, and the circulating gas components are detected, and from these detected values, the enthalpy expenditure of the circulating gas lost in the boiler is determined, On the other hand, the steam temperature, steam pressure, and feed water temperature of the boiler and the water supply amount of the boiler are detected, and the enthalpy income of water and steam received from the boiler is determined from the steam temperature, steam pressure, and feed water temperature, and the enthalpy income and the above enthalpy are calculated. The amount of circulating gas is calculated from the expenditure and the detected amount of water supply, thereby preventing the adverse effects of direct measurement and allowing accurate and stable measurement of circulating gas acid.

以下、添付図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図は、本発明方法を実施するだめのコークス乾式消火設
備を示す。このコークス乾式消火設備は従来と同様に、
冷却塔1、除塵器2、ボイラ3、サイクロン4、循環フ
ァン5から成る循環系を構成し、循環ガスを冷却塔1に
導入して赤熱コークスを冷却し、この冷却によって昇温
された循環ガスをボイラ3に導いて熱回収を行なうよう
になっている。この循環系のボイラ3の一次側と二次側
とにはそれぞれボイラ3の熱収支を求めるだめの測定系
が設けられている。即ち、−次側において、ボイラ3の
入口側循環系内に、循環ガスのI?n度を検出する入口
ガス温度センサ6を設け、且つボイラ3の出口側循環系
内に、循環ガスの温度を・検出する出口ガス温度センサ
7、循環ガスの圧力を検出するガス圧力センサ8、及び
循環ガスのガス成分(Co 、 H2,Co2.02等
)を検出するガス成分センサ9を設けである。そして、
これら各センサ6.7.8及び9の出力をそれぞれの発
信器10゜11.12及び13を介してアナログ喰をデ
ィジタル量に変換するA/D変換器14の入力へ接続し
、さらにその変換結果を循環ガスのエンタルピ支出を求
める第1の計算機(例えば、マイクロコンピュータ)1
5の入力に接続して構成されている。
The figure shows a coke dry extinguishing installation for carrying out the method of the invention. This coke dry extinguishing equipment is the same as before.
A circulation system consists of a cooling tower 1, a dust remover 2, a boiler 3, a cyclone 4, and a circulation fan 5. Circulating gas is introduced into the cooling tower 1 to cool red-hot coke, and the circulating gas whose temperature has been raised by this cooling is is led to boiler 3 for heat recovery. A measurement system for determining the heat balance of the boiler 3 is provided on the primary side and the secondary side of the boiler 3 of this circulation system, respectively. That is, on the negative side, I? of the circulating gas is in the circulation system on the inlet side of the boiler 3. An inlet gas temperature sensor 6 for detecting n degrees is provided, and an outlet gas temperature sensor 7 for detecting the temperature of the circulating gas, a gas pressure sensor 8 for detecting the pressure of the circulating gas, and an outlet gas temperature sensor 7 for detecting the temperature of the circulating gas. A gas component sensor 9 for detecting gas components (Co, H2, Co2.02, etc.) of the circulating gas is also provided. and,
The outputs of each of these sensors 6, 7, 8 and 9 are connected via respective transmitters 10, 11, 12 and 13 to the input of an A/D converter 14 which converts the analog signal into a digital quantity; A first calculator (for example, a microcomputer) 1 that calculates the enthalpy expenditure of the circulating gas from the result.
It is configured by connecting to the input of 5.

また、二次側において、ボイラ3の給水側配管系内に、
給水温度を検出する給水温度センサ16及び給水量を検
出する給水量センサ17を設け、且つボイラ3の蒸気側
配管系内に蒸気温度を検出する蒸気に’rA度センセン
8及び蒸気圧力を検出する蒸気圧力上ンサ19を設けで
ある。そして、これら各センサ16i7,1B及び19
の出力をそれぞれの発信器20,21.22及び23を
介してアナログ量をディジタル量に変換するA/D変換
器24の入力へ接続し、さらにその変換結果を水及び蒸
気のエンタルピを各々求める第2の計算機25の入力に
接、読して構成されている。そして、−]−記記憶及び
第2の計算機15.25の各出力は以Fのごとき演算処
理をする第3の計算機26の入力へ接続され、その出力
に循環ガス量表示器27が接続されて測定系の全体が構
成されている。
In addition, on the secondary side, in the water supply side piping system of the boiler 3,
A feed water temperature sensor 16 for detecting the feed water temperature and a feed water amount sensor 17 for detecting the feed water amount are provided, and a temperature sensor 8 for detecting the steam temperature and a steam pressure are provided in the steam side piping system of the boiler 3. A steam pressure sensor 19 is provided. And each of these sensors 16i7, 1B and 19
The outputs of are connected via respective transmitters 20, 21, 22, and 23 to the input of an A/D converter 24 that converts analog quantities into digital quantities, and the conversion results are used to determine the enthalpies of water and steam, respectively. It is configured to connect to and read the input of the second computer 25. -]- memory and the outputs of the second computer 15.25 are connected to the inputs of a third computer 26 that performs the following arithmetic processing, and the circulating gas amount indicator 27 is connected to its output. The entire measurement system is comprised of these.

ボイラ3についての熱収支から次の(1)式が一般に求
められる。
The following equation (1) is generally obtained from the heat balance for the boiler 3.

(1)式 ボイラ入口、出口の循環ガスのエンタルピ支
出×循環ガス量−(蒸気のエンタルピー給水のエンタル
ピ)×給水量+熱損失 (1)式において熱損失の量は非常に小さいので工業的
精度ではゼロと考えてよい。したがって、次の(2)式
より循環ガス量を求めることができる。
(1) Equation: Enthalpy expenditure of circulating gas at the boiler inlet and outlet x circulating gas amount - (enthalpy of steam, enthalpy of feed water) x feed water amount + heat loss In equation (1), the amount of heat loss is very small, so it is industrially accurate. So you can think of it as zero. Therefore, the amount of circulating gas can be determined from the following equation (2).

ピ)×給水量 タルピ支出 この(2)式が本発明の基本的原理として用いられ、こ
の演算処理が上記第3の計算機26において実行される
。すなわち、第3の計算機26内に上記(2)式で現わ
される関数式を記憶させておく。なお、(蒸気のエンタ
ルピー給水のエンタルピ)はボイ。
Equation (2) is used as the basic principle of the present invention, and this arithmetic processing is executed in the third computer 26. That is, the functional formula expressed by the above equation (2) is stored in the third computer 26. In addition, (enthalpy of steam enthalpy of water supply) is Boi.

う3の二次側で受ける水及び蒸気のエンタルピ収入に外
ならない。
This is nothing but the enthalpy income of the water and steam received on the secondary side.

上述のごとく構成されるコークス乾式消火設備において
本発明がどのように実施されているかを説明する。
A description will be given of how the present invention is implemented in the coke dry fire extinguishing equipment configured as described above.

図に示されるコークス乾式消火設備の循環系を流れる循
環ガス量は第3の計算機26の出力に接続された循環ガ
ス量表示器27によってリアルタイムで表示される。
The amount of circulating gas flowing through the circulation system of the coke dry extinguishing equipment shown in the figure is displayed in real time by a circulating gas amount display 27 connected to the output of the third computer 26.

この循環ガス量表示器27によって表示される循環ガス
量は次に述べるように求められる。
The amount of circulating gas displayed by the circulating gas amount indicator 27 is determined as described below.

−次側では、ボイラ3の入口、出口における循環中の1
Jiiガス温度が入ロガス温度センサ6、出ロガス温度
センザ7によって検出され、まだ、循環ガス圧力及びガ
ス成分がガス圧力センサ8及びガス成分センサ9によっ
て検出され、各発信器10.11.12及び13を介し
てAカ変換器14に入力される。ここで、各検出値は、
アナログ量であるためディジタル量に変換され、そのデ
ィジタル値が第1の計算機15へ入力される。この第1
の計算機15には循環ガスの状態量に基づきエンタルピ
を算出する表又は関数が記憶されており、上記検出値か
らボイラ3人口における循環ガスのエンタルピ及びボイ
ラ3出口における循環ガスのエンタルピを先ず求め、次
いで両者を差し引くことによりボイラ3において循環ガ
スが失なったエンタルピ支出(エンタルピ落差)が求め
られる。なお、温度、圧力が一定でもガス成分により、
エンタルピが変わるのでガス成分検出値によって補正が
行なわれている。
- On the next side, 1 in circulation at the inlet and outlet of boiler 3
The Jii gas temperature is detected by the inlet log gas temperature sensor 6, the outlet log gas temperature sensor 7, and the circulating gas pressure and gas component are detected by the gas pressure sensor 8 and gas component sensor 9, and each transmitter 10.11.12 and The signal is input to the A converter 14 via 13. Here, each detected value is
Since it is an analog quantity, it is converted into a digital quantity, and the digital value is input to the first computer 15. This first
The calculator 15 stores a table or function for calculating the enthalpy based on the state quantity of the circulating gas, and first calculates the enthalpy of the circulating gas at the boiler 3 population and the enthalpy of the circulating gas at the outlet of the boiler 3 from the detected values, Next, by subtracting the two, the enthalpy expenditure (enthalpy head) due to the loss of circulating gas in the boiler 3 is determined. In addition, even if the temperature and pressure are constant, depending on the gas composition,
Since the enthalpy changes, correction is performed based on the detected gas component value.

二次側では、給水側で給水温度及び給水量が給水温度セ
ンサ16及び給水量センサ17によって検出され、蒸気
側で蒸気温度及び蒸気圧力が蒸気温度センサ18及び蒸
気圧力センサ19によって検出される。そして、これら
の検出値は各発信器20.21.22及び23を介して
A/D変換器24に入力される。ここで、各検出値は、
−次側と同様に、アナログ量であるためディジタル量に
変換され、そのディジタル値が第2の計算機25へ入力
される。この第1の計算機15には水又は蒸気の状態量
に基づきエンタルピを算出する表又は関数が記憶されて
おり、上記給水温度及び給水量検出時に検出される給水
圧から給水のエンタルピが、また上記蒸気温度及び蒸気
圧力から蒸気のエンタルピがそれぞれ求められる。
On the secondary side, the feed water temperature and water amount are detected by the feed water temperature sensor 16 and the feed water amount sensor 17 on the water supply side, and the steam temperature and steam pressure are detected by the steam temperature sensor 18 and the steam pressure sensor 19 on the steam side. These detected values are then input to the A/D converter 24 via the respective oscillators 20, 21, 22 and 23. Here, each detected value is
- Similar to the next side, since it is an analog quantity, it is converted into a digital quantity, and the digital value is input to the second computer 25. This first calculator 15 stores a table or a function for calculating enthalpy based on the state quantities of water or steam, and calculates the enthalpy of the feed water from the feed water pressure detected at the time of detecting the feed water temperature and the feed water amount. The enthalpy of steam is determined from the steam temperature and steam pressure.

上述したようにして求められたボイラ入口、出口の循環
ガスのエンタルピ支出と、蒸気のエンタルピと、給水の
エンタルピ及び給水量とを用いての上記(2)式に基づ
く演算処理が第3の計算機26でイテなわれ、循環系を
流れる循環ガス量が算出される。
The third calculator performs arithmetic processing based on the above equation (2) using the enthalpy expenditure of the circulating gas at the boiler inlet and outlet, the enthalpy of steam, the enthalpy of water supply and the amount of water supply obtained as described above. At step 26, the amount of circulating gas flowing through the circulation system is calculated.

上述のように、循環系を流れる循環ガス量は循環ガスの
状?J tを検出する各種センサと、給水及び蒸気の状
態量を検出する各種センサと、これらセッサの検出値に
ついて上述のような演算処理をする13台の計算機15
.25.26等の比較的簡易なマイクロコンピュータを
用いてその値を得ることが出来、循環ガス量を間接的に
求めるため従来のようにガス中に測定用機器を挿入する
必要はなくなる。このため循環ガス中の塵に起因する測
定上の支障がなくなり、中断されることなく時々刻々と
変化する循環ガス量を完全に把握することができる。し
かも、この把握量はボイラ3の熱収支に基づいて間接的
に計測するのでマクロ−酸となり、流速分布に影響され
ないので、信頼性の非常に高い測定系を構成し得る。ま
だ、循環ガス、給水及び蒸気の状態量は従来よりもとも
と個別的に演出されているので、その状態量センサをそ
のまま本発明の各種センサとして用いることが出来るか
ら、循環ガス量を測定するに際して設けねばならない機
器は、僅かに3台の計算機のみで足り、この計算機もマ
イクロコンピュータを使用すれば小型且つ安価となるの
で、その導入は容易となる。
As mentioned above, is the amount of circulating gas flowing through the circulation system in the form of circulating gas? Various sensors that detect Jt, various sensors that detect the state quantities of water supply and steam, and 13 computers 15 that perform the above-mentioned arithmetic processing on the detected values of these sensors.
.. The value can be obtained using a relatively simple microcomputer such as 25, 26, etc., and since the amount of circulating gas is determined indirectly, there is no need to insert a measuring device into the gas as in the past. This eliminates measurement problems caused by dust in the circulating gas, making it possible to completely grasp the constantly changing amount of circulating gas without interruption. Moreover, since this grasped quantity is measured indirectly based on the heat balance of the boiler 3, it is a macro-acid and is not affected by the flow velocity distribution, so a highly reliable measurement system can be constructed. However, since the state quantities of circulating gas, water supply, and steam have been produced individually in the past, the state quantity sensors can be used as they are as various sensors of the present invention. Only three computers are required, and if these computers are microcomputers, they will be small and inexpensive, making their introduction easy.

更に、各種センサ及び計算機が有機的に接続され、自動
的に循環ガス量を算出するので作業性が極めて良好とな
る。
Furthermore, various sensors and computers are organically connected to automatically calculate the amount of circulating gas, resulting in extremely good workability.

上述のようにして求められた循環ガス量は循環ガス量表
示器に表示できるため、この表示値に基づいて循環ガス
量をコークス処理量と整合する値に設定することができ
操業の最適化が計れる。
Since the amount of circulating gas determined as described above can be displayed on the circulating gas amount display, the amount of circulating gas can be set to a value consistent with the amount of coke throughput based on this displayed value, which allows optimization of operations. It can be measured.

なお、上記実施例において3台の計算機15゜25.2
6にそれぞれの演算を分担させたが、この分担内容に必
ずしも拘泥するものではなく、計算機の能力に応じて適
宜その内容を変えることは可能である。また、必ずしも
3台に分ける必要はなく、1台の計算機で循環ガス量を
処理するようにしてもよい。
In addition, in the above example, the three computers were 15°25.2
6 is assigned to each calculation, but the content of this division is not necessarily limited, and it is possible to change the content as appropriate depending on the capabilities of the computer. Further, it is not necessarily necessary to divide the computer into three computers, and the amount of circulating gas may be processed by one computer.

以上要するに本発明によれば次のような優れた効果を発
揮する。
In summary, the present invention exhibits the following excellent effects.

(1)  循環ガス−蹴を間接的に求めるため、循環ガ
ス中に測定用機器を挿入する必要がなく、ガス中の塵に
起因する測定上の支障がない。したがって、信頼性のあ
る測定が可能となる。
(1) Circulating gas - Since the kick is determined indirectly, there is no need to insert a measuring device into the circulating gas, and there is no problem in measurement due to dust in the gas. Therefore, reliable measurement is possible.

(2)  ボイラの熱収支に基づいて循環ガス量を測定
するので、流速分布の影響を受けず、また本来的に必要
な循環ガス量のマクロチェックが可能となる。
(2) Since the amount of circulating gas is measured based on the heat balance of the boiler, it is not affected by the flow velocity distribution, and it is possible to perform a macro check of the amount of circulating gas that is originally required.

(3) リアルタイムで循環ガス量を測定することがで
きるので、循環ガス量をコークス処理量と整合する値に
常に設定することができ、操業の最適化が計れる。
(3) Since the amount of circulating gas can be measured in real time, the amount of circulating gas can always be set to a value that matches the amount of coke throughput, allowing optimization of operations.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明方法を実施するだめのコークス乾式消火設備
の系統図である。 なお、図中3はボイラ、6は入口ガス温度センサ、7は
出口ガス温度センサ、8はガス圧カセンザ、9はガス成
分センサ、15は第1の計算機、16は給水温度センサ
、17は給水量センサ、18は蒸気温度センサ、19は
蒸気圧力センサ、25は第2の計算機、26は第:3の
計算機である。 特許 出願人 石川島播磨重工業株式会社代理人弁理士
 絹 谷 信 雄
The figure is a system diagram of a coke dry extinguishing equipment for carrying out the method of the present invention. In the figure, 3 is a boiler, 6 is an inlet gas temperature sensor, 7 is an outlet gas temperature sensor, 8 is a gas pressure sensor, 9 is a gas component sensor, 15 is a first calculator, 16 is a water supply temperature sensor, and 17 is a water supply 18 is a steam temperature sensor, 19 is a steam pressure sensor, 25 is a second computer, and 26 is a third computer. Patent Applicant: Nobuo Kinutani, Patent Attorney, Ishikawajima-Harima Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] コークス乾式消火設備のボイラ入口の循環ガス温度とボ
イラ出口の循環ガス温度、循環ガス圧力及び循環ガス成
分とを検出し、これら検出値からボイラで失なう循環ガ
スのエンタルピ支出を求め、一方、ボイラの蒸気温度、
蒸気圧力及び給水温度とボイラの給水量とを検出し、該
蒸気温度、蒸気圧力及び給水温度からボイラから受ける
水及び蒸気のエンタルピ収入を求め、該エンタルピ収入
と−に記エンタルピ支出と上記演出された給水量とから
循環ガス量を算出することを特徴とするコークス乾式消
火設備の循環ガス量測定方法。
The circulating gas temperature at the boiler inlet, the circulating gas temperature at the boiler outlet, the circulating gas pressure, and the circulating gas components of the coke dry fire extinguishing equipment are detected, and from these detected values, the enthalpy expenditure of the circulating gas lost in the boiler is determined; boiler steam temperature,
Detect the steam pressure, feed water temperature, and feed water amount to the boiler, calculate the enthalpy income of water and steam received from the boiler from the steam temperature, steam pressure, and feed water temperature, and calculate the enthalpy income, the enthalpy expenditure, and the above performance. A method for measuring the amount of circulating gas in coke dry extinguishing equipment, characterized in that the amount of circulating gas is calculated from the amount of water supplied.
JP5525183A 1983-04-01 1983-04-01 Measurement of circulating gas flow in coke dry extinguishing equipment Granted JPS59182884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5525183A JPS59182884A (en) 1983-04-01 1983-04-01 Measurement of circulating gas flow in coke dry extinguishing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5525183A JPS59182884A (en) 1983-04-01 1983-04-01 Measurement of circulating gas flow in coke dry extinguishing equipment

Publications (2)

Publication Number Publication Date
JPS59182884A true JPS59182884A (en) 1984-10-17
JPH036954B2 JPH036954B2 (en) 1991-01-31

Family

ID=12993373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5525183A Granted JPS59182884A (en) 1983-04-01 1983-04-01 Measurement of circulating gas flow in coke dry extinguishing equipment

Country Status (1)

Country Link
JP (1) JPS59182884A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224391A (en) * 1988-07-14 1990-01-26 Kawasaki Steel Corp Method for control of circulating gas introduction in dry quenching facility for coke
US5609730A (en) * 1989-11-14 1997-03-11 Sumitomo Metal Industries, Ltd. Method of operating dry quenching apparatus for hot coke
CN113621390A (en) * 2021-08-05 2021-11-09 新兴铸管股份有限公司 Emergency nitrogen charging system for dry quenching furnace and control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224391A (en) * 1988-07-14 1990-01-26 Kawasaki Steel Corp Method for control of circulating gas introduction in dry quenching facility for coke
US5609730A (en) * 1989-11-14 1997-03-11 Sumitomo Metal Industries, Ltd. Method of operating dry quenching apparatus for hot coke
CN113621390A (en) * 2021-08-05 2021-11-09 新兴铸管股份有限公司 Emergency nitrogen charging system for dry quenching furnace and control method
CN113621390B (en) * 2021-08-05 2022-04-29 新兴铸管股份有限公司 Emergency nitrogen charging system for dry quenching furnace and control method

Also Published As

Publication number Publication date
JPH036954B2 (en) 1991-01-31

Similar Documents

Publication Publication Date Title
JP5961962B2 (en) Boiler steam amount measuring method, boiler load analyzing method, boiler steam amount measuring device, and boiler load analyzing device
EP0155750B1 (en) Cooling tower monitors
JPS59182884A (en) Measurement of circulating gas flow in coke dry extinguishing equipment
CN106679747A (en) On-line checking method for turbo-generator set boiler inlet feed water flow
CN113514095A (en) Detection method and device for dry quenching coke burning loss rate
US5313830A (en) Assessment of air ingress to steam systems
JP3381122B2 (en) Steam dryness measuring device
JPS61246515A (en) Detecting method and device for water concentration of exhaust gas in incinerator
JP2698399B2 (en) Acoustic combustion gas temperature measurement device
KR950001573Y1 (en) Device for controlling dew point of blast furnace
CN208704807U (en) A kind of saturated steam flow metering detection system
JP3063514B2 (en) Flow measurement method using pressure sensor
JP2557885B2 (en) Differential pressure reactor water level measuring device
Bryant et al. The NIST 20 MW Calorimetry Measurement System: Exhaust Flow Calibration Using Tracer Gas Dilution
Madron Balancing and Data Reconciliation of a Regenerative Air Preheater
JPS5925199B2 (en) Leak detection device inside the reactor containment vessel
JPS5912573Y2 (en) Differential pressure flow measuring device
JP2945906B1 (en) Core flow monitoring system
JPS6242042A (en) Gas calorimeter
JPH06180105A (en) Method and apparatus for diagnosing dirt on tube in exhaust gas economizer
JP2000162201A (en) Estimation method for nox distribution in exhaust gas
CN115790753A (en) Air compressor flow measuring method and device based on power
JP2000065979A (en) Core flow monitoring system
JPS59162434A (en) Leakage detecting device for liquid metal
Shenbrot et al. Error of measurement of thermal power