JPS59162434A - Leakage detecting device for liquid metal - Google Patents

Leakage detecting device for liquid metal

Info

Publication number
JPS59162434A
JPS59162434A JP58035967A JP3596783A JPS59162434A JP S59162434 A JPS59162434 A JP S59162434A JP 58035967 A JP58035967 A JP 58035967A JP 3596783 A JP3596783 A JP 3596783A JP S59162434 A JPS59162434 A JP S59162434A
Authority
JP
Japan
Prior art keywords
liquid metal
sodium
hydrogen
water
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58035967A
Other languages
Japanese (ja)
Inventor
Shunei Sakaguchi
坂口 俊英
Ryuhei Kawabe
隆平 川部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58035967A priority Critical patent/JPS59162434A/en
Publication of JPS59162434A publication Critical patent/JPS59162434A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • G01M3/228Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators for radiators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To make it possible to detect leakage of water or steam into liquid metal in an early stage, by obtaining correlation of a plurality of detected signals with respect to the reacted product of metal and water in the liquid metal flowing in a pipe. CONSTITUTION:Sodium, which is circulated in a secondary main cooling system, flows in a returning pipe 18. The amount of the sodium is detected by a flowmeter 34. The detected signal is supplied to a delay time operator 36. The operator 36 obtains the flow velocity in the pipe 18, computes the time the sodium flows between hydrogen detectors 30 and 32, and feeds the result to correlation function computer 38. The computer 38 receives the detected hydrogen-concentration signals outputted from the detectors 30 and 32, obtains the correlation between the signals, and obtains the signals, from which inherent noises of the detectors are removed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、液体金属中への水漏洩を検出する装置に係り
、特にす)IJウム冷却高速増殖炉のナトリウム加熱蒸
気発生器に使用するのに好適な水漏洩検、出装置に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a device for detecting water leakage into a liquid metal, and particularly for use in a sodium-heated steam generator of an IJium-cooled fast breeder reactor. This invention relates to a water leak detection and detection device suitable for use in water leak detection and detection.

〔従来技術〕[Prior art]

ナトリウム加熱蒸気発生器は、高温のナトリウムと高温
、高圧の水または蒸気が伝熱管を介して熱交換を行なう
ものでら−る。このため、何らかの原因により伝熱管に
破損が生じた場合、高温、高圧の水または蒸気がす) 
IJウム中に噴出し、激しいナトリウム・水反応を生じ
る。そして、このナトリウム・水反応は、伝熱管の初期
破損部のみならず隣接する伝熱間の破損を引き起こし、
大規模な水漏洩を生じさせる可能性がある。従って、ナ
トリウム加熱蒸気発生器における水漏洩は、小規模のう
ちに速やかに発見し、適切な処置を施こし事故の拡大を
防止する必要がある。そこで、従来のす) IJウム加
勢蒸気発生器においては、金属拡散型水素検出器によジ
ナトリウム・水反応によって生成する水素を検出し、水
漏洩を検知する方法−が用いられている。
A sodium-heated steam generator is one in which high-temperature sodium and high-temperature, high-pressure water or steam exchange heat through heat transfer tubes. Therefore, if the heat transfer tube is damaged for any reason, high temperature and high pressure water or steam will be released.)
It erupts into the IJium, causing a violent sodium-water reaction. This sodium/water reaction causes not only the initial failure of the heat transfer tube but also damage between adjacent heat transfer tubes.
Potential for large-scale water leakage. Therefore, it is necessary to quickly discover water leaks in sodium-heated steam generators while they are small-scale, and take appropriate measures to prevent the accident from spreading. Therefore, in the conventional IJum boosted steam generator, a method is used in which hydrogen generated by the disodium-water reaction is detected using a metal diffusion type hydrogen detector to detect water leakage.

第1図は、ナトリウム冷却高速増殖炉における二次主冷
却系の金属拡散膜型水素検出器の据付位置を示したもの
である。第1図において、中間熱交換器10には一次系
配管12.14が接続しであると共に、二次系配管の移
送管16と戻シ管18とが接続しである。この移送管1
6と戻り管18とによシ構成した二次主冷却系には、蒸
気発。
FIG. 1 shows the installation position of a metal diffusion membrane type hydrogen detector in the secondary main cooling system in a sodium-cooled fast breeder reactor. In FIG. 1, the intermediate heat exchanger 10 is connected to primary system piping 12, 14, and is also connected to a transfer pipe 16 and a return pipe 18 of the secondary system piping. This transfer pipe 1
6 and a return pipe 18, the secondary main cooling system includes a steam generator.

生器20の過熱器22と蒸発器24とが設けであると共
に、二次主循環ポンプ26が取シ付けである。そして、
過熱器22の出口部及び蒸発器24の出口部と二次主循
環ポンプ26の入口部には、それぞれナトリウム・水反
応によって生成した水素を検出する前記した水素検出器
28,30゜32が設けである。
A superheater 22 and an evaporator 24 of the generator 20 are installed, and a secondary main circulation pump 26 is installed. and,
At the outlet of the superheater 22, the outlet of the evaporator 24, and the inlet of the secondary main circulation pump 26, the aforementioned hydrogen detectors 28 and 30° 32 are provided, respectively, to detect hydrogen produced by the sodium-water reaction. It is.

一次系配管12により中間熱交換器10に移送されてき
た一次ナトリウムは、中間熱交換器10において二次ナ
トリウムと熱交換をした後、−次系配管14によシ原子
炉に戻される。熱交換器lOにおいて加熱された二次す
) IJウムは、移送管16を介して過熱器22に運ば
れ、高温の蒸気と熱交換した後、蒸気発生器24におい
て水と熱交換をし、蒸気を発生させる。その後、二次ナ
トリウムは、二次主循環ポンプ26によりPb管18を
介して再び熱交換器10に戻される。
The primary sodium transferred to the intermediate heat exchanger 10 through the primary system piping 12 exchanges heat with secondary sodium in the intermediate heat exchanger 10, and then is returned to the reactor through the secondary system piping 14. The secondary steam heated in the heat exchanger IO is carried to the superheater 22 via the transfer pipe 16, where it exchanges heat with high-temperature steam, and then with water in the steam generator 24, Generate steam. Thereafter, the secondary sodium is returned to the heat exchanger 10 via the Pb pipe 18 by the secondary main circulation pump 26.

このような二次系主冷却系においては、過熱器22また
は蒸発器24において蒸気または水がナトリウム中に漏
洩すると、ナトリウムと蒸気または水との反応により生
成した水素が二次系を循環する。このため、各水素検出
器28,30.32において検出されるナトリウム中の
水素濃度は、第2図に示すように一定時間を毎に水素濃
度Cが上昇する階段状の変化を示す。そこで、水漏洩を
検出するため、ある時間Δtの間の水素濃度増化分ΔC
を求め、水素濃度上昇率ΔC/Δtが予め設定した水素
濃度上昇率よシ大きくなったとき、水漏洩が発生したも
のと判断している。そして、水漏洩検知の信頼性を向上
させるため、水漏洩の検知は水素検出器28,30.3
2の出力信号の変化率の大きな2つの検出器の出力信号
によシ判断する、いわゆる2アウト・オプ3の多重化処
理が行なわれている。しかし、水素検出器28゜30.
32の出力信号は、水素検出器28,30゜32の熱的
及び電気的な要因によ多発生するノイズが含まれている
ため、それぞれの測定値には誤差が生じる。そこで、水
漏洩を検知するだめの水素濃度増化分ΔCの基準となる
下限値ΔCLは、前記ノイズによる測定誤差を考慮した
ある余裕をもつ値が用いられている。このため、下限値
ΔCLをうるための測定時間ΔtLもそれだけ長くなり
、水漏洩の検知が遅れるという欠点がある。
In such a secondary main cooling system, when steam or water leaks into the sodium in the superheater 22 or evaporator 24, hydrogen generated by the reaction between the sodium and the steam or water circulates through the secondary system. Therefore, the hydrogen concentration in sodium detected by each of the hydrogen detectors 28, 30, 32 shows a stepwise change in which the hydrogen concentration C increases at regular intervals, as shown in FIG. Therefore, in order to detect water leakage, the hydrogen concentration increase ΔC during a certain time Δt is
When the rate of increase in hydrogen concentration ΔC/Δt becomes larger than a preset rate of increase in hydrogen concentration, it is determined that water leakage has occurred. In order to improve the reliability of water leakage detection, hydrogen detectors 28 and 30.3 are used to detect water leakage.
A so-called 2-out OP3 multiplexing process is performed in which a judgment is made based on the output signals of two detectors having a large rate of change in the two output signals. However, the hydrogen detector is 28°30.
Since the output signal 32 contains noise frequently generated due to thermal and electrical factors of the hydrogen detectors 28, 30, 32, errors occur in the respective measured values. Therefore, the lower limit value ΔCL, which is the standard for the increase in hydrogen concentration ΔC for detecting water leakage, is set to a value with a certain margin in consideration of the measurement error caused by the noise. Therefore, the measuring time ΔtL for obtaining the lower limit value ΔCL becomes correspondingly longer, which has the disadvantage that detection of water leakage is delayed.

〔発明の目的〕[Purpose of the invention]

本発明は、前記従来技術の欠点を解消するためになされ
たもので、水漏洩を早期に検出することができる液体金
属用水漏洩検出装置を提供することを目的とする。
The present invention was made in order to eliminate the drawbacks of the prior art, and an object of the present invention is to provide a water leakage detection device for liquid metal that can detect water leakage at an early stage.

〔発明の概要〕[Summary of the invention]

本発明は、管路を循環している液体金属中の液体金属と
水または蒸気との反応によシ生成した成分を、複数の検
出器で検出する際に、上流側の濃度検出器において検出
した液体金属が下流側の濃度検出器に到達する時間を求
め、下流側の濃度検出器め検出する液体金属の部分を、
上流側の濃度検出器が検出した部分と同一とし、これら
検出器の検出した検出信号の相関を求めることによシ、
各検出器に含まれるノイズを除去して反応生成物濃度を
正確に検出し、早期に水漏洩を検出できるように構成し
たものである。
The present invention detects a component generated by a reaction between liquid metal and water or steam in a liquid metal circulating in a pipe by using an upstream concentration detector. Find the time it takes for the liquid metal to reach the downstream concentration detector, and calculate the portion of the liquid metal detected by the downstream concentration detector.
By assuming that the area detected by the upstream concentration detector is the same, and finding the correlation between the detection signals detected by these detectors,
The structure is such that noise contained in each detector is removed to accurately detect the concentration of reaction products, and water leakage can be detected at an early stage.

〔発明の実施例〕[Embodiments of the invention]

本発明に係る液体金属用水漏洩検出装置の好ましい実施
例を、添付図面に従って詳説する。なお、前記従来技術
において説明した部分に対応する部分については、同一
の符号を付しその説明を省略する。
A preferred embodiment of the liquid metal water leakage detection device according to the present invention will be described in detail with reference to the accompanying drawings. Note that the same reference numerals are given to the parts corresponding to the parts explained in the prior art, and the explanation thereof will be omitted.

第3図は、本発明に係る液体金属用水漏洩検出装置の実
施例の説明図である。第3図において戻シ管18にはナ
トリウム流量計34が設けである。
FIG. 3 is an explanatory diagram of an embodiment of the liquid metal water leak detection device according to the present invention. In FIG. 3, the return pipe 18 is provided with a sodium flow meter 34.

このナトリウム流量計34は、遅延時間演算器36と電
気的に接続しである。まだ、水素検出器30.32の検
出)rは、遅延時間演算器36の出力信号と共に相馬関
関数算出器38に入力されるようになっている。
This sodium flowmeter 34 is electrically connected to a delay time calculator 36. The detection r of the hydrogen detectors 30 and 32 is input to the soma function calculator 38 together with the output signal of the delay time calculator 36.

上記の如く構成した実施例の作用は次の通シである。The operation of the embodiment configured as described above is as follows.

二次主冷却系を循環するナトリウムは、ナトリウム流量
計34により戻シ管18内を流れるナトリウム量が検出
され、その検出信号が遅延時間演算器36に入力される
。遅延時間演算器36は、戻シ管18内を流れるナトリ
ウムの流速を求め、水素検出器30と水素検出器32と
の間をす) IJウムが通過する時間を算出し、相互相
関関数算出器38に入力するようになっている。
Regarding the sodium circulating in the secondary main cooling system, the amount of sodium flowing through the return pipe 18 is detected by the sodium flow meter 34, and the detection signal is input to the delay time calculator 36. The delay time calculator 36 calculates the flow rate of sodium flowing in the return pipe 18, calculates the time it takes for IJum to pass between the hydrogen detector 30 and the hydrogen detector 32, and calculates the flow rate of sodium flowing in the return pipe 18. 38.

相互相関関数算出器38は、″水素検出器30が出力す
る水素濃度検出信号X 30 Dの信号を取込むと共に
、水素検出器32の水素濃度検出信号X32Dを取込む
。これら濃度検出信号X30D+x3□0は、第4図に
示すようにノイズを含まない濃度検出信号X3o、X3
2に各水素検出器30.32のノイズ■301 v32
が重畳したものであって、次式で表わされる。
The cross-correlation function calculator 38 takes in the hydrogen concentration detection signal X30D output from the hydrogen detector 30, and also takes in the hydrogen concentration detection signal X32D from the hydrogen detector 32.These concentration detection signals X30D+x3□ 0 is the concentration detection signal X3o, X3 that does not contain noise as shown in FIG.
2. Noise of each hydrogen detector 30.32 ■301 v32
are superimposed, and is expressed by the following equation.

X30D:X30+■30      1°′(1)X
3zo= X32+ V32        °°(2
)これらのノイズv30 + v32は、その平均値が
零のいわゆる白色雑音に近い性質を有している。従って
、水素検出器30.32の水素濃度検出信号X30D 
+ X32Dの相互相関関数φ+)3G+32(τ)は
、近似的に次式をもって表わすことができる。
X30D:X30+■30 1°'(1)X
3zo=X32+V32 °°(2
) These noises v30 + v32 have properties close to so-called white noise whose average value is zero. Therefore, hydrogen concentration detection signal X30D of hydrogen detector 30.32
The cross-correlation function φ+)3G+32(τ) of +X32D can be approximately expressed by the following equation.

φ30132(τ)−φ30132 (τ)     
・・・ (3)ここにφ3o、3□(τ)は、ノイズを
含まない水素濃度検出信号x3G + X32の相互相
関関数を示し、τは2つの信号の時間差を示す。
φ30132 (τ) − φ30132 (τ)
(3) Here, φ3o, 3□(τ) represents the cross-correlation function of the noise-free hydrogen concentration detection signal x3G + X32, and τ represents the time difference between the two signals.

即ち、(3)式から2つの水素検出器30.32の濃度
検出信号X30D’+ X32Dの相互相関をとること
により、水素検出器30.32の個有のノイズv3G’
+ v32がほとんど除去された信号が得られることが
分かる。
That is, by taking the cross-correlation of the concentration detection signals X30D'+X32D of the two hydrogen detectors 30.32 from equation (3), the unique noise v3G' of the hydrogen detectors 30.32 is calculated.
It can be seen that a signal with almost all +v32 removed is obtained.

一方、水素検出器30において水素濃度を検出したナト
リウム部分を、水素検出器32において水素濃度を検出
する場合、遅延時間τNが存在する。このτNは、水素
検出器30.32のサンプリング管内のす) IJウム
の移送時間が等しいことから、二次主冷却系のナトリウ
ム流量Q、によシ定まる。そして、呆り管18の2つの
水素検出器30.32間のナトリウム体積をVNとした
場合、τNは次式によυ求めることができる。
On the other hand, when the hydrogen concentration of the sodium portion whose hydrogen concentration has been detected by the hydrogen detector 30 is detected by the hydrogen detector 32, a delay time τN exists. This τN is determined by the sodium flow rate Q in the secondary main cooling system, since the transfer time of IJum in the sampling tubes of the hydrogen detectors 30 and 32 is equal. Then, when the sodium volume between the two hydrogen detectors 30 and 32 of the stutter tube 18 is VN, τN can be determined by the following equation.

r N = V N / QN        ”・(
4)そこで、戻シ管18に設けたナトリウム流量計34
により°ナトリウム流量Q、を求め、遅延時間演算器3
6に入力する。そして、遅延時間演算器36において遅
延時間τNを算出し、相互相関関数算出器38に入力し
、2つの水素検出器30゜32の水素濃度検出信号X3
゜D+X32Dの相互相り 関関数の値φ 30132(τN)ヲ求め、その時間変
化を求めることによりナトリウム中の水素濃度変化を正
確に求めることができる。
r N = V N / QN ”・(
4) Therefore, the sodium flow meter 34 installed in the return pipe 18
Determine ° sodium flow rate Q, and use delay time calculator 3.
Enter 6. Then, the delay time calculator 36 calculates the delay time τN, inputs it to the cross-correlation function calculator 38, and generates the hydrogen concentration detection signal X3 of the two hydrogen detectors 30°32.
By determining the value φ 30132 (τN) of the cross-correlation function of ゜D+X32D and determining its change over time, changes in the hydrogen concentration in sodium can be accurately determined.

第5図は、上記の方法によシ求めた水素検出器30.3
2の水素濃度検出信号X300 + X32Dについて
の相互相関関数の値φD3□0132(τN)の時間変
動を示したものである。図から明らかなように、φ 3
0+32(τN)は、xsoo l X32Dに比較し
てノイズがほとんどなく、シかも感度のよい信号が得ら
れる。このため、ナトリウム中への水または水蒸気の漏
洩を早期に検知することができる。
Figure 5 shows the hydrogen detector 30.3 determined by the above method.
2 shows the time variation of the value φD3□0132 (τN) of the cross-correlation function for the hydrogen concentration detection signal X300 + X32D of No. 2. As is clear from the figure, φ 3
0+32(τN) has almost no noise compared to xsoo l X32D, and a signal with good sensitivity can be obtained. Therefore, leakage of water or water vapor into the sodium can be detected at an early stage.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、管路を流れる液体
金属中の液体金属と水との反応性成物を検出する複数の
検出器の検出信号に対する時間遅れを求め、これら検出
器からの検出信号についての相関を求めることによシ、
液体金属中への水または水蒸気の漏洩を早期に検出する
ことができる。
As explained above, according to the present invention, the time delay with respect to the detection signals of a plurality of detectors for detecting reactive components between liquid metal and water in the liquid metal flowing through the pipe is determined, and the time delay from these detectors is calculated. By determining the correlation for the detected signal,
Leakage of water or water vapor into the liquid metal can be detected early.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はナトリウム冷却型高速増殖炉の二次主冷却系に
おける水素検知器の設置位置を示す図、第2図は水素検
出器の水素濃度検出信号の時間的変化を示す図、第3図
は本発明に係る液体金属用水漏洩検出装置の実施例の説
明図、第4図は水素検出器の水素濃度検出器がノイズを
含むものであることを説明する図、第5図は前記実施例
によシ求めた相互相関関数の値の時間的変化を示す図で
ある。 16・・・移送管、18・・・戻シ管、20・・・蒸気
発生器、22・・・過熱器、24・・・蒸発器、28,
30.32・・・水素検出器、34・・・ナトリウム流
量計、36・・・も1口 宅2図 詩閉    L 第30
Figure 1 shows the installation position of the hydrogen detector in the secondary main cooling system of a sodium-cooled fast breeder reactor, Figure 2 shows the temporal change in the hydrogen concentration detection signal of the hydrogen detector, and Figure 3 4 is an explanatory diagram of an embodiment of the liquid metal water leak detection device according to the present invention, FIG. 4 is a diagram illustrating that the hydrogen concentration detector of the hydrogen detector includes noise, and FIG. FIG. 3 is a diagram showing temporal changes in the values of the calculated cross-correlation functions. 16... Transfer pipe, 18... Return pipe, 20... Steam generator, 22... Superheater, 24... Evaporator, 28,
30.32...Hydrogen detector, 34...Sodium flowmeter, 36...More 1 home 2 diagrams poem closed L No. 30

Claims (1)

【特許請求の範囲】[Claims] 1、液体金属が循環する管路と、この管路に沿って設け
た前記液体金属と水または蒸気との反応生成物濃度を検
出する複数の濃度検出器とを有する液体金属用水漏洩検
出装置において、前記管路内の前記液体金属の流量を検
出する流量検出器と、この流量検出器の検出信号により
前記各濃度検出器間を前記液体金属が移動する移動時間
を求める演算器と、上流側の前記濃度検出器が出力した
検出信号とこの濃度検出器の出力時間よシ前記演算−器
が求めた時間だけ遅れて出力した下流側の前記濃度検出
器の検出信号との相関を求める計算機とを設けたことを
特徴とする液体金属用水漏洩検出装置。
1. In a water leak detection device for liquid metal, which has a pipe through which liquid metal circulates, and a plurality of concentration detectors installed along this pipe to detect the concentration of reaction products of the liquid metal and water or steam. , a flow rate detector that detects the flow rate of the liquid metal in the pipeline, a computing unit that calculates the travel time of the liquid metal between the concentration detectors based on the detection signal of the flow rate detector, and an upstream side a computer that calculates a correlation between the detection signal outputted by the concentration detector and the detection signal of the downstream concentration detector outputted after the output time of the concentration detector by the time determined by the calculator; A water leak detection device for liquid metal, characterized in that it is provided with.
JP58035967A 1983-03-07 1983-03-07 Leakage detecting device for liquid metal Pending JPS59162434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58035967A JPS59162434A (en) 1983-03-07 1983-03-07 Leakage detecting device for liquid metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58035967A JPS59162434A (en) 1983-03-07 1983-03-07 Leakage detecting device for liquid metal

Publications (1)

Publication Number Publication Date
JPS59162434A true JPS59162434A (en) 1984-09-13

Family

ID=12456708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58035967A Pending JPS59162434A (en) 1983-03-07 1983-03-07 Leakage detecting device for liquid metal

Country Status (1)

Country Link
JP (1) JPS59162434A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2576100A1 (en) * 1985-01-11 1986-07-18 Novatome METHOD FOR DETECTING MEDIUM OR LARGE LEAKS THROUGH THE EXCHANGE WALL OF A STEAM GENERATOR USING LIQUID METAL
US4650636A (en) * 1983-08-12 1987-03-17 Mitsubishi Denki Kabushiki Kaisha Method of estimating water leakage position

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650636A (en) * 1983-08-12 1987-03-17 Mitsubishi Denki Kabushiki Kaisha Method of estimating water leakage position
FR2576100A1 (en) * 1985-01-11 1986-07-18 Novatome METHOD FOR DETECTING MEDIUM OR LARGE LEAKS THROUGH THE EXCHANGE WALL OF A STEAM GENERATOR USING LIQUID METAL

Similar Documents

Publication Publication Date Title
Scholten et al. Unsteady heat transfer and velocity of a cylinder in cross flow—I. Low freestream turbulence
Zhang et al. The numerical and experimental study of a power plant condenser
SE513882C2 (en) Method and apparatus for detecting leakage from a chemical soda boiler system
JPS59162434A (en) Leakage detecting device for liquid metal
CN109459195A (en) For judging the method and system of high-pressure heater system leak
Singh et al. Steam leak detection in advance reactors via acoustics method
US7885370B2 (en) Method and system for early sensing of water leakage, through chemical concentration monitoring, in nuclear reactor system using liquid metal and molten salt
JPS59173795A (en) Power measuring device for pwr type reactor
Chang et al. Electromagnetic-conductance measurement method for the flow rate and void fraction of gas-liquid two-phase flows
US4293853A (en) Method and apparatus for detecting flow instability in steam generator
JPS6371625A (en) Measuring device for heat absortion quantity of heat conduction pipe
CN113221477A (en) Heat balance calculation method for determining circulating water flow
Tezuka et al. Calibration tests of pulse-Doppler flow meter at national standard loops
JPH04204031A (en) Acoustic type leakage detector
JPH0528335B2 (en)
JP2675703B2 (en) Heat exchanger scale adhesion monitor
JPS5862403A (en) Diagnostic device for abnormality of plant
JPH0333406A (en) Abnormality diagnostic device of steam turbine system
JPH06207880A (en) Acoustic method and apparatus for detecting water leakage from steam evaporator heat transfer pipe
JPH0227220A (en) Differential pressure type steam flowmeter
JPS5866036A (en) Leak detector for nuclear reactor coolant purification system
JPS6313466Y2 (en)
JP2002341081A (en) Atomic reactor coolant purification system leakage detection system
SU1481604A1 (en) Device for determining specific rate of flow in steam power engineering installations
JP2945906B1 (en) Core flow monitoring system