JPH02143194A - Flow rate measuring method in core - Google Patents

Flow rate measuring method in core

Info

Publication number
JPH02143194A
JPH02143194A JP63297733A JP29773388A JPH02143194A JP H02143194 A JPH02143194 A JP H02143194A JP 63297733 A JP63297733 A JP 63297733A JP 29773388 A JP29773388 A JP 29773388A JP H02143194 A JPH02143194 A JP H02143194A
Authority
JP
Japan
Prior art keywords
flow rate
core
differential pressure
measuring method
support plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63297733A
Other languages
Japanese (ja)
Other versions
JPH0574034B2 (en
Inventor
Akio Uehara
上原 明雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63297733A priority Critical patent/JPH02143194A/en
Publication of JPH02143194A publication Critical patent/JPH02143194A/en
Publication of JPH0574034B2 publication Critical patent/JPH0574034B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To perform operation monitoring, protection, etc., with high accuracy and to improve the reliability of nuclear reactor operation by calibrating and correcting the result of a core support plate part differential pressure measuring method periodically and continuously with the measured value of another different measuring method. CONSTITUTION:In this measuring method, a differential pressure signal from a support part differential pressure transmitter 7 varies under the influence of a void quantity generated according to the output of a nuclear reactor, so the differential pressure variation is corrected at all times with core flow rate- core support part differential pressure characteristics by an output correction signal inputted through a mean output area circuit 15 from a neutron flux signal. Further, a support plate flow rate arithmetic part 8 performs calibration periodically with the core flow rate signal of an internal pump exit/entrance part differential pressure measuring method from the exit/entrance part flow rate arithmetic part 12 and also performs calibration periodically with the core flow rate signal of a thermal balancing measuring method from a thermal balance flow rate computing element 16 to compute and output a core flow rate signal which is improved in accuracy.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子炉の炉心流量の測定方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for measuring the core flow rate of a nuclear reactor.

(従来の技術) 沸騰水型原子炉の炉心流量は原子炉反応度制御の上から
極めて重要なパラメータであり、従来は再循環ポンプに
よる一次冷却材再循環駆動流とジェットポンプにより炉
心流量をつくりだしてこれを制御している。このジェッ
トポンプは静的な流量素子であり、このディフェーザ部
の差圧を測定することと、工場試験において各々の流出
係数を求めることで正確な炉心流量の測定方法を得てい
る。この他には炉心支持板部における差圧についても測
定しているが、正確なものは期待できず。
(Prior technology) The core flow rate of a boiling water reactor is an extremely important parameter from the standpoint of reactor reactivity control. Conventionally, the core flow rate was created using a primary coolant recirculation drive flow using a recirculation pump and a jet pump. is controlling this. This jet pump is a static flow rate element, and an accurate method for measuring the core flow rate is obtained by measuring the differential pressure in the diphasor section and determining each discharge coefficient in a factory test. In addition to this, we are also measuring the differential pressure at the core support plate, but we cannot expect it to be accurate.

従って前記測定結果の信頼度を高めるために別途の測定
方法を用いて監視ができるようにしている。
Therefore, in order to increase the reliability of the measurement results, monitoring can be performed using a separate measurement method.

また最近実用化されつつある。原子炉外部に設置する再
循環ポンプを使用しないインターナルポンプを採用した
沸騰水型原子炉プラントにおいては、従来のジェットポ
ンプデュフェーザ部差圧測定に代わるインターナルポン
プデック部差圧測定を含めたポンプ出入口部差圧を測定
する方法等が知られている。しかしながらこのインター
ナルポンプ出入口部差圧流量測定方法については、高精
度ではあるがインターナルポンプは動的な機器のため複
数のインターナルポンプ回転数の入力条件を必要とする
と共に、インターナルポンプの個体差や原子炉内の冷却
材の流動状態の影響を考慮しなくてはならず、このため
複雑な演算作業を必要としこのためその応答性に難点が
あり、従って従来に比べて高い精度が得られ難かった。
It is also being put into practical use recently. In a boiling water reactor plant that uses an internal pump that does not use a recirculation pump installed outside the reactor, the system includes differential pressure measurement at the internal pump deck instead of the conventional jet pump duphasor differential pressure measurement. A method of measuring the differential pressure between the inlet and outlet of a pump is known. However, although this method of measuring the differential pressure flow rate at the inlet and outlet of the internal pump is highly accurate, since the internal pump is a dynamic device, it requires input conditions for multiple internal pump rotational speeds. Individual differences and the influence of the flow state of the coolant inside the reactor must be taken into account, and this requires complex calculations, resulting in difficulties in response, and therefore higher accuracy than conventional methods. It was difficult to obtain.

さらに複数のインターナルポンプの部分台数運転時にお
いては、停止しているインターナルポンプを介した逆流
が生じるため、より正確な炉心流量を得ることが困難で
あった。なお前記炉心支持板部差圧を測定する方法は、
第3図の特性図に示すように炉心支持板部差圧と炉心流
量との関係が、その炉出力によって炉内のボイド量が変
化するため、これにより炉心圧損が変わることと、炉心
の経年的な圧損変化があることから、これが差圧測定に
影響を及ぼすため精度の高い炉心流量計測は得られなか
った。このため前記したインターナルポンプ出入口部差
圧測定方法にて得られた測定値によって校正して使用す
る必要があった。但しこの測定方法は一旦校正済みのも
のであれば、特に複雑な演算もないため比較的応答性は
良好であり、殊に過渡的なインターナルポンプの部分台
数運転時に対して、炉心の下部格子板位置では略均−な
流速となることが実験的に知られているため、演算処理
が不要である点に特長があった。
Furthermore, during partial operation of a plurality of internal pumps, backflow occurs through the stopped internal pumps, making it difficult to obtain a more accurate core flow rate. The method for measuring the core support plate differential pressure is as follows:
As shown in the characteristic diagram in Figure 3, the relationship between the differential pressure at the core support plate and the core flow rate is such that the amount of voids inside the reactor changes depending on the reactor power, which changes the core pressure drop and the aging of the core. Because there is a pressure drop change, this affects the differential pressure measurement, making it impossible to obtain highly accurate core flow measurement. For this reason, it was necessary to calibrate and use the measurement value obtained by the above-mentioned internal pump inlet and outlet differential pressure measurement method. However, once this measurement method has been calibrated, it does not require particularly complicated calculations and has relatively good responsiveness. Since it has been experimentally known that the flow velocity is approximately uniform at the plate position, the advantage is that no calculation processing is required.

(発明が解決しようとする課M) 一般にインターナルポンプを採用する沸騰水型原子炉で
は、主としてインターナルポンプ出入口部差圧測定方法
と、炉心支持板部差圧測定方法とをプラントシステム上
の要求に対応して1例えばプラント性能計算には高精度
を要求されるため。
(Problem M to be solved by the invention) In a boiling water reactor that generally employs an internal pump, the method for measuring the differential pressure at the inlet and outlet of the internal pump and the method for measuring the differential pressure at the core support plate are mainly used on the plant system. In response to demands 1. For example, high accuracy is required for plant performance calculations.

インターナルポンプ出入口部差圧測定方法を使用し、安
全保護系機能には応答性の良い炉心支持板部差圧測定方
法を採用していたため、その選択切替の繁雑と作動結果
の信頼性に問題があった。
The differential pressure measurement method at the inlet and outlet of the internal pump was used, and the responsive differential pressure measurement method at the core support plate was used for the safety protection system function, which caused problems in the complexity of switching between selections and the reliability of the operation results. was there.

本発明は上記に鑑みてなされたもので、その目的とする
ところは、炉心流量測定に際して応答性の良好な炉心支
持板部差圧測定方法による測定に。
The present invention has been made in view of the above, and its purpose is to provide a core support plate differential pressure measurement method with good responsiveness when measuring a core flow rate.

高精度が得られる他の複数の測定方法による結果から校
正を行い、より高精度で信頼性を向上した炉心流量測定
方法を提供することにある。
The purpose of the present invention is to provide a method for measuring core flow rate with higher accuracy and improved reliability by performing calibration from the results of multiple other measurement methods that provide high accuracy.

(課題を解決するための手段) 炉心支持板部差圧測定手段に、吻インターナルポンプ出
入口部差圧測定手段と炉心下部の入口温度から原子炉の
熱平衡による流量測定手段による校正及び原子炉内に設
けた中性子束検出器による補正手段を具備する。
(Means for Solving the Problem) Calibration is performed using the core support plate differential pressure measuring means, the rostral internal pump inlet/outlet differential pressure measuring means, and the flow rate measuring means based on the inlet temperature of the lower part of the reactor based on the thermal balance of the reactor. The system is equipped with a correction means using a neutron flux detector installed in the neutron flux detector.

(作 用) 応答性が良好であるが冷却材のボイド量の影響を受は易
い、炉心支持板部差圧測定方法による炉心流量の測定値
を、測定精度は高いが運転ポンプの台数等各種条件の考
慮が必要なインターナルポンプ出入口部差圧測定による
流量測定値及び原子炉の熱平衡演算による流量測定値に
より定期的に校正すると共に、中性子束検出器により検
出した冷却材のボイド量による影響を補正して、高精度
で応答性良く炉心流量の測定を行う。
(Function) The core flow rate measured by the core support plate differential pressure measurement method, which has good responsiveness but is easily affected by the amount of voids in the coolant, is compared to the core flow rate measurement method, which has high measurement accuracy but is easily affected by the amount of voids in the coolant. In addition to periodically calibrating the flow rate measured by measuring the differential pressure at the entrance and exit of the internal pump, which requires consideration of the conditions, and the flow rate measured by calculating the thermal balance of the reactor, the influence of the amount of voids in the coolant detected by a neutron flux detector The core flow rate can be measured with high precision and responsiveness by correcting the

(実施例) 本発明の一実施例を同作を参照して説明する。(Example) An embodiment of the present invention will be described with reference to the same work.

第1図は全体構成図で、原子炉圧力容器1内で炉心2の
周囲下部に設置された複数のインターナルポンプ3によ
り、原子炉圧力容器1内の冷却材4が炉心2の下部より
上部に向かう流れがつくられる。また炉心2の下部には
炉心支持板5があり。
FIG. 1 is an overall configuration diagram, in which a plurality of internal pumps 3 installed around the lower part of the reactor core 2 in the reactor pressure vessel 1 move the coolant 4 in the reactor pressure vessel 1 from the lower part of the reactor core 2 to the upper part. A flow is created towards. Further, there is a core support plate 5 at the bottom of the core 2.

これを挾んで上下部に開口して設けたノズルに接続した
計装配管6a、 6bを介して連結した支持板部差圧伝
送器7を設け、この出力の差圧信号は支持板部流量演算
器8に入力する。また前記インターナルポンプ3のポン
プデック9部あるいはインターナルポンプ3の出入口部
に開口して設けたノズルより計装配管10a、 10b
を介して連結した出入口部差圧伝送器11を設け、この
出力の差圧信号は出入口部流量演算器12に入力される
。さらに前記炉心2内には中性子束検出器I3と、炉心
2の下部入口に冷却材4の温度検出器14を設置して、
中性子束検出器I3からの中性子束信号は平均出力領域
回路15を介して前記支持板部流量演算器8に入力する
。温度検出器14からの温度信号は熱平衡流量演算器1
6に入力されろ、この熱平衡流量演算器16では、二の
際ダウンカマ16及び炉心支持板5の入口部の温度を前
記温度検出器14で代表させて、原子炉へのエネルギー
熱収支を演算し、この原子炉の熱平tM(ヒートバラン
ス)81g定方決方法り炉心流量値を求めて、この出力
を前記支持板部流量演算器8に出力する。また出入口部
流量演算器12においては、インターナルポンプ3の出
入口部からの出入口部差圧信号と1図示しない各インタ
ーナルポンプ3の回転数情報及び各インターナルポンプ
3の工場における試験結果から得られたQ=H特性情報
から、インターナルポンプ出入口部差圧測定方法による
炉心流量を算出し、支持板部流量演算器8に出力すると
共に、必要に応じて他の用途として指示計または記録計
17に出力する。前記支持板部流量演算器8においては
、炉心支持板部差圧測定方法により炉心流量を算出して
、その出力はシステムの要求に従いこの結果を指示計ま
たは記録計18に出力すると共に、流量制御信号や他の
機器に対するインターロック信号とするように構成され
ている。
A support plate differential pressure transmitter 7 is provided which is connected via instrumentation pipes 6a and 6b connected to nozzles that are opened at the top and bottom of this, and this output differential pressure signal is used to calculate the support plate flow rate. input into device 8. Further, instrumentation piping 10a, 10b is connected to a nozzle opened at the pump deck 9 section of the internal pump 3 or the inlet/outlet section of the internal pump 3.
An inlet/outlet differential pressure transmitter 11 is provided, and the output differential pressure signal is input to an inlet/outlet flow rate calculator 12. Furthermore, a neutron flux detector I3 is installed in the core 2, and a temperature detector 14 for the coolant 4 is installed at the lower inlet of the core 2.
The neutron flux signal from the neutron flux detector I3 is input to the support plate flow rate calculator 8 via the average output area circuit 15. The temperature signal from the temperature detector 14 is sent to the thermal equilibrium flow rate calculator 1.
6, this heat balance flow rate calculator 16 calculates the energy heat balance to the reactor by making the temperature at the inlet of the downcomer 16 and the core support plate 5 represented by the temperature detector 14. , calculate the core flow rate value using the heat balance tM (heat balance) 81g determination method for this reactor, and output this output to the support plate flow rate calculator 8. In addition, the inlet/outlet flow rate calculator 12 obtains information from the inlet/outlet differential pressure signal from the inlet/outlet of the internal pump 3, the rotation speed information of each internal pump 3 (not shown), and the test results of each internal pump 3 at the factory. From the obtained Q=H characteristic information, the core flow rate is calculated by the method of measuring the differential pressure at the internal pump inlet and outlet, and is output to the support plate flow rate calculator 8, and is also used as an indicator or recorder for other purposes as necessary. Output to 17. The support plate flow rate calculator 8 calculates the core flow rate using the core support plate differential pressure measurement method, outputs the result to the indicator or recorder 18 according to system requirements, and controls the flow rate. It is configured to serve as an interlock signal for signals and other equipment.

次に上記構成による作用について説明する。第2図は作
動フロー図で、支持板部流量演算器8において、炉心支
持板部差圧(ΔP)から炉心支持板部差圧測定方法によ
り応答性の良い炉心流量を算出するが、この測定方法で
は原子炉の出力に応じ発生するボイド量の影響から支持
板部差圧伝送器7からの差圧信号に変化が生じるため、
中性子束信号から平均出力領域回路15を介して入力さ
れた出力補正信号(P)より、差圧変化分を予め解析や
原子炉の起動試験にて求めである炉心流量−炉心支持板
部差圧特性により常時補正を行なう。
Next, the effect of the above configuration will be explained. Figure 2 is an operational flow diagram, in which the support plate flow rate calculator 8 calculates the core flow rate with good responsiveness from the core support plate differential pressure (ΔP) using the core support plate differential pressure measurement method. In this method, the differential pressure signal from the support plate differential pressure transmitter 7 changes due to the effect of the amount of voids generated depending on the output of the reactor.
From the output correction signal (P) inputted from the neutron flux signal through the average power region circuit 15, the differential pressure change is determined in advance by analysis or reactor start-up test. Constant correction is made depending on the characteristics.

またこの支持板部流量演算器8は前記出入口部流量演算
器12からのインターナルポンプ出入口部差圧測定方法
による炉心流量信号により定期的に校正すると共に、さ
らに前記熱平衡流量演算器16からの熱平衡測定方法に
よる炉心流量信号(C)によっても定期的に校正して精
度を向上させた炉心流Q信号(W)を演算出力する。こ
の誤差の少ない炉心流産信号は従来と同様に炉心流黛測
制御のほか2例えば中性子束監視上の基準流fJcl!
1g定や炉心流量の急速低下に対するスクラム機能等、
保護系の各種インターロックや監視装置に伝達されて原
子炉運転の信頼性を向上する。
The support plate flow rate calculator 8 is periodically calibrated using the core flow rate signal from the inlet/outlet flow rate calculator 12 using the internal pump inlet/outlet differential pressure measurement method, and furthermore, the support plate flow rate calculator 8 is calibrated using the core flow rate signal from the inlet/outlet flow rate calculator 12 using the internal pump inlet/outlet differential pressure measuring method. A core flow Q signal (W) whose accuracy is improved by periodically calibrating the core flow signal (C) determined by the measurement method is calculated and output. This core miscarriage signal with a small error is used not only for core flow measurement control as well as for example, the reference flow fJcl! for neutron flux monitoring, as in the past.
1g constant, scram function for rapid decrease in core flow rate, etc.
The information is transmitted to various interlocks and monitoring devices in the protection system, improving the reliability of reactor operation.

ここで熱平衡(ヒートバランス)31g定方決方法る炉
心流5kV/ tの概略計算は、下記の0式によること
ができる。
Here, a rough calculation of the core flow of 5 kV/t, which is determined by the heat balance (heat balance) of 31 g, can be performed using the following equation.

ここで、 ho; hf; hfg; fcu; cr er p h。Here, ho; hf; hfg; fcu; cr er p h.

W c u v hcuw; Wry ; hfw; 炉心人ロエンタルビ、 飽和水エンタルピ。W c u v hcuw; Wry; hfw; Heartthrob Roentalbi, Saturated water enthalpy.

飽和蒸気エンタルピ、 ダウンカマに入る飽和蒸気流量、 rtIJ御J/4動系カラノ流量、 制御棒駆動系からのエンタルピ、 インターナルポンプパージ流量、 インターナルポンプパージインタルビ、原子炉浄化系か
らの流入流量。
Saturated steam enthalpy, saturated steam flow rate entering the downcomer, rtIJ J/4 dynamic system Calano flow rate, enthalpy from the control rod drive system, internal pump purge flow rate, internal pump purge intarbi, inflow flow rate from the reactor purification system .

原子炉浄化系からの流入エンタルピ。Inflow enthalpy from the reactor purification system.

原子炉給水流量、 原子炉給水エンタルピ。Reactor feed water flow rate, Reactor feedwater enthalpy.

Q+−;  ダウンカマ部で失われる熱エネルギーC2
; 変換定数(860Kcal/kWh) 。
Q+-; Thermal energy C2 lost in the downcomer part
; Conversion constant (860Kcal/kWh).

Ql、;  インターナルポンプによって得られる熱エ
ネルギー、 である。
Ql,; Thermal energy obtained by the internal pump.

従って炉心支持板部差圧測定方法単独の場合に生ずる測
定誤差(100%)に対して、先ずインターナルポンプ
出入口部差圧測定方法による誤差校正の効果は下記■式
のようになる。
Therefore, for the measurement error (100%) that occurs when only the core support plate differential pressure measurement method is used, the effect of error correction using the internal pump inlet and outlet differential pressure measurement method is as shown in equation (2) below.

Σ、=E7了77     ・・・■ ここで、ea 7 ポンプ出入口部差圧測定Hの誤差、
ec ; 炉心支持板部差圧測定上の誤差。
Σ, =E777...■ Here, ea 7 Error in the differential pressure measurement H at the pump inlet and outlet,
ec; Error in core support plate differential pressure measurement.

またに熱平衡よりの流量測定方法による誤差校正の効果
は下記0式のようになる。
Furthermore, the effect of error correction using the flow rate measurement method based on thermal equilibrium is expressed by the following equation 0.

Σ2 = fi/4(ed”+eb”) −e(、、”
・・■ ここで、cb; 熱平衡より測定する誤差。
Σ2 = fi/4(ed"+eb") -e(,,"
...■ Here, cb; Error measured from thermal equilibrium.

以上から、いまe &= 6 b: e。と仮定すると
、本発明によりΣ1/Σ、=1/3/2  =87%に
縮小改善することができろ。
From the above, now e &= 6 b: e. Assuming that, according to the present invention, the reduction can be improved to Σ1/Σ,=1/3/2=87%.

〔発明の効果〕〔Effect of the invention〕

以上本発明によれば、インターナルポンプ採用の原子炉
の炉心流量測定に際し、炉心支持板部差圧測定方法の結
果を他の異なる測定方法による測定値により定期的、連
続的に校正及び補正をすることにより、複数のインター
ナルポンプの種々の運転状態においても、応答性が良好
で、しかも正確な炉心流量が得られるため原子炉の出力
制御。
As described above, according to the present invention, when measuring the core flow rate of a nuclear reactor that employs an internal pump, the results of the core support plate differential pressure measurement method are periodically and continuously calibrated and corrected using the values measured by other different measurement methods. By doing so, even under various operating conditions of multiple internal pumps, the response is good and accurate core flow rate can be obtained, which makes it possible to control the reactor output.

運転監視、保護等が高精度に行われ、原子炉運転のイf
f頼性を向上する効果がある。
Operation monitoring, protection, etc. are performed with high precision, and the efficiency of reactor operation is improved.
This has the effect of improving f reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の全体構成図、第2図は本発
明による動作フロー図、第3図は炉出力の変化に対する
炉心流量と炉心支持板部差圧の特性図である。 2・・・炉心、      3・・・インターナルポン
プ、5・・・炉心支持板。 7・・・炉心支持板部差圧伝送器、 8・・・支持板部流量演算器。 11・・・出入口部差圧伝送器。 I2・・・入口部流量演算器、 13・・・中性子束検出器、 15・・・平均出力領域回路、 16・・・熱平衡流量演算器。 17、18・・・記録計。 工4・・・温度検出器。
FIG. 1 is an overall configuration diagram of an embodiment of the present invention, FIG. 2 is an operational flow diagram according to the present invention, and FIG. 3 is a characteristic diagram of core flow rate and core support plate differential pressure with respect to changes in reactor output. 2... Core, 3... Internal pump, 5... Core support plate. 7... Core support plate differential pressure transmitter, 8... Support plate flow rate calculator. 11... Inlet/outlet differential pressure transmitter. I2... Inlet flow rate calculator, 13... Neutron flux detector, 15... Average output area circuit, 16... Thermal equilibrium flow rate calculator. 17, 18...Recorder. Technique 4...Temperature detector.

Claims (1)

【特許請求の範囲】[Claims] 炉心流量を制御するために原子炉内にインターナルポン
プを設置してなる沸騰水型原子炉において、炉心支持板
部差圧による流量測定方法に対して、インターナルポン
プの出入口部差圧の流量測定方法及び炉心下部入口温度
からの原子炉の熱平衡による流量測定方法により算出し
た炉心流量測定値により校正を行うと共に、炉内中性子
束信号により炉心圧損のボイド量の影響による変化分を
補正することを特徴とする炉心流量測定方法。
In a boiling water reactor in which an internal pump is installed in the reactor to control the core flow rate, the flow rate is measured by the differential pressure at the entrance and exit of the internal pump, compared to the flow rate measurement method using the differential pressure at the core support plate. Calibration is performed using the measured value of the core flow rate calculated by the flow rate measurement method based on the thermal equilibrium of the reactor from the lower core inlet temperature, and the change in core pressure drop due to the effect of void volume is corrected using the in-reactor neutron flux signal. A core flow rate measurement method characterized by:
JP63297733A 1988-11-25 1988-11-25 Flow rate measuring method in core Granted JPH02143194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63297733A JPH02143194A (en) 1988-11-25 1988-11-25 Flow rate measuring method in core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63297733A JPH02143194A (en) 1988-11-25 1988-11-25 Flow rate measuring method in core

Publications (2)

Publication Number Publication Date
JPH02143194A true JPH02143194A (en) 1990-06-01
JPH0574034B2 JPH0574034B2 (en) 1993-10-15

Family

ID=17850475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63297733A Granted JPH02143194A (en) 1988-11-25 1988-11-25 Flow rate measuring method in core

Country Status (1)

Country Link
JP (1) JPH02143194A (en)

Also Published As

Publication number Publication date
JPH0574034B2 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
US4390058A (en) Method of monitoring condenser performance and system therefor
JPH02247599A (en) Improvement in measured value accuracy of flowrate at core of boiling water reactor
US5682410A (en) Method for determining core flow rate and water temperature/density in boiling water reactor
US4654186A (en) Device for determination of the power of a pressurized water nuclear reactor
JPH02143194A (en) Flow rate measuring method in core
KR910000596B1 (en) Method and device for detecting reactivity variations in a pwr's core
US4293853A (en) Method and apparatus for detecting flow instability in steam generator
US4297581A (en) Method for the fast and accurate identification of core power in nuclear reactors
EP1770716A2 (en) Improved on-line steam flow measurement device and method
JP2945907B1 (en) Core flow monitoring system
JP2777004B2 (en) Method and system for measuring flow rate in reactor
JP3735458B2 (en) Core flow measurement device
JP2945906B1 (en) Core flow monitoring system
JP2001194484A (en) Core flow rate monitoring system
JPH0252837B2 (en)
JPS6021359B2 (en) How to quickly and accurately generate core power in a nuclear reactor
JPS63293496A (en) Instrument for measuring circulating flow rate of coolant in nuclear reactor
JPH0210917B2 (en)
JPH0972987A (en) Core flow-rate measuring device
JPH10177086A (en) Instrument and method for measuring flow rate of primary coolant of nuclear reactor
JPH01248097A (en) Feed water control system for boiling water nuclear reactor
JPH0296694A (en) Exhaust gas system hydrogen gas concentration measurement system
JPS60183590A (en) Measuring device for flow rate at core of boiling-water typereactor
JP2001141874A (en) Flow rate-measuring device for reactor core cooling material
JPH0219918B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees