JP2945906B1 - Core flow monitoring system - Google Patents

Core flow monitoring system

Info

Publication number
JP2945906B1
JP2945906B1 JP10240734A JP24073498A JP2945906B1 JP 2945906 B1 JP2945906 B1 JP 2945906B1 JP 10240734 A JP10240734 A JP 10240734A JP 24073498 A JP24073498 A JP 24073498A JP 2945906 B1 JP2945906 B1 JP 2945906B1
Authority
JP
Japan
Prior art keywords
water level
reactor water
flow rate
core flow
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10240734A
Other languages
Japanese (ja)
Other versions
JP2000065978A (en
Inventor
博 倉嶋
英夫 波平
由佳 上妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10240734A priority Critical patent/JP2945906B1/en
Application granted granted Critical
Publication of JP2945906B1 publication Critical patent/JP2945906B1/en
Publication of JP2000065978A publication Critical patent/JP2000065978A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

【要約】 【課題】 圧力容器内での長期的な経時・経年変化の影
響を受けずに、装置性能等を常時良好に保持して炉心部
での冷却水の炉心流量の正確な測定を可能にし、かつ必
要に応じて補正し得るようにした。 【解決手段】 原子炉圧力容器内の炉心部周囲に複数の
ポンプ手段を配し、該各ポンプ手段により、炉心部に対
して冷却水を循環させる沸騰水型原子炉の炉心流量監視
システムにおいて、前記圧力容器内の狭帯域、広帯域の
各炉水位をそれぞれに検出する狭帯域炉水位検出器、及
び広帯域炉水位検出器と、前記各炉水位検出器で検出さ
れた炉水位の指示差を演算する狭帯域/広帯域炉水位指
示差演算装置と、前記狭帯域/広帯域炉水位指示差演算
装置で演算された指示差から炉心流量相当値を演算する
炉水位指示差/炉心流量演算装置と、前記炉水位指示差
/炉心流量演算装置で得た炉心流量を監視する炉水位指
示差による炉心流量監視装置とを備える。
Abstract: PROBLEM TO BE SOLVED: To be able to accurately measure the flow rate of cooling water in a reactor core while maintaining good device performance at all times without being affected by long-term aging and aging in a pressure vessel. And it can be corrected as needed. SOLUTION: In a reactor core flow rate monitoring system of a boiling water reactor, a plurality of pump means are arranged around a core part in a reactor pressure vessel, and each pump means circulates cooling water to the core part. Narrow band in the pressure vessel, a narrow band furnace water level detector for detecting each of the broadband reactor water level, and a broadband reactor water level detector, and calculate the indicated difference of the reactor water level detected by each reactor water level detector A narrow-band / wide-band reactor water level indicator difference calculating device, a reactor water level indicator difference / core flow rate calculating device for calculating a core flow rate equivalent value from the indicator difference calculated by the narrow-band / wide-band reactor water level indicator difference calculating device, A core flow rate monitoring device based on a reactor water level difference that monitors the core flow obtained by the reactor water level difference / core flow rate calculation device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉圧力容器内
の炉心部周囲に複数のポンプ手段を配し、該各ポンプ手
段により、炉心部に対して冷却水を循環させるようにし
た沸騰水型原子炉の炉心流量監視システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to boiling water in which a plurality of pump means are arranged around a core in a reactor pressure vessel, and each pump means circulates cooling water to the core. The present invention relates to a core flow monitoring system for a nuclear reactor.

【0002】[0002]

【従来の技術】従来から、この種の沸騰水型原子炉(B
WR)では、原子炉圧力容器内に装備させる炉心部の冷
却手段として、炉心部下部側の周囲に複数台のジェット
ポンプを配し、該各ジェットポンプを用いて炉心部に冷
却水を循環させるようにした従来型のBWRと、上記ジ
ェットポンプに代えて再循環ポンプを用いるようにした
改良型のBWR(ABWR)とがあり、通常の場合、こ
れらの従来方式による各冷却手段には、炉心部内での冷
却水の流量を測定して作動状態を常時監視する炉心流量
監視システムが設けられる。
2. Description of the Related Art Conventionally, a boiling water reactor (B
In WR), a plurality of jet pumps are disposed around the lower part of the core as cooling means for the core provided in the reactor pressure vessel, and cooling water is circulated through the core using each jet pump. There are a conventional BWR as described above, and an improved BWR (ABWR) in which a recirculation pump is used in place of the jet pump. In a normal case, each cooling means according to these conventional systems includes a core. A core flow rate monitoring system is provided that measures the flow rate of cooling water in the unit and constantly monitors the operation state.

【0003】図6は従来型BWRにおける炉心流量監視
システムの概要を模式的に示す構成説明図であり、図7
は同様に改良型BWR(ABWR)における炉心流量監
視システムの概要を模式的に示す構成説明図である。
FIG. 6 is a configuration explanatory view schematically showing an outline of a core flow rate monitoring system in a conventional BWR.
FIG. 2 is a configuration explanatory view schematically showing an outline of a core flow rate monitoring system in an improved BWR (ABWR).

【0004】先ず、図6に示す従来型BWRにおいて、
原子炉圧力容器(以下、圧力容器と言う)1は、よく知
られている如く、炉心支持板3によって支持された炉心
部2を内蔵すると共に、炉心部2の上方には、該炉心部
2への冷却水の供給で発生する高圧蒸気から水分を分離
する気水分離器4と、水分の分離された高圧蒸気を乾燥
する蒸気乾燥器5とが順次配置され、蒸気乾燥器5を経
て乾燥された高圧蒸気を主蒸気ノズル6から外部に取り
出している。
First, in the conventional BWR shown in FIG.
As is well known, a reactor pressure vessel (hereinafter, referred to as a pressure vessel) 1 has a built-in core 2 supported by a core support plate 3 and has a core 2 above the core 2. A steam-water separator 4 for separating moisture from high-pressure steam generated by supply of cooling water to the steam generator, and a steam dryer 5 for drying high-pressure steam from which moisture has been separated are sequentially arranged, and dried through the steam dryer 5. The high-pressure steam is taken out of the main steam nozzle 6 to the outside.

【0005】そして、前記従来型BWRにおける炉心部
2の冷却手段として、該炉心部2の下部側周囲には、複
数台からなるジェットポンプ(JP)、この場合、10
台のジェットポンプ7が配設されており、これらの各ジ
ェットポンプ7を用いて、給水スパージャ9によって供
給される冷却水と、気水分離器4で分離された飽和水ド
レンとの混合水を下方側から炉心部2内に送り込んで再
循環させるようになっている。
As a cooling means for the core portion 2 in the conventional BWR, a plurality of jet pumps (JPs)
Jet pumps 7 are provided, and using each of these jet pumps 7, a mixed water of the cooling water supplied by the water supply sparger 9 and the saturated water drain separated by the steam separator 4 is used. It is sent from the lower side into the core 2 and recirculated.

【0006】また、前記圧力容器1に対しては、容器内
冷却水の差圧計測手段として、測定範囲の関係から、そ
れぞれに該当する対象部位の炉水位を指示する狭帯域炉
水位検出器(LT,N/R)11と広帯域炉水位検出器
(LT,W/R)12とを設け、これらの各炉水位検出
器11,12を用いて、炉水位計蒸気相ノズル13から
蒸気相配管14、凝縮槽15を介して基準水柱計装配管
16を通した圧力水頭と、個々に該当する各炉水位計液
相ノズル17,18からそれぞれに変動水柱計装配管1
9,20を通した圧力水頭との差圧を常時測定すること
により、ここでは、圧力容器1内での炉水位が上昇した
ときに該差圧が減少し、かつ該炉水位が下降したときに
該差圧が増加するという相対的な関係を利用して、各対
象部位での炉水位の差圧を2種類の各炉水位計、すなわ
ち、狭帯域炉水位計(N/R)21と広帯域炉水位計
(W/R)22とのそれぞれに表示させるのが一般的な
形態である。
For the pressure vessel 1, as a means for measuring the pressure difference of the cooling water in the vessel, a narrow-band reactor water level detector (indicating a reactor water level at a target portion corresponding to each of them, based on the relationship of the measurement range). (LT, N / R) 11 and a broadband reactor water level detector (LT, W / R) 12 are provided. 14, the pressure head through the reference water column instrumentation pipe 16 via the condensation tank 15, and the variable water column instrumentation pipe 1 from each of the corresponding reactor water level meter liquid phase nozzles 17, 18 respectively.
By constantly measuring the pressure difference between the pressure head and the pressure heads 9 and 20, the pressure difference decreases when the reactor water level in the pressure vessel 1 rises and decreases when the reactor water level falls. Utilizing the relative relationship that the differential pressure increases, the differential pressure of the reactor water level at each target site is compared with two types of reactor water level gauges, that is, a narrow band reactor water level gauge (N / R) 21. It is a general form to display on each of the broadband reactor water level meter (W / R) 22.

【0007】ここで、上記構成の従来型BWRに付設さ
れている炉心流量監視システムの場合には、炉心部2の
周囲に設置されるジエットポンプ7のポンプ差圧が、ポ
ンプ吐出流量の自乗に比例するという特性を利用するこ
とで所期の炉心流量の監視を行っており、前記各ジェッ
トポンプ7に対しては、それぞれにジェットポンプ差圧
検出器(DPT)31を設けておき、該各差圧検出器3
1により、対応する各ポンプの差圧を測定することでそ
れぞれのポンプ吐出流量を求め、その各差圧信号(ポン
プ差圧信号)を演算装置(ジェットポンプ差圧/炉心流
量演算装置)32に入力して加算し、このようにして得
られる総ポンプ吐出流量、換言すると、炉心部2に対す
る冷却水の炉心流量を監視装置(ジェットポンプ差圧に
よる炉心流量監視装置)33によって常時監視可能にす
るのである。
Here, in the case of the core flow rate monitoring system attached to the conventional BWR having the above-described structure, the pump differential pressure of the jet pump 7 installed around the core 2 is squared with the pump discharge flow rate. The intended core flow rate is monitored by utilizing the characteristic of proportionality, and a jet pump differential pressure detector (DPT) 31 is provided for each of the jet pumps 7. Differential pressure detector 3
According to 1, the pump discharge flow rate is obtained by measuring the differential pressure of each corresponding pump, and each differential pressure signal (pump differential pressure signal) is sent to an arithmetic unit (jet pump differential pressure / core flow rate arithmetic unit) 32. The total pump discharge flow rate obtained in this way, in other words, the core flow rate of the cooling water to the core 2 can be constantly monitored by the monitoring device (core flow rate monitoring device by jet pump differential pressure) 33. It is.

【0008】次に、図7に示す改良型BWR(ABW
R)においても、圧力容器1内の構成は、前記各ジエッ
トポンプ(JP)7に代えて同数の各冷却水再循環ポン
プ(RIP)8を用いる他は、上記従来型BWRの場合
とほぼ同様であり、その炉心流量監視システムのみが異
なる。
Next, an improved BWR (ABW) shown in FIG.
R), the configuration inside the pressure vessel 1 is almost the same as that of the above-mentioned conventional BWR except that the same number of the respective cooling water recirculation pumps (RIPs) 8 are used instead of the respective jet pumps (JP) 7. Only the core flow monitoring system is different.

【0009】すなわち、改良型BWR(ABWR)に付
設される炉心流量監視システムの場合には、一方におい
て、前記再循環ポンプ8のポンプ差圧がポンプ運転状態
毎のポンプ吐出流量の自乗に比例するという特性を利用
することで炉心流量の監視を行っており、前記各再循環
ポンプ8に対して、従来型BWRと同様な冷却水再循環
ポンプ差圧検出器(DPT)41を設けておき、図示し
ないポンプ回転数検出器からの回転数信号(ポンプ回転
数信号)によって各ポンプの運転状態を、差圧検出器4
1からの差圧信号(ポンプ差圧信号)によってポンプの
平均差圧をそれぞれに求め、これらの各信号と、別に求
める炉水温度(密度)信号等とを演算装置(循環ポンプ
差圧/炉心流量演算装置)42に入力し、そのポンプの
Q−H特性から炉心流量を演算した上で、該炉心流量を
監視装置(循環ポンプ差圧による炉心流量監視装置)4
3によって常時監視可能にする。
In other words, in the case of a core flow rate monitoring system attached to an improved BWR (ABWR), on the other hand, the pump differential pressure of the recirculation pump 8 is proportional to the square of the pump discharge flow rate for each pump operation state. The core flow rate is monitored by utilizing the characteristic described above, and a cooling water recirculation pump differential pressure detector (DPT) 41 similar to the conventional BWR is provided for each of the recirculation pumps 8. The operating state of each pump is determined by the differential pressure detector 4 based on a rotational speed signal (pump rotational speed signal) from a pump rotational speed detector (not shown).
An average differential pressure of the pump is obtained by the differential pressure signal (pump differential pressure signal) from the first pump, and these signals and a separately determined reactor water temperature (density) signal are calculated by an arithmetic unit (circulating pump differential pressure / core core). The flow rate is input to a flow rate calculation device 42, the core flow rate is calculated from the QH characteristics of the pump, and the core flow rate is monitored (core flow rate monitoring device based on circulating pump differential pressure) 4
3 enables constant monitoring.

【0010】また、他方においては、前記再循環ポンプ
8のポンプ差圧による炉心流量の監視と併用して、前記
炉心支持板3の上下差圧が炉出力状態毎に炉心流量と一
定の関係になるという相対的な特性を利用することで炉
心流量の監視を行っており、炉心支持板差圧検出器(D
PT)51によって検出した差圧信号(炉心支持板差圧
信号)と、別に求める原子炉の出力信号等とを演算装置
(炉心支持板差圧/炉心流量演算装置)52に入力して
炉心流量を演算し、該炉心流量を監視装置(炉心支持板
差圧による炉心流量監視装置)53によって常時監視可
能にするのである。
On the other hand, the upper and lower differential pressures of the core support plate 3 are set to have a constant relationship with the core flow rate for each reactor power state, together with the monitoring of the core flow rate by the pump differential pressure of the recirculation pump 8. The core flow rate is monitored by utilizing the relative characteristics of the core support plate differential pressure detector (D
The differential pressure signal (core support plate differential pressure signal) detected by the P.T.) 51 and the reactor output signal etc., which are separately determined, are input to an arithmetic unit (core support plate differential pressure / core flow rate arithmetic unit) 52, and the core flow rate is calculated. Is calculated, and the core flow rate can be constantly monitored by the monitoring device (core flow rate monitoring device based on the core support plate differential pressure) 53.

【0011】[0011]

【発明が解決しようとする課題】上記従来の各方式によ
る沸騰水型原子炉の稼働に際しては、従来型BWR及び
改良型BWR(ABWR)共に、炉心部内の各部での流
量と該流量に発生する差圧との関係が、長期的なプラン
トの運転経過によって微妙に変化する点を事前に予測
し、該予測に基づいて定期的に炉心流量監視システムの
妥当性を確認することが大切である。
When the boiling water reactor according to each of the conventional systems described above is operated, both the conventional BWR and the improved BWR (ABWR) generate a flow rate at each part in the core and the flow rate. It is important to predict in advance the point where the relationship with the differential pressure slightly changes due to the long-term operation of the plant, and periodically confirm the validity of the core flow rate monitoring system based on the prediction.

【0012】この場合、上記炉心流量監視システムの妥
当性確認については、炉心流量と発生差圧等との関係に
よる長期的な経時・経年変化の有無や、炉心流量指示へ
の影響を正確に評価する必要がある。
In this case, regarding the validity check of the above-mentioned core flow rate monitoring system, it is necessary to accurately evaluate whether there is a long-term change over time or aging due to the relationship between the core flow rate and the generated differential pressure, and the influence on the core flow rate instruction. There is a need to.

【0013】本発明は、従来のこのような要望に応える
ためになされたものであり、その目的とするところは、
圧力容器内での長期的な経時・経年変化の影響を受けず
に、装置性能等を常時良好に保持して炉心部での冷却水
の炉心流量の正確な測定を可能にし、かつ必要に応じて
補正し得るようにした沸騰水型原子炉の炉心流量監視シ
ステムを提供することである。
[0013] The present invention has been made to meet such a conventional demand, and its object is to provide:
It is possible to accurately measure the cooling water core flow rate in the reactor core by maintaining good equipment performance at all times without being affected by long-term aging and aging in the pressure vessel. It is an object of the present invention to provide a core water flow monitoring system of a boiling water reactor which can be corrected by using the above method.

【0014】[0014]

【課題を解決するための手段】前記目的を達成するため
に、本発明に係る請求項1に記載の発明は、原子炉圧力
容器内の炉心部周囲に複数のポンプ手段を配し、該各ポ
ンプ手段により、炉心部に対して冷却水を循環させる沸
騰水型原子炉の炉心流量監視システムにおいて、前記圧
力容器内の狭帯域、広帯域の各炉水位をそれぞれに検出
する狭帯域炉水位検出器、及び広帯域炉水位検出器と、
前記各炉水位検出器で検出された炉水位の指示差を演算
する狭帯域/広帯域炉水位指示差演算装置と、前記狭帯
域/広帯域炉水位指示差演算装置で演算された指示差か
ら炉心流量相当値を演算する炉水位指示差/炉心流量演
算装置と、前記炉水位指示差/炉心流量演算装置で得た
炉心流量を監視する炉水位指示差による炉心流量監視装
置とを備える。
In order to achieve the above object, according to the present invention, a plurality of pump means are arranged around a core in a reactor pressure vessel. In a core flow rate monitoring system of a boiling water reactor in which cooling water is circulated through a core portion by a pump means, a narrow band reactor water level detector for detecting each of a narrow band and a wide band reactor water level in the pressure vessel. , And a broadband reactor water level detector,
A narrow-band / wide-band reactor water level indicator difference calculating device for calculating an indicator difference of the reactor water level detected by each of the reactor water level detectors, and a core flow rate based on the indicator difference calculated by the narrow-band / wide-band reactor water level indicator difference calculating device. The apparatus includes a reactor water level indicating difference / core flow rate calculating device for calculating a corresponding value, and a core flow rate monitoring device based on a reactor water level indicating difference for monitoring a core flow obtained by the reactor water level indicating difference / core flow rate calculating device.

【0015】請求項1の炉心流量監視システムでは、狭
帯域炉水位検出器からの炉水位の指示値と、広帯域炉水
位検出器からの炉水位の指示値との差が、狭帯域/広帯
域炉水位指示差演算装置で算出された後、該炉水位の指
示差から炉水位指示差/炉心流量演算装置で炉心流量相
当値が算出され、各算出結果の炉心流量が、炉水位指示
差による炉心流量監視装置において監視される。
In the core flow rate monitoring system according to the present invention, the difference between the indicated value of the reactor water level from the narrow band reactor water level detector and the indicated value of the reactor water level from the broadband reactor water level detector is a narrow band / wide band reactor. After being calculated by the water level indicator difference calculation device, a reactor water level indicator difference / core flow rate equivalent value is calculated by the reactor water level indicator difference from the reactor water level indicator difference. It is monitored in a flow monitor.

【0016】本発明に係る請求項2に記載の発明は、原
子炉圧力容器内の炉心部周囲に複数のポンプ手段を配
し、炉心部に対して冷却水を循環させる沸騰水型原子炉
の炉心流量監視システムにおいて、前記圧力容器内の狭
帯域、広帯域の各炉水位をそれぞれに検出する狭帯域炉
水位検出器、及び広帯域炉水位検出器と、前記各炉水位
検出器で検出された炉水位の指示差を演算する狭帯域/
広帯域炉水位指示差演算装置と、前記狭帯域/広帯域炉
水位指示差演算装置で演算された指示差から炉心流量相
当値を演算する炉水位指示差/炉心流量演算装置と、前
記炉水位指示差/炉心流量演算装置で得た炉心流量を監
視する炉水位指示差による炉心流量監視装置と、前記炉
水位指示差による炉心流量監視装置、別に設けるポンプ
差圧による炉心流量監視装置、及び炉心支持板差圧によ
る炉心流量監視装置からの各炉心流量の指示差を演算比
較して記録・監視する炉心流量指示差比較による記録・
監視装置とを備えることを特徴としている。
According to a second aspect of the present invention, there is provided a boiling water reactor in which a plurality of pump means are arranged around a core in a reactor pressure vessel and cooling water is circulated through the core. In the core flow rate monitoring system, a narrow band reactor in the pressure vessel, a narrow band reactor water level detector for detecting each of a broadband reactor water level, and a broadband reactor water level detector, and the furnace detected by each of the reactor water level detectors Narrow band for calculating indication difference of water level /
A broadband reactor water level indicator difference calculating device, a reactor water level indicator difference / core flow rate calculating device for calculating a core flow rate equivalent value from the indicator difference calculated by the narrow band / broadband reactor water level indicator difference calculating device, and the reactor water level indicator difference / Core flow rate monitoring device based on reactor water level indicator for monitoring core flow rate obtained by core flow rate calculation device, core flow rate monitoring device based on the reactor water level indication difference, core flow rate monitoring device based on pump differential pressure separately provided, and core support plate The difference between the core flow rates from the core flow rate monitoring device based on the differential pressure is calculated, compared, recorded and monitored.
And a monitoring device.

【0017】請求項2の炉心流量監視システムでは、狭
帯域炉水位検出器からの炉水位の指示値と、広帯域炉水
位検出器からの炉水位の指示値との差が、狭帯域/広帯
域炉水位指示差演算装置で算出された後、該炉水位の指
示差から炉水位指示差/炉心流量演算装置で炉心流量相
当値が算出され、各算出結果の炉心流量が、炉水位指示
差による炉心流量監視装置において監視されると共に、
併せて、該炉心流量の指示値と、ポンプ差圧による炉心
流量監視装置からの炉心流量の指示値と、炉心支持板差
圧による炉心流量監視装置からの炉心流量の指示値との
相互が、炉心流量指示差比較による記録・監視装置で比
較されて記録かつ監視される。
In the core flow rate monitoring system according to the present invention, the difference between the indicated value of the reactor water level from the narrow band reactor water level detector and the indicated value of the reactor water level from the broad band reactor water level detector is a narrow band / wide band reactor. After being calculated by the water level indicator difference calculation device, a reactor water level indicator difference / core flow rate equivalent value is calculated by the reactor water level indicator difference from the reactor water level indicator difference. While being monitored by the flow monitoring device,
At the same time, the indicated value of the core flow rate, the indicated value of the core flow rate from the core flow rate monitoring device by the pump differential pressure, and the indicated value of the core flow rate from the core flow rate monitoring device by the core support plate differential pressure, It is compared and recorded and monitored by the recording / monitoring device based on the core flow rate instruction difference comparison.

【0018】本発明に係る請求項3に記載の発明は、原
子炉圧力容器内の炉心部周囲に複数のポンプ手段を配
し、炉心部に対して冷却水を循環させる沸騰水型原子炉
の炉心流量監視システムにおいて、前記圧力容器内の狭
帯域、広帯域での所要複数箇所の各炉水位をそれぞれ検
出する複数の各狭帯域炉水位検出器、及び複数の各広帯
域炉水位検出器と、前記各狭帯域炉水位検出器、及び各
広帯域炉水位検出器で検出された各炉水位の平均値をそ
れぞれ算出すると共に、必要に応じて各炉水位の平均値
を炉内圧力、狭帯域炉水温度、及び広帯域炉水温度等の
諸条件に基づいて補正する狭帯域炉水位平均値算出・補
正手段、及び広帯域炉水位平均値算出・補正手段と、前
記各炉水位平均値算出・補正手段で算出、または補正し
て算出された各炉水位平均値の指示差を演算する狭帯域
/広帯域炉水位指示差演算装置と、前記狭帯域/広帯域
炉水位指示差演算装置で演算された指示差から炉心流量
相当値を演算する炉水位指示差/炉心流量演算装置と、
前記炉水位指示差/炉心流量演算装置で得た炉心流量を
監視する炉水位指示差による炉心流量監視装置とを備え
ることを特徴としている。
According to a third aspect of the present invention, there is provided a boiling water reactor in which a plurality of pump means are arranged around a core in a reactor pressure vessel and cooling water is circulated through the core. In the core flow rate monitoring system, a narrow band in the pressure vessel, a plurality of narrow-band reactor water level detectors for detecting the respective reactor water levels at a plurality of required locations in a wide band, and a plurality of broadband reactor water level detectors, The average value of each reactor water level detected by each narrow-band reactor water level detector and each broadband reactor water level detector is calculated, and the average value of each reactor water level is calculated as necessary, the pressure in the furnace, the narrow-band reactor water level, and the like. Temperature, and a narrow band reactor water level average calculation / correction means for correcting based on various conditions such as a broadband reactor water temperature, and a broadband reactor water level average calculation / correction means, and the respective reactor water level average calculation / correction means Reactor water calculated or corrected A narrow-band / wide-band reactor water level indicator difference calculating device for calculating an indicator difference of an average value, and a reactor water level indicator difference / calculator for calculating a core flow rate equivalent value from the indicator difference calculated by the narrow-band / wide-band reactor water level indicator difference calculating device. Core flow rate calculation device,
A core flow rate monitoring device based on a reactor water level difference that monitors the core flow rate obtained by the reactor water level difference / core flow rate calculation device.

【0019】請求項3の炉心流量監視システムでは、複
数の各狭帯域炉水位検出器からの炉水位の指示値と、複
数の各広帯域炉水位検出器からの炉水位の指示値との平
均値が、狭帯域炉水位平均値算出・補正手段、及び広帯
域炉水位平均値算出・補正手段でそれぞれに算出され、
かつ必要に応じて各炉水位の平均値が炉内圧力、狭帯域
炉水温度、及び広帯域炉水温度等の諸条件に基づいて補
正され、算出結果の各炉水位平均値、または補正された
平均値の差が、狭帯域/広帯域炉水位指示差演算装置で
算出された後、該炉水位の指示差から炉水位指示差/炉
心流量演算装置で炉心流量相当値が算出され、各算出結
果の炉心流量が、炉水位指示差による炉心流量監視装置
において監視される。
In the core flow rate monitoring system according to the third aspect, the average value of the indicated values of the reactor water level from the plurality of narrow-band reactor water level detectors and the indicated values of the reactor water level from the plurality of broadband reactor water level detectors is provided. Is calculated by the narrow-band reactor water level average calculation / correction means, and the broadband reactor water level average calculation / correction means, respectively.
And, if necessary, the average value of each reactor water level was corrected based on various conditions such as the furnace pressure, the narrow-band reactor water temperature, and the broadband reactor water temperature. After the difference between the average values is calculated by the narrow band / wide band reactor water level indicating difference calculating device, the core water flow equivalent value is calculated from the indicating difference of the reactor water level by the reactor water level indicating difference / core flow calculating device. Is monitored by the core flow rate monitoring device based on the reactor water level indication difference.

【0020】本発明に係る請求項4に記載の発明は、原
子炉圧力容器内の炉心部周囲に複数のポンプ手段を配
し、炉心部に対して冷却水を循環させる沸騰水型原子炉
の炉心流量監視システムにおいて、前記圧力容器内の狭
帯域、広帯域での所要複数箇所の各炉水位をそれぞれ検
出する複数の各狭帯域炉水位検出器、及び複数の各広帯
域炉水位検出器と、前記各狭帯域炉水位検出器、及び各
広帯域炉水位検出器で検出された各炉水位の平均値をそ
れぞれ算出すると共に、必要に応じて各炉水位の平均値
を炉内圧力、狭帯域炉水温度、及び広帯域炉水温度等の
諸条件に基づいて補正する狭帯域炉水位平均値算出・補
正手段、及び広帯域炉水位平均値算出・補正手段と、前
記各炉水位平均値算出・補正手段で算出、または補正し
て算出された各炉水位平均値の指示差を演算する狭帯域
/広帯域炉水位指示差演算装置と、前記狭帯域/広帯域
炉水位指示差演算装置で演算された指示差から炉心流量
相当値を演算する炉水位指示差/炉心流量演算装置と、
前記炉水位指示差/炉心流量演算装置で得た炉心流量を
監視する炉水位指示差による炉心流量監視装置と、前記
炉水位指示差による炉心流量監視装置、別に設けるポン
プ差圧による炉心流量監視装置、及び炉心支持板差圧に
よる炉心流量監視装置からの各炉心流量の指示差を比較
かつ演算して記録・監視する炉心流量指示差比較による
記録・監視装置とを備えることを特徴としている。
According to a fourth aspect of the present invention, there is provided a boiling water reactor in which a plurality of pump means are disposed around a core in a reactor pressure vessel and cooling water is circulated through the core. In the core flow rate monitoring system, a narrow band in the pressure vessel, a plurality of narrow-band reactor water level detectors for detecting the respective reactor water levels at a plurality of required locations in a wide band, and a plurality of broadband reactor water level detectors, The average value of each reactor water level detected by each narrow-band reactor water level detector and each broadband reactor water level detector is calculated, and the average value of each reactor water level is calculated as necessary, the pressure in the furnace, the narrow-band reactor water level, and the like. Temperature, and a narrow band reactor water level average calculation / correction means for correcting based on various conditions such as a broadband reactor water temperature, and a broadband reactor water level average calculation / correction means, and the respective reactor water level average calculation / correction means Reactor water calculated or corrected A narrow-band / wide-band reactor water level indicator difference calculating device for calculating an indicator difference of an average value, and a reactor water level indicator difference / calculator for calculating a core flow rate equivalent value from the indicator difference calculated by the narrow-band / wide-band reactor water level indicator difference calculating device. Core flow rate calculation device,
A core flow rate monitoring device based on a reactor water level indicator for monitoring a core flow obtained by the reactor water level indicator / core flow rate calculation device, a core flow rate monitoring device based on the reactor water level indicator difference, and a core flow rate monitoring device based on a pump differential pressure provided separately And a recording / monitoring device based on a core flow instruction difference comparison for comparing, calculating and recording / monitoring an instruction difference of each core flow from a core flow monitoring device based on a core support plate differential pressure.

【0021】請求項4の炉心流量監視システムでは、複
数の各狭帯域炉水位検出器からの炉水位の指示値と、複
数の各広帯域炉水位検出器からの炉水位の指示値との平
均値が、狭帯域炉水位平均値算出・補正手段、及び広帯
域炉水位平均値算出・補正手段でそれぞれに算出され、
かつ必要に応じて各炉水位の平均値が炉内圧力、狭帯域
炉水温度、及び広帯域炉水温度等の諸条件に基づいて補
正され、算出結果の各炉水位平均値、または補正された
平均値の差が、狭帯域/広帯域炉水位指示差演算装置で
算出された後、該炉水位の指示差から炉水位指示差/炉
心流量演算装置で炉心流量相当値が算出され、各算出結
果の炉心流量が、炉水位指示差による炉心流量監視装置
において監視されると共に、併せて、該炉心流量の指示
値と、ポンプ差圧による炉心流量監視装置からの炉心流
量の指示値と、炉心支持板差圧による炉心流量監視装置
からの炉心流量の指示値との相互が、炉心流量指示差比
較による記録・監視装置で比較されて記録かつ監視され
る。
In the core flow rate monitoring system according to the present invention, the average value of the indicated values of the reactor water level from the plurality of narrow-band reactor water level detectors and the indicated values of the reactor water level from the plurality of broadband reactor water level detectors is provided. Is calculated by the narrow-band reactor water level average calculation / correction means, and the broadband reactor water level average calculation / correction means, respectively.
And, if necessary, the average value of each reactor water level was corrected based on various conditions such as the furnace pressure, the narrow-band reactor water temperature, and the broadband reactor water temperature. After the difference between the average values is calculated by the narrow band / wide band reactor water level indicating difference calculating device, the core water flow equivalent value is calculated from the indicating difference of the reactor water level by the reactor water level indicating difference / core flow calculating device. The core flow rate is monitored by the core flow rate monitoring device based on the reactor water level indication difference, and at the same time, the core flow rate indication value, the core flow rate indication value from the core flow rate monitoring device based on the pump differential pressure, and the core support The core flow rate indication value from the core flow rate monitoring device based on the plate differential pressure is compared and recorded and monitored by a recording / monitoring device based on the core flow rate difference difference comparison.

【0022】[0022]

【発明の実施の形態】以下、本発明に係る改良型BWR
(ABWR)及び従来型BWRに共用可能な炉心流量監
視システムの実施形態について詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an improved BWR according to the present invention will be described.
An embodiment of a core flow rate monitoring system that can be shared by the (ABWR) and the conventional BWR will be described in detail.

【0023】図1及び図2は、本発明の第1及び第2の
各実施形態による改良型BWR(ABWR)の炉心流量
計測監視システムの概要を模式的に示す構成説明図、図
3は、同上図2の第2の実施形態における炉心流量監視
部の態様を具体的に示すブロック図である。また、図4
は本発明を適用した第3の実施形態による改良型BWR
(ABWR)の炉心流量計測監視システムの主要部構成
を示すブロック図、図5は同上炉水位検出部の詳細構成
を示すブロック図である。これらの図1ないし図5に示
す各実施形態の装置構成において、図6及び図7と同一
部分は同一符号で表す。
FIGS. 1 and 2 are schematic diagrams showing the outline of an improved BWR (ABWR) core flow rate measuring and monitoring system according to each of the first and second embodiments of the present invention. It is a block diagram which shows the aspect of the core flow rate monitoring part in 2nd Embodiment of FIG. 2 concretely. FIG.
Is an improved BWR according to a third embodiment to which the present invention is applied.
FIG. 5 is a block diagram showing a configuration of a main part of a core flow rate measuring and monitoring system of (ABWR), and FIG. 5 is a block diagram showing a detailed configuration of a reactor water level detection unit. In the apparatus configuration of each embodiment shown in FIGS. 1 to 5, the same parts as those in FIGS. 6 and 7 are denoted by the same reference numerals.

【0024】これらの第1、第2の各実施形態において
も、改良型BWR(ABWR)を構成する圧力容器1内
には、図1及び図2、図3に示されている如く、炉心部
2の下方側周囲に10台の各再循環ポンプ(各ポンプ手
段)8が配備されており、これらの各再循環ポンプ8に
よって、給水スパージャ9からの供給水と気水分離器4
からの飽和水ドレンとの混合水を炉心支持板3の下方側
から炉心部2内に送り込むことで再循環させるようにし
ている。
In each of the first and second embodiments, as shown in FIG. 1, FIG. 2, and FIG. 3, a core portion is provided in the pressure vessel 1 constituting the improved BWR (ABWR). The recirculation pumps (respective pump means) 10 are arranged around the lower side of the pump 2, and the recirculation pumps 8 supply the water supplied from the water supply sparger 9 and the steam-water separator 4.
The mixed water with the saturated water drain from the furnace is sent from the lower side of the core support plate 3 into the core portion 2 to be recirculated.

【0025】また同様に、圧力容器1内での冷却水の差
圧計測手段としては、炉水位計蒸気相ノズル13から蒸
気相配管14、凝縮槽15を介して基準水柱計装配管1
6を通した圧力水頭と、各炉水位計液相ノズル17,1
8からそれぞれ各別に変動水柱計装配管19,20を通
した圧力水頭との差圧を常時検出する狭帯域炉水位検出
器(LT,N/R)11、及び広帯域炉水位検出器(L
T,W/R)12とを設けると共に、この場合、炉水位
計蒸気相ノズル13、及び各炉水位計液相ノズル17,
18は、圧力容器1内の十分に広い流路部に開口される
ことで流路壁面形状等による影響を受けないようにされ
ており、これらの各水位検出器11,12によって検出
された各炉水位の差圧を対応する各炉水位計、つまり、
狭帯域炉水位計(N/R)21と広帯域炉水位計(W/
R)22とに表示させている。
Similarly, as a means for measuring the pressure difference of the cooling water in the pressure vessel 1, the reference water column instrumentation pipe 1 through the steam phase pipe 14 and the condensation tank 15 from the reactor water level steam phase nozzle 13 is used.
6 and the pressure nozzles 17 and 1
The narrow-band reactor water level detector (LT, N / R) 11 and the wide-band reactor water level detector (L) which constantly detect the pressure difference from the pressure head through the variable water column instrumentation pipes 19 and 20 respectively.
T, W / R) 12, and in this case, a reactor water level gauge vapor phase nozzle 13, and each furnace water level gauge liquid phase nozzle 17,
18 is opened to a sufficiently wide flow path in the pressure vessel 1 so as not to be affected by the flow path wall shape or the like, and each of the water level detectors 11 and 12 detects Each reactor water level gauge corresponding to the differential pressure of the reactor water level,
Narrow band reactor water level meter (N / R) 21 and broad band reactor water level meter (W /
R) 22.

【0026】さらに、炉心流量を監視するための炉心流
量監視システムとしては、該システムの一部を構成し
て、一方で、各再循環ポンプ8に対して冷却水再循環ポ
ンプ差圧検出器(DPT)41を設けると共に、それぞ
れに対応する各ポンプ回転数検出器からの回転数信号
(ポンプ回転数信号)で各ポンプの運転状態信号を、該
差圧検出器41からの差圧信号(ポンプ差圧信号)で各
ポンプの平均差圧をそれぞれに求め、これらの各信号と
炉水温度(密度)信号等とを演算装置(循環ポンプ差圧
/炉心流量演算装置)42に入力して炉心流量を演算
し、かつ該炉心流量を監視装置(循環ポンプ差圧による
炉心流量監視装置)43によって常時監視可能にしてお
き、他方では、炉心支持板差圧検出器(DPT)51で
検出した差圧信号(炉心支持板差圧信号)と原子炉出力
信号等とを演算装置(炉心支持板差圧/炉心流量演算装
置)52に入力して炉心流量を演算し、かつ該炉心流量
を監視装置(炉心支持板差圧による炉心流量監視装置)
53によって常時監視可能にすることについても全く同
様である。
Further, as a core flow rate monitoring system for monitoring the core flow rate, a part of the system is constituted, and on the other hand, a cooling water recirculation pump differential pressure detector ( DPT) 41, an operating state signal of each pump is provided by a rotation speed signal (pump rotation speed signal) from each corresponding pump rotation speed detector, and a differential pressure signal (pump) from the differential pressure detector 41 is provided. The average differential pressure of each pump is obtained by the differential pressure signal), and these signals and the reactor water temperature (density) signal and the like are input to an arithmetic unit (circulating pump differential pressure / core flow rate arithmetic unit) 42 and the core The flow rate is calculated and the core flow rate can be constantly monitored by a monitoring device (core flow rate monitoring device based on circulating pump differential pressure) 43. On the other hand, the difference detected by a core support plate differential pressure detector (DPT) 51 is detected. Pressure signal (core The core plate differential pressure signal) and the reactor output signal are input to an arithmetic unit (core support plate differential pressure / core flow rate arithmetic unit) 52 to calculate the core flow rate and monitor the core flow rate (core support plate). Core flow rate monitoring device based on differential pressure)
This is exactly the same as the case where the monitoring can be performed at all times by 53.

【0027】ここで、上記各構成による第1及び第2の
各実施形態の場合、それぞれの狭帯域と広帯域との各炉
水位検出器11,12に対しては、圧力容器1の蒸気相
部に開口されている炉水位計蒸気相ノズル13からの基
準水柱計装配管16を共用に接続させているが、変動水
柱計装配管19,20については、それぞれの測定範囲
の要求に伴い、狭帯域炉水位検出器11の炉水位計液相
ノズル17が給水スパージャ9よりも上方に開口され、
広帯域炉水位検出器12の炉水位計液相ノズル18が給
水スパージャ9よりもかなり下方に開口されている。
Here, in the case of the first and second embodiments having the above-described configurations, the vapor phase section of the pressure vessel 1 is provided for each of the narrow-band and wide-band reactor water level detectors 11 and 12. Although the reference water column instrumentation piping 16 from the furnace water level vapor phase nozzle 13 which is opened at the same time is connected in common, the variable water column instrumentation pipings 19 and 20 are narrowed according to the requirements of their respective measurement ranges. The furnace water level gauge liquid phase nozzle 17 of the zone furnace water level detector 11 is opened above the water supply sparger 9,
The reactor water level gauge liquid phase nozzle 18 of the broadband reactor water level detector 12 is opened considerably below the water supply sparger 9.

【0028】この配置構成の結果、各炉水位計液相ノズ
ル17,18の開口部における圧力容器1内での冷却水
の流動状況は、狭帯域炉水位検出器11の炉水位計液相
ノズル17の開口側で殆んど流速ゼロであるのに対し
て、広帯域炉水位検出器12の炉水位計液相ノズル18
の開口側では、各再循環ポンプ8によって給水スパージ
ャ9からの供給水と気水分離器4からの飽和水ドレンと
の混合水が炉心流量として炉心部2部内に送り込まれる
ようになっているので、該炉心流量の増減に対応した流
速の影響を受けることになる。すなわち、このように広
帯域炉水位検出器12の炉水位計液相ノズル18が、圧
力容器1内の流速存在部に開口しているため、その変動
水柱計装配管20内での圧力水頭は、該流速増減の影響
を受けることでベルヌーイの定理からも明らかなように
静圧の増減を生じ、これによって広帯域炉水位検出器1
2による炉水位差圧の検出値が変動する。
As a result of this arrangement, the flow of the cooling water in the pressure vessel 1 at the openings of the reactor water level gauge liquid phase nozzles 17 and 18 is determined by the reactor water level gauge liquid phase nozzle of the narrow band reactor water level detector 11. While the flow velocity is almost zero on the opening side of the furnace 17, the liquid level nozzle 18 of the reactor water level meter of the broadband reactor water level detector 12 is used.
On the opening side, the mixed water of the supply water from the water supply sparger 9 and the saturated water drain from the steam separator 4 is sent into the core portion 2 as the core flow rate by each recirculation pump 8. Therefore, the flow rate is affected by the increase / decrease of the core flow rate. That is, since the reactor water level meter liquid phase nozzle 18 of the broadband reactor water level detector 12 is open to the flow velocity existing portion in the pressure vessel 1 as described above, the pressure head in the variable water column instrumentation pipe 20 is: Under the influence of the increase and decrease of the flow velocity, the increase and decrease of the static pressure occur as is clear from Bernoulli's theorem.
The detected value of the reactor water level differential pressure due to 2 fluctuates.

【0029】一方、前記のように圧力容器1内での冷却
水の流速の影響を大きく受ける広帯域炉水位検出器12
に対して、狭帯域炉水位検出器11は、冷却水の流速の
影響を殆んど受けないため、この改良型BWR(ABW
R)の通常の運転稼働状態では、狭帯域炉水位計11の
炉水位指示と広帯域炉水位計12の炉水位指示との間に
差を生じて、狭帯域炉水位計11の炉水位指示値よりも
広帯域炉水位計12の炉水位指示値の方が低めになる。
そして、この炉水位の指示差は、圧力容器1内での冷却
水の流速に対応して増減することから、ここでの炉水位
の指示差によって該流速を比較的正確かつ容易に測定し
て確認し得るのであり、しかも、このように冷却水の流
速の確認ができれば、圧力容器1内の流路断面積が本来
的に既知である点とも相俟って、その冷却水の内部流
量、換言すると、炉心流量の可及的正確な測定が可能に
なる。
On the other hand, as described above, the broadband reactor water level detector 12 greatly affected by the flow rate of the cooling water in the pressure vessel 1
On the other hand, since the narrow-band reactor water level detector 11 is hardly affected by the flow rate of the cooling water, the improved BWR (ABW
In the normal operation state of R), a difference is generated between the reactor water level indication of the narrow-band reactor water level gauge 11 and the reactor water level indication of the broad-band reactor water level gauge 12, and the reactor water level indication value of the narrow-band reactor water level gauge 11 is obtained. The indicated value of the reactor water level of the broadband reactor water level gauge 12 is lower than that.
Since the indicated difference in the furnace water level increases and decreases in accordance with the flow rate of the cooling water in the pressure vessel 1, the flow rate can be measured relatively accurately and easily by the indicated difference in the furnace water level. If the flow rate of the cooling water can be confirmed in this way, the internal flow rate of the cooling water, In other words, the core flow can be measured as accurately as possible.

【0030】そこで、本発明の図1に示す第1の実施形
態による改良型BWR(ABWR)の炉心流量監視シス
テムにおいては、先に述べた従来方式の構成に併用し
て、狭帯域炉水位検出器(LT,N/R)11で検出さ
れた炉水位の差圧指示信号、及び広帯域炉水位検出器
(LT,W/R)12で検出された炉水位の差圧指示信
号をそれぞれに入力することで、その指示差を演算する
演算装置(狭帯域/広帯域炉水位指示差演算装置)61
と、該演算装置61の炉水位指示差に対応した流速/炉
心流量相当値を演算する演算装置(炉水位指示差/炉心
流量演算装置)62とを順次に設け、該演算装置62の
演算結果である炉心流量を監視装置(炉水位指示差によ
る炉心流量監視装置)63によって常時監視可能にする
のである。
Therefore, in the improved BWR (ABWR) core flow rate monitoring system according to the first embodiment shown in FIG. 1 of the present invention, the narrow-band reactor water level detection is performed in combination with the above-mentioned conventional system. The reactor water level differential pressure instruction signal detected by the detector (LT, N / R) 11 and the reactor water level differential pressure instruction signal detected by the broadband reactor water level detector (LT, W / R) 12 are respectively input. To calculate the indicated difference (a narrow band / wide band reactor water level indicated difference calculating unit) 61
And an arithmetic unit (reactor water level instruction difference / core flow rate arithmetic unit) 62 for calculating a flow velocity / core flow rate equivalent value corresponding to the reactor water level instruction difference of the arithmetic unit 61 are sequentially provided. The core flow rate can be constantly monitored by the monitoring device (core flow rate monitoring device based on the reactor water level indication difference) 63.

【0031】従って、本第1の実施形態による改良型B
WR(ABWR)の炉心流量監視システムの場合には、
狭帯域炉水位検出器11からの炉水位の指示値と、広帯
域炉水位検出器12からの炉水位の指示値との差が、演
算装置61によって算出された後、該炉水位の指示差か
ら演算装置62によって炉心流量相当値が算出され、こ
れらの各算出結果の炉心流量が、炉心流量監視装置63
において容易に監視可能になるもので、この場合には、
各炉水位の測定かつ検出箇所が、特に比較的広い流路断
面積を有していることから、装置自体の長期的な炉心流
量−発生差圧特性が経時、経年変化等の影響を受けずに
済み、この結果として、常時正確な炉心流量を把握し得
るのである。
Therefore, the improved B according to the first embodiment
In the case of WR (ABWR) core flow rate monitoring system,
After the difference between the indicated value of the reactor water level from the narrowband reactor water level detector 11 and the indicated value of the reactor water level from the broadband reactor water level detector 12 is calculated by the arithmetic unit 61, The equivalent value of the core flow rate is calculated by the arithmetic unit 62, and the core flow rate obtained as a result of each of these calculations is calculated by the
Can be easily monitored in this case, in this case,
Since the measurement and detection points of each reactor water level have a particularly wide flow path cross-sectional area, the long-term core flow rate-generated differential pressure characteristics of the device itself are not affected by aging, aging, etc. As a result, an accurate core flow rate can always be grasped.

【0032】また、本発明の図2に示す第2の実施形態
による改良型BWR(ABWR)の炉心流量監視システ
ムにおいては、上記第1の実施形態の構成に加えて図3
にも要約して示す如く、前記監視装置(炉水位指示差に
よる炉心流量監視装置)63からの炉心流量の指示信号
と、先に述べた従来方式による各監視装置、つまり、監
視装置(循環ポンプ差圧による炉心流量監視装置)4
3、及び監視装置(炉心支持板差圧による炉心流量監視
装置)53からの各炉心流量の指示信号とを入力し、こ
れらの各指示信号を相互に比較かつ演算して記録する記
録・監視装置(炉心流量指示比較による記録・監視装
置)71を設けたものである。
Further, in the core flow rate monitoring system of the improved BWR (ABWR) according to the second embodiment shown in FIG. 2 of the present invention, in addition to the configuration of the first embodiment, FIG.
As shown in summary, the instruction signal of the core flow rate from the monitoring device (core flow rate monitoring device based on the difference in the reactor water level) 63 and each monitoring device according to the conventional method described above, that is, the monitoring device (circulation pump) Core flow rate monitoring device by differential pressure) 4
3. A recording / monitoring device that inputs an instruction signal of each core flow rate from a monitoring device (core flow rate monitoring device based on a core support plate differential pressure) 53, compares these instruction signals with each other, calculates and records the signals. (Recording / monitoring device based on core flow rate instruction comparison) 71 is provided.

【0033】従って、本第2の実施形態による改良型B
WR(ABWR)の炉心流量監視システムの場合には、
前記第1の実施形態と同様な作用、効果を得られるほか
に、炉心流量監視装置63からの炉心流量の指示値と、
従来方式による炉心流量監視装置43、53からの各炉
心流量の指示値との相互が、記録・監視装置で比較され
て記録かつ監視されるもので、この場合には、該記録・
監視に基づき、装置自体の経時、経年変化等の確認が可
能になると共に、必要に応じては、その補正等にも役立
てることができる。
Therefore, the improved B according to the second embodiment
In the case of WR (ABWR) core flow rate monitoring system,
In addition to obtaining the same operation and effect as the first embodiment, an instruction value of the core flow rate from the core flow rate monitoring device 63,
The respective values of the core flow rates from the core flow rate monitoring devices 43 and 53 according to the conventional method are compared with each other and recorded and monitored by a recording / monitoring device.
Based on the monitoring, it is possible to confirm the aging, aging, etc. of the device itself, and it can also be used for correction and the like if necessary.

【0034】次に、本発明の図4及び図5に示す第3の
実施形態による改良型BWR(ABWR)の炉心流量監
視システムは、上記第1及び第2の各実施形態による装
置構成において、前記圧力容器1内の狭帯域、及び広帯
域における所要複数箇所の各炉水位をそれぞれに検出す
る複数の各狭帯域炉水位検出器11と、同様に複数の各
広帯域炉水位検出器12を設けると共に、各狭帯域炉水
位検出器11群に対しては、その検出される各狭帯域炉
水位の平均値を算出するN/R平均値算出回路81を設
け、各広帯域炉水位検出器12群に対しては、その検出
される広狭帯域炉水位の平均値を算出するW/R平均値
算出回路82を設けることにより、これらの各狭帯域炉
水位の平均値(または後述する補正された各狭帯域炉水
位の平均値)と各広帯域炉水位の平均値(同様に補正さ
れた各狭帯域炉水位の平均値)とを前記演算装置(狭帯
域/広帯域炉水位指示差演算装置)61で処理して両者
間の指示差、ここでは、各炉水位平均値の指示差を得
て、以下、前記と同様の操作を行うのである。
Next, the improved BWR (ABWR) core flow rate monitoring system according to the third embodiment shown in FIGS. 4 and 5 of the present invention is similar to the apparatus configuration according to the first and second embodiments described above. A plurality of narrow-band reactor water level detectors 11 for detecting the respective reactor water levels at a plurality of required locations in a narrow band and a wide band in the pressure vessel 1, and a plurality of broadband reactor water level detectors 12 are similarly provided. For each of the narrow band reactor water level detectors 11, an N / R average value calculation circuit 81 for calculating the average value of each detected narrow band reactor water level is provided. On the other hand, by providing a W / R average value calculating circuit 82 for calculating the average value of the detected wide- and narrow-band reactor water levels, the average value of each of these narrow-band reactor water levels (or each corrected narrow-band reactor water level described later) is obtained. Zone furnace water level average) The average value of the zone water level (the average value of each narrow-band reactor water level corrected in the same manner) is processed by the arithmetic unit (narrow-band / wide-band reactor water level instruction difference arithmetic unit) 61 to indicate the difference between the two. Then, the difference between the furnace water level average values is obtained, and thereafter, the same operation as described above is performed.

【0035】すなわち、本第3の実施形態による改良型
BWR(ABWR)の炉心流量監視システムの場合に
は、先に述べた第1及び第2の各実施形態における各狭
帯域炉水位の指示値と各広帯域炉水位の指示値に代え
て、各狭帯域炉水位の平均値と各広帯域炉水位の平均値
を用いるもので、一層正確な炉心流量が得られ、かつそ
の監視が可能になるのである。
That is, in the case of the improved BWR (ABWR) core flow rate monitoring system according to the third embodiment, the indicated value of each narrow-band reactor water level in each of the first and second embodiments described above. Instead of using the indicated value of each broadband reactor water level, the average value of each narrowband reactor water level and the average value of each broadband reactor water level are used, so that a more accurate core flow rate can be obtained and its monitoring becomes possible. is there.

【0036】そして、本第3の実施形態においては、図
5に示す如く、前記各狭帯域炉水位の平均値と各広帯域
炉水位の平均値とに対して、原子炉炉圧検出器83から
の炉圧検出信号に基づいて補正を加える各原子炉圧力/
密度補正回路84,85、各計装配管19,20内の温
度を検出する温度検出器86からの温度検出信号に基づ
いて補正を加える各計装配管周囲温度/密度補正回路8
7,88を設けたり、また、各広帯域炉水位の平均値に
対して、炉水温度検出器89からの炉水温度検出信号に
基づいて補正を加える炉水サブクール温度/炉水密度補
正回路90を設けたり、さらには、その他の図示しない
炉水位検出器等からの検出信号に基づいて補正を加える
N/R平均値算出回路91,W/R平均値算出回路92
等を設けることで、最終的にN/R炉水位補正/平均化
信号93、W/R炉水位補正/平均化信号94とし、必
要に応じて、これらの補正された平均値を使い分けるよ
うにするもので、ここでは、各炉水位の補正された平均
値を用いることによってより一層正確な炉心流量が得ら
れ、かつその監視が可能になるのである。
In the third embodiment, as shown in FIG. 5, the reactor pressure detector 83 compares the average value of each narrow-band reactor water level and the average value of each broad-band reactor water level with each other. Reactor pressure to be corrected based on the reactor pressure detection signal of
Density correction circuits 84 and 85, and each instrumentation pipe ambient temperature / density correction circuit 8 that performs correction based on a temperature detection signal from a temperature detector 86 that detects the temperature inside each instrumentation pipe 19 or 20.
7 and 88, and a reactor water subcool temperature / reactor water density correction circuit 90 for correcting the average value of each reactor water level based on the reactor water temperature detection signal from the reactor water temperature detector 89. And an N / R average value calculation circuit 91 and a W / R average value calculation circuit 92 for making corrections based on detection signals from other reactor water level detectors (not shown).
By providing the N / R reactor water level correction / averaging signal 93 and the W / R reactor water level correction / averaging signal 94, these corrected average values can be properly used as necessary. In this case, a more accurate core flow rate can be obtained and monitored by using the corrected average value of each reactor water level.

【0037】なお、上記各実施形態においては、本発明
を改良型BWR(ABWR)の炉心流量監視システムに
適用した場合について述べたが、従来型BWRの炉心流
量監視システムに対しても同様もしくはほぼ同様に適用
することが可能であり、同様もしくはほぼ同様な作用、
効果が得られる。
In each of the above embodiments, the case where the present invention is applied to the improved BWR (ABWR) core flow rate monitoring system has been described. However, the same or almost the same applies to the conventional BWR core flow rate monitoring system. It can be applied in the same way, with similar or almost similar actions,
The effect is obtained.

【0038】[0038]

【発明の効果】以上、各実施形態によって詳述したよう
に、本発明の請求項1の炉心流量監視システムによれ
ば、狭帯域炉水位検出器による炉水位の指示値と、広帯
域炉水位検出器による炉水位の指示値との差を狭帯域/
広帯域炉水位指示差演算装置によって算出し、該炉水位
の指示差から炉水位指示差/炉心流量演算装置によって
炉心流量を得た上で、この炉心流量を炉水位指示差によ
る炉心流量監視装置によって監視するようにしたから、
従来方式による炉心流量監視システムに比較して、長期
的な経時、経年変化等の影響を受ける惧れがなく、常時
正確な炉心流量を把握し得るという優れた特長がある。
As described above in detail in each embodiment, according to the core flow rate monitoring system of the first aspect of the present invention, the indicated value of the reactor water level by the narrow band reactor water level detector and the detection of the broadband reactor water level are provided. The difference between the reactor water level indicated by the filter and the
After calculating by a broadband reactor water level indicating difference calculating device and obtaining a core flow rate by the reactor water level indicating difference / core flow rate calculating device from the indicating difference of the reactor water level, the core flow rate is calculated by a core flow rate monitoring device based on the reactor water level indicating difference. I've been monitoring it,
Compared with the conventional core flow rate monitoring system, there is no danger of being affected by long-term aging, aging, and the like, and there is an excellent feature that an accurate core flow rate can always be obtained.

【0039】本発明の請求項2の炉心流量監視システム
によれば、狭帯域炉水位検出器による炉水位の指示値
と、広帯域炉水位検出器による炉水位の指示値との差を
狭帯域/広帯域炉水位指示差演算装置によって算出し、
該炉水位の指示差から炉水位指示差/炉心流量演算装置
によって炉心流量を得た上で、この炉心流量を炉水位指
示差による炉心流量監視装置によって監視するように
し、さらに、この炉心流量の指示値と、従来方式でのポ
ンプ差圧による炉心流量監視装置からの炉心流量の指示
値と、炉心支持板差圧による炉心流量監視装置からの炉
心流量の指示値との相互を炉心流量指示差比較による記
録・監視装置によって比較し、かつ記録・監視するよう
にしたから、第1の実施形態の場合と同様な作用、効果
が得られるほかに、ここでの記録・監視に基づき、装置
自体の経時、経年変化等の確認が可能になるという利点
がある。
According to the core flow rate monitoring system of the second aspect of the present invention, the difference between the indicated value of the reactor water level by the narrow band reactor water level detector and the indicated value of the reactor water level by the broadband reactor water level detector is determined by the narrow band / Calculated by the wide-band reactor water level difference calculator,
After obtaining the core flow rate by the reactor water level difference / core flow rate calculation device from the reactor water level difference, the core flow rate is monitored by a core flow rate monitoring device based on the reactor water level difference. The difference between the indicated value, the indicated value of the core flow rate from the core flow rate monitoring device based on the pump differential pressure in the conventional method, and the indicated value of the core flow rate from the core flow rate monitoring device based on the differential pressure of the core support plate is referred to as the core flow rate difference. Since the comparison and recording / monitoring are performed by the recording / monitoring device by comparison, the same operation and effect as those in the first embodiment can be obtained. There is an advantage that it is possible to check the aging, secular change, etc.

【0040】本発明の請求項3の炉心流量監視システム
によれば、複数の各狭帯域炉水位検出器からの炉水位の
指示値と、複数の各広帯域炉水位検出器からの炉水位の
指示値との平均値を狭帯域炉水位平均値算出・補正手
段、及び広帯域炉水位平均値算出・補正手段によってそ
れぞれに算出し、かつ必要に応じて各炉水位の平均値を
炉内圧力、狭帯域炉水温度、及び広帯域炉水温度等の諸
条件に基づいて補正し、さらに、各炉水位平均値の差、
または補正された平均値の差を狭帯域/広帯域炉水位指
示差演算装置によって算出し、該炉水位平均値、または
補正された平均値の指示差から炉水位指示差/炉心流量
演算装置によって炉心流量を得た上で、この炉心流量を
炉水位指示差による炉心流量監視装置によって監視する
ようにしたから、第1の実施形態での作用、効果に加え
て、ここでは、各炉水位の平均値、または補正された平
均値を用いるため、一層正確な正確な炉心流量が得られ
るのである。
According to the core flow rate monitoring system of the third aspect of the present invention, an instruction value of the reactor water level from each of the plurality of narrow-band reactor water level detectors and an instruction of the reactor water level from each of the plurality of broadband reactor water level detectors. The average value and the average value of each reactor water level are calculated by the narrow-band reactor water level average value calculation / correction means and the broadband reactor water level average value calculation / correction means, respectively, and the average value of each Correction based on various conditions such as zone reactor water temperature and broadband reactor water temperature, and furthermore, the difference between each reactor water level average value,
Alternatively, the difference between the corrected average values is calculated by a narrow-band / wide-band reactor water level indicating difference calculating device, and the core is calculated by the reactor water level indicating difference / core flow rate calculating device from the reactor water level average value or the corrected average value indicating difference. After obtaining the flow rate, this core flow rate is monitored by the core flow rate monitoring device based on the difference in the reactor water level. In addition to the operation and effect in the first embodiment, here, the average of each reactor water level is used. The use of the value, or the corrected average, results in a more accurate and accurate core flow rate.

【0041】本発明の請求項4の炉心流量監視システム
によれば、複数の各狭帯域炉水位検出器からの炉水位の
指示値と、複数の各広帯域炉水位検出器からの炉水位の
指示値との平均値を狭帯域炉水位平均値算出・補正手
段、及び広帯域炉水位平均値算出・補正手段によってそ
れぞれに算出し、かつ必要に応じて各炉水位の平均値が
炉内圧力、狭帯域炉水温度、及び広帯域炉水温度等の諸
条件に基づいて補正し、また、各炉水位平均値の差、ま
たは補正された平均値の差を狭帯域/広帯域炉水位指示
差演算装置によって算出し、該炉水位平均値、または補
正された平均値の指示差から炉水位指示差/炉心流量演
算装置によって炉心流量を得た上で、この炉心流量を炉
水位指示差による炉心流量監視装置によって監視するよ
うにし、さらに、この炉心流量の指示値と、従来方式で
のポンプ差圧による炉心流量監視装置からの炉心流量の
指示値と、炉心支持板差圧による炉心流量監視装置から
の炉心流量の指示値との相互を炉心流量指示差比較によ
る記録・監視装置によって比較し、かつ記録・監視する
ようにしたから、第2の実施形態での作用、効果に加え
て、ここでは、各炉水位の平均値、または補正された平
均値を用いるため、より一層正確な正確な炉心流量が得
られるのである。
According to the core flow rate monitoring system of the present invention, the reactor water level indication value from each of the plurality of narrow band reactor water level detectors and the reactor water level indication from each of the plurality of broadband reactor water level detectors. The average value of each reactor water level is calculated by the narrow-band reactor water level average calculation / correction means and the broadband reactor water level average calculation / correction means. It is corrected based on various conditions such as the zone water temperature and the broadband reactor water temperature, and the difference between each reactor water level average value or the difference between the corrected average values is calculated by the narrowband / wideband reactor water level indication difference calculation device. After calculating and obtaining the core flow rate from the indicated difference of the reactor water level average value or the corrected average value by the reactor water level instruction difference / core flow rate calculating device, the core flow rate is measured by the reactor flow level indicator. To be monitored by The core flow indication value, the core flow rate indication value from the core flow rate monitoring device based on the pump differential pressure in the conventional method, and the core flow rate indication value from the core flow rate monitoring device based on the core support plate differential pressure are compared with each other. Since the comparison and recording / monitoring are performed by the recording / monitoring device based on the flow rate instruction difference comparison, in addition to the operation and effect in the second embodiment, here, the average value of each reactor water level or the corrected Since the average value is used, a more accurate and accurate core flow rate can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態による改良型BWR(ABW
R)の炉心流量監視システムの概要を模式的に示す構成
説明図。
FIG. 1 shows an improved BWR (ABW) according to a first embodiment.
FIG. 1 is a configuration explanatory view schematically showing an outline of a core flow rate monitoring system of R).

【図2】第2の実施形態による改良型BWR(ABW
R)の炉心流量監視システムの概要を模式的に示す構成
説明図。
FIG. 2 shows an improved BWR (ABW) according to a second embodiment;
FIG. 1 is a configuration explanatory view schematically showing an outline of a core flow rate monitoring system of R).

【図3】図2の第2の実施形態における炉心流量監視部
の態様を具体的に示すブロック図。
FIG. 3 is a block diagram specifically showing an aspect of a core flow rate monitoring unit in the second embodiment of FIG. 2;

【図4】第3の実施形態による改良型BWR(ABW
R)の炉心流量監視システムの主要部構成を示すブロッ
ク図。
FIG. 4 shows an improved BWR (ABW) according to a third embodiment;
FIG. 2 is a block diagram showing a main configuration of a core flow rate monitoring system of R).

【図5】図4の炉水位検出部の詳細構成を示すブロック
図。
FIG. 5 is a block diagram showing a detailed configuration of a reactor water level detection unit in FIG. 4;

【図6】従来型BWRにおける炉心流量監視システムの
概要を模式的に示す構成説明図。
FIG. 6 is a configuration explanatory view schematically showing an outline of a core flow rate monitoring system in a conventional BWR.

【図7】改良型BWR(ABWR)における炉心流量監
視システムの概要を模式的に示す構成説明図。
FIG. 7 is a configuration explanatory view schematically showing an outline of a core flow rate monitoring system in an improved BWR (ABWR).

【符号の説明】[Explanation of symbols]

1……原子炉圧力容器 2……炉心部 3……炉心支持板 4……気水分離器 5……蒸気乾燥器 6……主蒸気ノズル 7……ジェットポンプ 8……再循環ポンプ 9……給水スパージャ 11……狭帯域炉水位
検出器 12……広帯域炉水位検出器 13……炉水位計蒸
気相ノズル 14……蒸気相配管 15……凝縮槽 16……基準水柱計装配管 17,18…炉水位
計液相ノズル 19,20…変動水柱計装配管 21……狭帯域炉水
位計 22……広帯域炉水位計 31……ジェットポ
ンプ差圧検出器 32……演算装置(ジェットポンプ差圧/炉心流量演算
装置) 33……監視装置(ジェットポンプ差圧による炉心流量
監視装置) 41……冷却水再循環ポンプ差圧検出器 42……演算装置(循環ポンプ差圧/炉心流量演算装
置) 43……監視装置(循環ポンプ差圧による炉心流量監視
装置) 51……炉心支持板差圧検出器 52……演算装置(炉心支持板差圧/炉心流量演算装
置) 53……監視装置(炉心支持板差圧による炉心流量監視
装置) 61……演算装置(狭帯域/広帯域炉水位指示差演算装
置) 62……演算装置(炉水位指示差/炉心流量演算装置) 63……監視装置(炉水位指示差による炉心流量監視装
置) 71……記録・監視装置(炉心流量指示比較による記録
・監視装置) 81……N/R平均値算出回路 82……W/R平
均値算出回路 83……原子炉炉圧検出器 84,85…原子炉圧力/密度補正回路 86……温度検出器 87,88…計装配管周囲温度/密度補正回路 89……炉水温度検出器 90……炉水サブクール温度/炉水密度補正回路 91……N/R平均値算出回路 92……W/R平均値算出回路 93……N/R炉水位補正/平均化信号 94……W/R炉水位補正/平均化信号
DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel 2 ... Core part 3 ... Core support plate 4 ... Steam / water separator 5 ... Steam dryer 6 ... Main steam nozzle 7 ... Jet pump 8 ... Recirculation pump 9 ... … Water supply sparger 11… narrow-band furnace water level detector 12… broad-band furnace water level detector 13… furnace water level gauge vapor phase nozzle 14… vapor phase piping 15… condensing tank 16… standard water column instrumentation piping 17, Reference numeral 18: Furnace water level meter liquid phase nozzle 19, 20: Variable water column instrumentation pipe 21: Narrow band furnace water level meter 22 ... Broadband furnace water level meter 31 ... Jet pump differential pressure detector 32 ... Calculation device (jet pump differential) Pressure / core flow rate calculating device 33 ... monitoring device (core flow rate monitoring device by jet pump differential pressure) 41 ... cooling water recirculation pump differential pressure detector 42 ... calculating device (circulating pump differential pressure / core flow rate calculating device) 43) Monitoring device (circulation) Core flow rate monitoring device by pump differential pressure) 51: Core support plate differential pressure detector 52: Calculation device (core support plate differential pressure / core flow rate calculation device) 53: Monitoring device (core flow rate by core support plate differential pressure) Monitoring device 61 Computing device (narrow band / broadband reactor water level indicator difference computing device) 62 ... Computing device (reactor water level indicator difference / core flow rate computing device) 63 ... Monitoring device (core flow monitoring by reactor water level indicator difference) 71) Recording / monitoring device (recording / monitoring device based on comparison of core flow rate instructions) 81 N / R average value calculation circuit 82 W / R average value calculation circuit 83 Reactor pressure detector 84 , 85: Reactor pressure / density correction circuit 86: Temperature detector 87, 88: Instrumentation piping ambient temperature / density correction circuit 89: Reactor water temperature detector 90: Reactor water subcool temperature / reactor water density correction circuit 91 N / R average calculation Circuit 92 ...... W / R average value calculating circuit 93 ...... N / R reactor water level correction / averaged signal 94 ...... W / R reactor water level correction / averaged signal

フロントページの続き (56)参考文献 特開 平9−281274(JP,A) 特開 平9−133782(JP,A) 特開 平9−72987(JP,A) 特開 平5−302840(JP,A) 特開 昭60−13287(JP,A) 特開 昭59−60393(JP,A) UTSUNO H et.al.," Measuring Method f or ABWR Core Flow Rate.”J.Nucl.Sci.T echnol.,Vol.30,,No. 9.,p.946−955(1993) (58)調査した分野(Int.Cl.6,DB名) G21C 17/032 GDB G01F 1/00 JICSTファイル(JOIS)Continuation of the front page (56) References JP-A-9-281274 (JP, A) JP-A-9-133782 (JP, A) JP-A-9-72987 (JP, A) JP-A-5-302840 (JP, A) , A) JP-A-60-13287 (JP, A) JP-A-59-60393 (JP, A) UTSUNO Het. al. , "Measuring Method for ABWR Core Flow Rate." Nucl. Sci. Technol. , Vol. 30, No. 9 , P. 946-955 (1993) (58) Field surveyed (Int. Cl. 6 , DB name) G21C 17/032 GDB G01F 1/00 JICST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原子炉圧力容器内の炉心部周囲に複数の
ポンプ手段を配し、炉心部に対して冷却水を循環させる
沸騰水型原子炉の炉心流量監視システムにおいて、 前記圧力容器内の狭帯域、広帯域の各炉水位をそれぞれ
に検出する狭帯域炉水位検出器、及び広帯域炉水位検出
器と、 前記各炉水位検出器で検出された炉水位の指示差を演算
する狭帯域/広帯域炉水位指示差演算装置と、 前記狭帯域/広帯域炉水位指示差演算装置で演算された
指示差から炉心流量相当値を演算する炉水位指示差/炉
心流量演算装置と、 前記炉水位指示差/炉心流量演算装置で得た炉心流量を
監視する炉水位指示差による炉心流量監視装置とを備え
ることを特徴とする炉心流量監視システム。
1. A boiling water reactor core flow rate monitoring system for arranging a plurality of pump means around a core part in a reactor pressure vessel and circulating cooling water to the core part, wherein: A narrow-band reactor water level detector for detecting each of the narrow-band and wide-band reactor water levels, and a broad-band reactor water level detector; and a narrow-band / wide-band that calculates an instruction difference between the reactor water levels detected by the respective reactor water level detectors. A reactor water level indicator difference calculator, a reactor water level indicator difference / core flow rate calculator for calculating a core flow rate equivalent value from the indicator difference calculated by the narrow band / broadband reactor water level indicator difference calculator, and the reactor water level indicator difference / A core flow rate monitoring system, comprising: a core flow rate monitoring device based on a reactor water level indication difference for monitoring a core flow rate obtained by a core flow rate calculation device.
【請求項2】 原子炉圧力容器内の炉心部周囲に複数の
ポンプ手段を配し、炉心部に対して冷却水を循環させる
沸騰水型原子炉の炉心流量監視システムにおいて、 前記圧力容器内の狭帯域、広帯域の各炉水位をそれぞれ
に検出する狭帯域炉水位検出器、及び広帯域炉水位検出
器と、 前記各炉水位検出器で検出された炉水位の指示差を演算
する狭帯域/広帯域炉水位指示差演算装置と、 前記狭帯域/広帯域炉水位指示差演算装置で演算された
指示差から炉心流量相当値を演算する炉水位指示差/炉
心流量演算装置と、 前記炉水位指示差/炉心流量演算装置で得た炉心流量を
監視する炉水位指示差による炉心流量監視装置と、 前記炉水位指示差による炉心流量監視装置、別に設ける
ポンプ差圧による炉心流量監視装置、及び炉心支持板差
圧による炉心流量監視装置からの各炉心流量の指示差を
演算比較して記録・監視する炉心流量指示差比較による
記録・監視装置とを備えることを特徴とする炉心流量監
視システム。
2. A boiling water reactor core flow rate monitoring system for arranging a plurality of pump means around a core portion in a reactor pressure vessel and circulating cooling water to the core portion, wherein: A narrow-band reactor water level detector for detecting each of the narrow-band and wide-band reactor water levels, and a broad-band reactor water level detector; and a narrow-band / wide-band that calculates an instruction difference between the reactor water levels detected by the respective reactor water level detectors. A reactor water level indicator difference calculator, a reactor water level indicator difference / core flow rate calculator for calculating a core flow rate equivalent value from the indicator difference calculated by the narrow band / broadband reactor water level indicator difference calculator, and the reactor water level indicator difference / A core flow rate monitoring device based on a reactor water level indicator for monitoring a core flow rate obtained by a core flow rate arithmetic device, a core flow rate monitoring device based on the reactor water level indicator difference, a core flow rate monitoring device based on a pump differential pressure provided separately, and a core support plate difference By pressure Core flow monitoring system, characterized in that it comprises a recording and monitoring system according to the core flow rate indication difference compared to record and monitor the instruction difference calculated comparison of the core flow rate from the core flow rate monitoring device.
【請求項3】 原子炉圧力容器内の炉心部周囲に複数の
ポンプ手段を配し、炉心部に対して冷却水を循環させる
沸騰水型原子炉の炉心流量監視システムにおいて、 前記圧力容器内の狭帯域、広帯域での所要複数箇所の各
炉水位をそれぞれに検出する複数の各狭帯域炉水位検出
器、及び複数の各広帯域炉水位検出器と、 前記各狭帯域炉水位検出器、及び各広帯域炉水位検出器
で検出された各炉水位の平均値をそれぞれに算出すると
共に、必要に応じて各炉水位の平均値を炉内圧力、狭帯
域炉水温度、及び広帯域炉水温度等の諸条件に基づいて
補正する狭帯域炉水位平均値算出・補正手段、及び広帯
域炉水位平均値算出・補正手段と、 前記各炉水位平均値算出・補正手段で算出、または補正
して算出された各炉水位平均値の指示差を演算する狭帯
域/広帯域炉水位指示差演算装置と、 前記狭帯域/広帯域炉水位指示差演算装置で演算された
指示差から炉心流量相当値を演算する炉水位指示差/炉
心流量演算装置と、 前記炉水位指示差/炉心流量演算装置で得た炉心流量を
監視する炉水位指示差による炉心流量監視装置とを備え
ることを特徴とする炉心流量監視システム。
3. A core water flow monitoring system for a boiling water reactor in which a plurality of pump means are disposed around a core portion in a reactor pressure vessel and a cooling water is circulated through the core portion. Narrowband, a plurality of narrowband reactor water level detectors to detect each of the required plurality of reactor water levels in a wideband, respectively, and a plurality of broadband reactor water level detectors, each of the narrowband reactor water level detector, and The average value of each reactor water level detected by the broadband reactor water level detector is calculated individually, and the average value of each reactor water level is calculated as necessary, such as the furnace pressure, the narrow-band reactor water temperature, and the broadband reactor water temperature. Narrow band reactor water level average value calculation / correction means to correct based on various conditions, and broadband reactor water level average value calculation / correction means, Calculated or corrected by each of the reactor water level average value calculation / correction means Narrow band for calculating the indicated difference of each reactor water level average Zone / broadband reactor water level indicator difference calculating device; a reactor water level indicator difference / core flow rate calculating device for calculating a core flow rate equivalent value from the indicator difference calculated by the narrow band / broadband reactor water level indicator difference calculating device; A core flow rate monitoring system, comprising: a core flow rate monitoring device based on a reactor water level direction difference for monitoring a core flow rate obtained by an instruction difference / core flow rate calculation device.
【請求項4】 原子炉圧力容器内の炉心部周囲に複数の
ポンプ手段を配し、炉心部に対して冷却水を循環させる
沸騰水型原子炉の炉心流量監視システムにおいて、 前記圧力容器内の狭帯域、広帯域での所要複数箇所の各
炉水位をそれぞれに検出する複数の各狭帯域炉水位検出
器、及び複数の各広帯域炉水位検出器と、 前記各狭帯域炉水位検出器、及び各広帯域炉水位検出器
で検出された各炉水位の平均値をそれぞれに算出すると
共に、必要に応じて各炉水位の平均値を炉内圧力、狭帯
域炉水温度、及び広帯域炉水温度等の諸条件に基づいて
補正する狭帯域炉水位平均値算出・補正手段、及び広帯
域炉水位平均値算出・補正手段と、 前記各炉水位平均値算出・補正手段で算出、または補正
して算出された各炉水位平均値の指示差を演算する狭帯
域/広帯域炉水位指示差演算装置と、 前記狭帯域/広帯域炉水位指示差演算装置で演算された
指示差から炉心流量相当値を演算する炉水位指示差/炉
心流量演算装置と、 前記炉水位指示差/炉心流量演算装置で得た炉心流量を
監視する炉水位指示差による炉心流量監視装置と、 前記炉水位指示差による炉心流量監視装置、別に設ける
ポンプ差圧による炉心流量監視装置、及び炉心支持板差
圧による炉心流量監視装置からの各炉心流量の指示差を
演算比較して記録・監視する炉心流量指示差比較による
記録・監視装置とを備えることを特徴とする炉心流量監
視システム。
4. A boiling water reactor core flow rate monitoring system in which a plurality of pump means are arranged around a core portion in a reactor pressure vessel and a cooling water is circulated through the core portion, wherein: Narrowband, a plurality of narrowband reactor water level detectors to detect each of the required plurality of reactor water levels in a wideband, respectively, and a plurality of broadband reactor water level detectors, each of the narrowband reactor water level detector, and The average value of each reactor water level detected by the broadband reactor water level detector is calculated individually, and the average value of each reactor water level is calculated as necessary, such as the furnace pressure, the narrow-band reactor water temperature, and the broadband reactor water temperature. Narrow band reactor water level average value calculation / correction means to correct based on various conditions, and broadband reactor water level average value calculation / correction means, Calculated or corrected by each of the reactor water level average value calculation / correction means Narrow band for calculating the indicated difference of each reactor water level average Zone / broadband reactor water level indicator difference calculating device; a reactor water level indicator difference / core flow rate calculating device for calculating a core flow rate equivalent value from the indicator difference calculated by the narrow band / broadband reactor water level indicator difference calculating device; A core flow rate monitoring device based on a reactor water level indicator difference for monitoring a core flow rate obtained by an indicator difference / core flow rate calculation device; a core flow rate monitoring device based on the reactor water level indicator difference; a core flow rate monitoring device based on a pump differential pressure separately provided; A core flow rate monitoring system, comprising: a core flow rate difference difference recording / monitoring device for calculating and comparing and recording / monitoring an instruction difference of each core flow rate from a core flow rate monitoring device based on a support plate differential pressure.
JP10240734A 1998-08-26 1998-08-26 Core flow monitoring system Expired - Fee Related JP2945906B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10240734A JP2945906B1 (en) 1998-08-26 1998-08-26 Core flow monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10240734A JP2945906B1 (en) 1998-08-26 1998-08-26 Core flow monitoring system

Publications (2)

Publication Number Publication Date
JP2945906B1 true JP2945906B1 (en) 1999-09-06
JP2000065978A JP2000065978A (en) 2000-03-03

Family

ID=17063915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10240734A Expired - Fee Related JP2945906B1 (en) 1998-08-26 1998-08-26 Core flow monitoring system

Country Status (1)

Country Link
JP (1) JP2945906B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UTSUNO H et.al.,"Measuring Method for ABWR Core Flow Rate."J.Nucl.Sci.Technol.,Vol.30,,No.9.,p.946−955(1993)

Also Published As

Publication number Publication date
JP2000065978A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
EP0030459B1 (en) System for monitoring steam condenser performance
JP2013108810A5 (en)
JPH02247599A (en) Improvement in measured value accuracy of flowrate at core of boiling water reactor
US5363693A (en) Recovery boiler leak detection system and method
US8831162B2 (en) Apparatus and method for measuring a temperature of coolant in a reactor core, and apparatus for monitoring a reactor core
JP2945906B1 (en) Core flow monitoring system
JP2945907B1 (en) Core flow monitoring system
JP5033464B2 (en) Liquid tank liquid level measuring device
KR910002338B1 (en) Process for the monitoring of leaks in the primary circuit of a pressurized water nuclear reactor
JP3735458B2 (en) Core flow measurement device
JP2001194484A (en) Core flow rate monitoring system
JP2001324590A (en) System for measuring water level of nuclear reactor
EP1770716A2 (en) Improved on-line steam flow measurement device and method
US5313830A (en) Assessment of air ingress to steam systems
JPH0252837B2 (en)
JPS63293496A (en) Instrument for measuring circulating flow rate of coolant in nuclear reactor
JPH1023713A (en) Device for monitoring gas lfakage to cooling water circulating system
JP3378290B2 (en) Drum water level measuring device
JP3886664B2 (en) In-furnace process quantity measuring device
JP2003121290A (en) Leakage detector
JPS5845512A (en) Measuring device for bwr jet pump flow rate
JPH02143194A (en) Flow rate measuring method in core
JPH0444956B2 (en)
JPS5925199B2 (en) Leak detection device inside the reactor containment vessel
JPH05302840A (en) Apparatus for measuring water level of nuclear reactor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990615

LAPS Cancellation because of no payment of annual fees