JPS61246515A - Detecting method and device for water concentration of exhaust gas in incinerator - Google Patents

Detecting method and device for water concentration of exhaust gas in incinerator

Info

Publication number
JPS61246515A
JPS61246515A JP8694185A JP8694185A JPS61246515A JP S61246515 A JPS61246515 A JP S61246515A JP 8694185 A JP8694185 A JP 8694185A JP 8694185 A JP8694185 A JP 8694185A JP S61246515 A JPS61246515 A JP S61246515A
Authority
JP
Japan
Prior art keywords
exhaust gas
cooler
flow rate
gas
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8694185A
Other languages
Japanese (ja)
Inventor
Takayoshi Suzue
鈴江 隆義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP8694185A priority Critical patent/JPS61246515A/en
Publication of JPS61246515A publication Critical patent/JPS61246515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Incineration Of Waste (AREA)

Abstract

PURPOSE:To enable to find out water concentration in exhaust gas simply, exactly, continuously, and stably by detecting temp. and flow rate at an inlet and an outlet of a cooler respectively for exhaust gas sample which is sucked into the cooler. CONSTITUTION:Exhaust gas sample in unsaturated wet gas condition is induced and cooled in a cooler 7 and made in saturated wet gas condition and temp. T and flow rate F of the exhaust gas sample before entering into the cooler 7 and temp. T and flow rate F of the exhaust gas sample after leaving the cooler 7 and also water vapor quantity Vw of the exhausted gas sample in saturated wet gas condition are detected respectively and water concentration in the exhaust gas sample is calculated by the detected values thereof. As a detecting part A is composed of connection of the cooler 7, a heater 9, and flow meters 6, 12 in series and temp. and flow rate of the exhaust gas sample sucked in and flowed by a pump 12, measuring error of change in dust and components contained in exhaust gas is small, and simple, exact, and stable detection of water concentration is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、都市とみ等の焼却炉から排出される排ガス中
の水分濃度検出法とその装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for detecting moisture concentration in exhaust gas discharged from an incinerator in a city, etc., and an improvement of the device.

(従来の技術) ごみ焼却炉へ供給される都市とみ等には多量の水分が含
有されており、焼却炉より排出される排ガス中には多量
の水分が含まれることになる0ところで、前記排ガス中
の水分濃度はごみの燃焼効率や大気汚染、排ガスの白煙
化等と緊密な関係にあり、ごみ燃焼の自動制御や大気汚
染の防止等を達成するためには、排ガス中の水分濃度を
正確且つ簡便に、然かも連続的に検出し得ることが必須
の要件となる。
(Prior Art) Urban wastewater supplied to a garbage incinerator contains a large amount of moisture, and the exhaust gas discharged from the incinerator contains a large amount of moisture. The moisture concentration in the waste gas is closely related to the combustion efficiency of the waste, air pollution, and the formation of white smoke from the exhaust gas.In order to achieve automatic control of waste combustion and prevention of air pollution, it is necessary to reduce the moisture concentration in the waste gas. It is essential to be able to detect accurately, easily, and continuously.

而して、従前のごみ焼却炉に於いては、所謂ブリッジ法
や電気容量測定法が排ガス中の水分濃度の連続測定に多
く使用されている。即ち、前者は乾燥排ガスと水蒸気を
含む排ガスの熱伝導率の差を熱線の温度差に変換し、該
熱線の温度差を抵抗ブリッジ回路を利用して検出するこ
とにより、排ガス中の水分濃度を検出するものである。
Therefore, in conventional waste incinerators, the so-called bridge method and capacitance measuring method are often used to continuously measure the water concentration in exhaust gas. That is, the former converts the difference in thermal conductivity between dry exhaust gas and exhaust gas containing water vapor into a temperature difference between hot wires, and detects the temperature difference between the hot wires using a resistance bridge circuit, thereby determining the moisture concentration in the exhaust gas. It is something to detect.

また、 ′後者は排ガス中の水分量により吸着剤を誘電
体とする静電容量の容量値が変化することを利用し、前
記静電容量を容量ブリッジ回路を利用して測定すること
により、排ガス中の水分濃度を検出するものである。
The latter method takes advantage of the fact that the capacitance value of the capacitance with the adsorbent as a dielectric changes depending on the amount of moisture in the exhaust gas, and measures the capacitance using a capacitance bridge circuit. It detects the moisture concentration inside.

前記各水分濃度測定法は、被測定排ガス中の成分が一定
で且つ比較的清浄な場合には優れた効用を発揮するもの
である。しかし乍ら、ごみ焼却炉からの排ガスの様に高
温、高湿でダストや腐食性ガスの含有率が高く、然かも
排ガス中の成分が刻々と大きく変化する場合には、水分
濃度の正確な連続測定が困難で測定値が不正確になると
共に、測定装置の補正等に手数がかかり過ぎるという碓
点がある。
Each of the water concentration measuring methods described above exhibits excellent effectiveness when the components in the exhaust gas to be measured are constant and relatively clean. However, when the exhaust gas from a garbage incinerator is high temperature, high humidity, has a high content of dust and corrosive gases, and the components in the exhaust gas change greatly from moment to moment, it is difficult to accurately determine the moisture concentration. Continuous measurements are difficult, resulting in inaccurate measured values, and correction of the measuring device takes too much effort.

また、排ガス中に多量の腐食性ガスが含まれるため、抵
抗ブリッジ回路に於ける熱線や静電容量ブリッジ回路に
於ける容量用電極が簡単に腐食されてしまい、補修費の
高騰を来たすという問題がある。
In addition, because a large amount of corrosive gas is contained in the exhaust gas, the hot wire in the resistance bridge circuit and the capacitor electrode in the capacitance bridge circuit are easily corroded, leading to a rise in repair costs. There is.

(発明が解決しようとする問題点) 本発明は、従前の都市ごみ焼却炉の排ガス水分濃度の測
定に於ける上述の如き問題、即ち■水分濃度を訪単に正
確且つ連続的に測定できないこと、■測定中に於ける測
定装置の補正に手数がかかるうえ、測定装置の損傷が激
しく補修費が高騰すること、等の問題を解決し、ごみ焼
却炉からの排ガス中の水分濃度を簡単且つ正確に、しか
も連続的に安定して検出できるようにした水分濃度検出
方法とその装置を提供するものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems in measuring the water concentration of exhaust gas from conventional municipal waste incinerators, namely: (1) the inability to accurately and continuously measure water concentration on-site; ■It solves problems such as the time-consuming correction of the measuring device during measurement and the severe damage to the measuring device, which increases repair costs, making it easy and accurate to measure the moisture concentration in exhaust gas from waste incinerators. The present invention provides a method and apparatus for detecting water concentration that enables continuous and stable detection.

(問題点を解決するための手段) 本願第一発明は、不飽和湿りガス状態の試料排ガスを冷
却器7へ導いて冷却し、試料排ガス中の水蒸気の一部を
除去してこれを飽和湿りガス状態とすると共に、前記冷
却器7へ導入前の試料排ガスの温度Tlと流fiFt及
び冷却器7を通した後の試料排ガスの温度T2と流量F
2並びに前記飽和湿りガス状態の試料排ガス中の水蒸気
量Vw2を夫々検知し、前記各検知値Tt 、 F+ 
、 T2 、 F2 、 VW2から試料排ガス中の水
分量を算出することを基本構成とするものである。
(Means for Solving the Problems) The first invention of the present application leads sample exhaust gas in an unsaturated humid gas state to a cooler 7 to cool it, removes a part of water vapor in the sample exhaust gas, and converts it into saturated humid gas. The temperature Tl and flow rate fiFt of the sample exhaust gas before it is brought into a gas state and introduced into the cooler 7, and the temperature T2 and flow rate F of the sample exhaust gas after passing through the cooler 7.
2 and the amount of water vapor Vw2 in the sample exhaust gas in the saturated humid gas state, respectively, and the respective detected values Tt, F+
, T2, F2, and VW2 to calculate the amount of water in the sample exhaust gas.

また、本願第二発明は、不飽和湿りガス状態の試料排ガ
スを冷却してこれを飽和湿りガス状態とする冷却器7と
、冷却器7の入口側に設けた温度。
Further, the second invention of the present application includes a cooler 7 that cools sample exhaust gas in an unsaturated wet gas state to bring it into a saturated wet gas state, and a temperature provided on the inlet side of the cooler 7.

計5及び流量計6と、冷却器7の出口側に設けた温度計
10及び流量計11と、冷却器7内の凝縮水を排出する
ドレーントラップ13とを含む検出器(3)と;温度計
5からの温度信号T+及び流量計6からの流量信号F1
に冷却器7へ流入する試料排ガス流量を常温・常圧状態
の流量に換算する演算器14と、温度計lOからの温度
信号T3及び流量計11か・らの流量信号F2により冷
却器7より流出する試料排ガス流量を常温・常圧状態の
流量に換算する演算器15と、前記冷却器7より流出す
る飽和湿りガス状態の試料排ガス中の水蒸気量VW2を
決定する関数発生器17とを含む水分濃度演算器Bとを
、発明の基本構成とするものである。
a detector (3) including a temperature gauge 5 and a flow meter 6, a thermometer 10 and a flow meter 11 provided on the outlet side of the cooler 7, and a drain trap 13 for discharging condensed water in the cooler 7; Temperature signal T+ from meter 5 and flow rate signal F1 from flow meter 6
A calculation unit 14 converts the sample exhaust gas flow rate flowing into the cooler 7 into a flow rate at normal temperature and pressure, and a temperature signal T3 from the thermometer IO and a flow rate signal F2 from the flowmeter 11. It includes a calculator 15 that converts the flow rate of the sample exhaust gas flowing out into a flow rate at room temperature and normal pressure, and a function generator 17 that determines the amount of water vapor VW2 in the sample exhaust gas flowing out from the cooler 7 in a saturated wet gas state. The water concentration calculator B is the basic configuration of the invention.

(作用) 水分が水蒸気の状態で多量に含まれたごみ焼却炉からの
排ガスの一部、即ち不飽和湿りガスの状態にある試料排
ガスを冷却器に導入し、冷却器出口のガス状態が相対温
度100%以上となるように十分に冷却する。
(Function) A part of the exhaust gas from the waste incinerator that contains a large amount of moisture in the form of water vapor, that is, a sample exhaust gas in the state of unsaturated wet gas, is introduced into the cooler, and the gas state at the outlet of the cooler is Cool sufficiently so that the temperature is 100% or higher.

冷却器から流出する試料排ガスは飽和湿りガス状態とな
り、且つ当該試料排ガスには温度による体積変化量と凝
縮水に相当する体積変化量とが生じる。
The sample exhaust gas flowing out from the cooler becomes a saturated humid gas state, and the sample exhaust gas undergoes a volume change due to temperature and a volume change corresponding to condensed water.

一方、冷却器入口側の試料排ガス中の水分量は冷却器出
口側の飽和湿りガス状態にある試料排ガス中の水蒸気量
と、常温・常圧に換算した冷却器の入口と出口間に於け
るガス量の体積変化量との間に、後述する如く一定の関
係がある。従って冷却器の入口と出口に於ける試料排ガ
スの温度及び流量を夫々検出し、各検出値から常温・常
圧状聾に換算した冷却器の入口と出口間に於けるガス量
の体積変化量を演算すると共に、冷却器出口側の飽和湿
りガス状態にある試料排ガス中の水蒸気量を空気線図及
びガス定数を用いて求めることにより、試料排ガス中の
水分量を知得すること可能となる。
On the other hand, the amount of moisture in the sample exhaust gas on the cooler inlet side is determined by the amount of water vapor in the sample exhaust gas in a saturated humid gas state on the cooler outlet side, and the amount of water vapor between the cooler inlet and outlet converted to room temperature and normal pressure. There is a certain relationship between the amount of gas and the amount of change in volume, as will be described later. Therefore, the temperature and flow rate of the sample exhaust gas at the inlet and outlet of the cooler are detected, and from each detected value, the volumetric change in gas amount between the inlet and outlet of the cooler is calculated based on the detected values. By calculating the amount of water vapor in the sample exhaust gas in a saturated humid gas state on the cooler outlet side using the psychrometric diagram and gas constant, it is possible to know the amount of water in the sample exhaust gas.

(実施例) 第1図は本発明の一実施例に係る水分濃度検出装置の検
出部(4)の系統図であり、図に於いて1はごみ焼却炉
の煙道ダクト、2は排ガスの吸引用プローブ、3はサン
プリングプローブ箱、4は加熱導管、5は冷却器入口温
度計(TI)、6は冷却器入口流量計(F1)、  7
は冷却器、8は冷却器出口温度計(T2)、9は加熱器
、1oは加熱器出口温度計(T3)。
(Example) Fig. 1 is a system diagram of the detection part (4) of the moisture concentration detection device according to an example of the present invention. Suction probe, 3 is sampling probe box, 4 is heating conduit, 5 is cooler inlet thermometer (TI), 6 is cooler inlet flow meter (F1), 7
is a cooler, 8 is a cooler outlet thermometer (T2), 9 is a heater, and 1o is a heater outlet thermometer (T3).

11は加熱器出口流量計(F2)、12は試料ポンプ、
13はドレーントラップである。
11 is a heater outlet flow meter (F2), 12 is a sample pump,
13 is a drain trap.

ごみ焼却炉より発生した排ガスは、煙道ダクト1よりプ
ローブ2を通して試料排ガスとして吸引され、サンプリ
ングプローブ箱3及び加熱導管4によって結露しないよ
うにして導出され、温度計5で温度(T1)を測定し、
また流量計6で流fi (F1)を測定したあと、冷却
器7へ入れられる。
The exhaust gas generated from the garbage incinerator is sucked as sample exhaust gas from the flue duct 1 through the probe 2, and is led out through the sampling probe box 3 and heating conduit 4 without condensation, and the temperature (T1) is measured with the thermometer 5. death,
Further, after measuring the flow fi (F1) with the flowmeter 6, it is put into the cooler 7.

冷却器7に於いて、試料排ガスは十分に冷却され、凝縮
水14はドレーントラップ13を介して排出される。凝
縮水を排出せしめて飽和湿りガスの状態となったガスは
、冷却器7を出たあと温度計8で温度(T2)が測定さ
れ、加熱器9へ入る。
In the cooler 7, the sample exhaust gas is sufficiently cooled, and the condensed water 14 is discharged via the drain trap 13. After the condensed water has been discharged and the gas has become a saturated moist gas, its temperature (T2) is measured by a thermometer 8 after leaving the cooler 7 and enters the heater 9.

加熱器9で加熱された試料排ガスは、温度計lOで温度
(T3)を測定し、更に流量計11で流量(F2)を検
出した後、試料ポンプ12を通って系外へ排出されて行
く。尚、試料排ガスの吸引は前記試料ポンプ12により
行なわれる。
The sample exhaust gas heated by the heater 9 measures the temperature (T3) with a thermometer 1O, and further detects the flow rate (F2) with a flowmeter 11, and then passes through the sample pump 12 and is discharged to the outside of the system. . The sample exhaust gas is sucked by the sample pump 12.

次に、前記第1図に示した検出部Aで検知した各検出値
T+ 、 T2. Ts、 Fl及びF2等の処理;即
ち本発明に係る水分濃度検出の原理について説明する。
Next, each detection value T+, T2 . detected by the detection unit A shown in FIG. The processing of Ts, Fl, F2, etc.; that is, the principle of water concentration detection according to the present invention will be explained.

先ず、燃焼排ガス中の乾きガスと水蒸気は、近似的に理
想気体として取扱うことができ、且つ理想気体の状態式
は下記の0式で表わされる。
First, the dry gas and water vapor in the combustion exhaust gas can be approximately treated as ideal gases, and the state equation of the ideal gas is expressed by the following equation 0.

P@V=G@R−T−・・・■ ここで、P:圧力(Kyf/ m’ )、T:温度(K
)、G:重量(Kgf)、■=体積(→、R:ガス定数
(KffA9f −K)である。
P@V=G@R-T-...■ Here, P: Pressure (Kyf/m'), T: Temperature (K
), G: weight (Kgf), ■=volume (→, R: gas constant (KffA9f −K)).

第1図に於いて、冷却器7の入口及び出口の各圧力を略
大気圧に等しいとすると、ガス冷却器7の入口に於ける
試料排ガス流量Ft(m’)、即ち不飽和湿りガス流量
FIは、次の0式で表わされる。
In FIG. 1, assuming that the pressures at the inlet and outlet of the cooler 7 are approximately equal to atmospheric pressure, the sample exhaust gas flow rate Ft (m') at the inlet of the gas cooler 7, that is, the unsaturated wet gas flow rate FI is expressed by the following equation 0.

ここで、TI:冷却器入口に於ける試料排ガス温度■、
Vd=不飽和湿りガス中の乾きガス量(fr/)、Vw
+ :不飽和湿りガス中の水蒸気量(−である。
Here, TI: Sample exhaust gas temperature at the cooler inlet ■,
Vd = amount of dry gas in unsaturated wet gas (fr/), Vw
+: Amount of water vapor in unsaturated wet gas (-.

一方、ガス冷却器7を通過した後の十分に冷却された飽
和湿り状態の試料排ガス流ffi F2 (m’)は、
次の0式で表わされる。
On the other hand, the sufficiently cooled sample exhaust gas flow ffi F2 (m') in a saturated wet state after passing through the gas cooler 7 is as follows:
It is expressed by the following 0 formula.

ここで、Vd:飽和湿りガス中の乾きガス量(rrI′
)、Vwz :飽和湿りガス中の水蒸気量(→、T3:
加熱器9出口に於ける試料排ガス温度(A)である。
Here, Vd: amount of dry gas in saturated wet gas (rrI'
), Vwz: Water vapor amount in saturated humid gas (→, T3:
This is the sample exhaust gas temperature (A) at the outlet of the heater 9.

前記0式と0式より不飽和湿りガス中の水蒸気量(冷却
器入口に於ける試料排ガス中の水蒸気量)Vw+を求め
ると、次の0式となる。
When the amount of water vapor in the unsaturated wet gas (the amount of water vapor in the sample exhaust gas at the inlet of the cooler) Vw+ is determined from the above equations 0 and 0, the following equation 0 is obtained.

ところで、前記0式に於けるVW2 (飽和湿りガス中
の水蒸気量)は、空気線図を用いて冷却器7の出口ガス
温度T2の関数である絶対湿度を求め、ガス定数を用い
て演算することによりその体積を求めることができる。
By the way, VW2 (amount of water vapor in saturated humid gas) in the above equation 0 is calculated using an psychrometric chart to find the absolute humidity which is a function of the outlet gas temperature T2 of the cooler 7, and using a gas constant. The volume can be determined by doing this.

従って、試料排ガス中の水蒸気量Vw+は、冷却器7の
入口ガス温度TIと入口ガス流量F1及び加熱器9の出
口ガス温度T3と出口ガス流量F2を知ることにより、
前記0式の演算によって求め得る。
Therefore, the amount of water vapor Vw+ in the sample exhaust gas can be determined by knowing the inlet gas temperature TI and inlet gas flow rate F1 of the cooler 7, and the outlet gas temperature T3 and outlet gas flow rate F2 of the heater 9.
It can be obtained by calculating the above equation 0.

又、前記Vw+が求めると、試料排ガス中の水分濃度W
 (vol/vo1%)は次の0式により求め得る。
Moreover, when the above-mentioned Vw+ is determined, the water concentration W in the sample exhaust gas
(vol/vol1%) can be determined by the following formula 0.

Vw+ +Vd           273    
Ft即ち、冷却器7のガス入口温度Tl、ガス流量F1
ガス出口温度T2及び加熱器9のガス出口温度T3、ガ
ス流量F2を検知することにより、演算により試料排ガ
ス中の水分濃度Wを求めることができる0尚、本実施例
に於いては、冷却器7や加熱器9等に於ける圧力差を無
視しているが、圧力差の補正を行なう方が望ましいこと
は勿論である0第2図は、前記第1図の検知部に於いて
検出した各検出端を用いて、排ガス中の水分濃度を演算
する演算器(B)のブロックダイヤグラムである。図に
於いて、14及び15は演算器、16は減算器、17は
関数発生器、18は加算器、19は演算器、20は水分
濃度表示器である。
Vw+ +Vd 273
Ft, that is, gas inlet temperature Tl of cooler 7, gas flow rate F1
By detecting the gas outlet temperature T2, the gas outlet temperature T3 of the heater 9, and the gas flow rate F2, the moisture concentration W in the sample exhaust gas can be determined by calculation. 7 and the heater 9, etc., but it is of course better to correct the pressure difference. 0 Figure 2 shows the pressure difference detected by the detection unit in Figure 1 above. It is a block diagram of a computing unit (B) that computes the moisture concentration in exhaust gas using each detection end. In the figure, 14 and 15 are arithmetic units, 16 is a subtracter, 17 is a function generator, 18 is an adder, 19 is an arithmetic unit, and 20 is a water concentration display.

前記演算器14は、冷却器7へ導入した不飽和湿り状態
の試料排ガス量を常温・常圧状態に於けるガス量に換算
する演算器であり、冷却器7の入口に設けた温度計5か
らのガス温度信号Tsと流量計6からのガス流量信号F
+が夫々入力され、前記0式の第1項に相当する量が演
算される。同様に演算器15は加熱器9からの飽和湿り
状態の試料排ガス量を常温・常圧状態に於けるガス量に
換算する演算器であり、加熱器9の出口側に設けた温度
計10からの温度信号T3と流量計11からのガス流量
信号F2が夫々入力され、前記0式の第2項に相当する
量が演算される。
The computing unit 14 is a computing unit that converts the amount of unsaturated wet sample exhaust gas introduced into the cooler 7 into the amount of gas at normal temperature and pressure. The gas temperature signal Ts from the flowmeter 6 and the gas flow rate signal F from the flowmeter 6
+ is input, respectively, and the amount corresponding to the first term of the 0 formula is calculated. Similarly, the computing unit 15 is a computing unit that converts the amount of sample exhaust gas in a saturated humid state from the heater 9 into the amount of gas at room temperature and normal pressure. The temperature signal T3 and the gas flow rate signal F2 from the flow meter 11 are input, respectively, and a quantity corresponding to the second term of the above equation 0 is calculated.

前記演算器14及び演算器15で演算された各信号H1
,Hzは減算器16に入力され、減算器16で演算され
た減算信号H3は加算器18へ入力される。
Each signal H1 calculated by the calculator 14 and the calculator 15
, Hz are input to the subtracter 16, and the subtracted signal H3 calculated by the subtracter 16 is input to the adder 18.

一方、前記関数発生器17へは冷却器7の出口に設けた
温度計8からの温度信号T2が入力されてあり、空気線
図に基づいて飽和湿りガスの絶対温度を求め、ガス定数
を用いて演算することにより、飽和湿りガス中の水蒸気
量vw2が演算される。又、該関数発生器17で生じた
飽和湿りガス中の水蒸気量vw2を表わす信号H4は前
記加算器18へ入力されており、該加算器18で減算器
16からの信号H3と加算される。
On the other hand, the temperature signal T2 from the thermometer 8 installed at the outlet of the cooler 7 is inputted to the function generator 17, and the absolute temperature of the saturated humid gas is determined based on the psychrometric diagram, and the absolute temperature of the saturated humid gas is determined using the gas constant. By calculating, the amount of water vapor vw2 in the saturated humid gas is calculated. Further, a signal H4 representing the amount of water vapor vw2 in the saturated humid gas generated by the function generator 17 is input to the adder 18, where it is added to the signal H3 from the subtracter 16.

加算器18からの出力信号、即ち前記0式で表わした冷
却器7の入口に於ける試料排ガス中の水蒸気量Vwsに
相当する信号H6は演算器19へ入力され、更に、該演
算器19へは、冷却器入口に設けた流量計6からの流量
信号F+と温度計5からの温度信号T1が夫々入力され
ており、これ等を用いて前記0式で表わされる試料排ガ
ス中の水分濃度W (vo1%)が演算され、その直が
水分表示器2oに表示される。
The output signal from the adder 18, that is, the signal H6 corresponding to the amount of water vapor Vws in the sample exhaust gas at the inlet of the cooler 7 expressed by the above equation 0 is input to the calculator 19; The flow rate signal F+ from the flow meter 6 provided at the inlet of the cooler and the temperature signal T1 from the thermometer 5 are respectively input, and using these, the water concentration W in the sample exhaust gas expressed by the above equation 0 is calculated. (vo1%) is calculated, and its value is displayed on the moisture display 2o.

尚、第2図に示す演算器Bに於いては、減算器16によ
りHIHzを先ず求め、これに加算器18に於いて関数
発生器17からの信号H4を加える構成としているが、
減算器16を省いて直接三つの信号H1゜H2,Hsを
加算器18へ入力するようにしてもよい。
Note that in the arithmetic unit B shown in FIG. 2, the subtracter 16 first obtains HIHz, and the adder 18 adds the signal H4 from the function generator 17 to it.
The subtracter 16 may be omitted and the three signals H1, H2, and Hs may be input directly to the adder 18.

又、前記各検出並びに演算が連続的に行なわれることは
勿論である。
Moreover, it goes without saying that each of the above-mentioned detections and calculations are performed continuously.

更に、本実施例に於いては、冷却器7の後に加熱器9を
設けて飽和湿りガス状態の試料排ガスを乾燥させると共
に、加熱器9の出口ガス温度T3を演算器15へ入力す
るようにしているが、加熱器9を省略し、冷却器7の出
口ガス温度T2を演算器15へ入力するようにしてもよ
い(この場合には、前記0式及び0式のT3がT2に置
換されることになる)ことは勿論である。
Furthermore, in this embodiment, a heater 9 is provided after the cooler 7 to dry the sample exhaust gas in a saturated humid gas state, and the outlet gas temperature T3 of the heater 9 is input to the calculator 15. However, the heater 9 may be omitted and the outlet gas temperature T2 of the cooler 7 may be input to the calculator 15 (in this case, T3 in the above equations 0 and 0 is replaced with T2). Of course, this is true.

(発明の効果) 本発明は上述の通り、検出部Aの構成が冷却器7と加熱
器9と流量計6,12を直列に接続しただけの極めて簡
単なものであり、しかもポンプ12により試料ガスを吸
引して流通させ、その温度や流量を検出するだけでよい
ため、排ガス内にダスト等が多少台まれていたり、或い
は排ガス内の含有成分が変動しても、従前のブリッジ法
による水分濃度測定法の如く測定誤差が高くなることも
なく、簡単にしかも正確且つ安定した水分濃度検出が行
なえる。
(Effects of the Invention) As described above, the present invention has an extremely simple configuration of the detection unit A, which only connects the cooler 7, the heater 9, and the flowmeters 6 and 12 in series. Because it is only necessary to suck in gas, circulate it, and detect its temperature and flow rate, even if there is some dust in the exhaust gas or the components contained in the exhaust gas fluctuate, it is not possible to detect moisture using the conventional bridge method. Unlike concentration measurement methods, measurement errors do not increase, and water concentration can be detected easily, accurately, and stably.

又、排ガス中の腐食性ガスにより検出部Aの構成部材が
万一腐食されたとしても、部材の取替が極めて容易に行
なえるうえ、部材の腐食がブリッジ法の様に測定直に直
接悪影響を及ぼすことがない0 更に、大気汚染防止法に基づく有害物質の濃度規制は、
乾きガスに対する濃度で規制されているため、有害物質
の計測値から総排出量を算出するには排ガス中の水分濃
度が必要になる。また、湿式洗浄装置を設けたごみ焼却
炉より排出される排ガスは、水分濃度とも関係して白煙
を発生し易く、これを防止するためには排ガス中の水分
濃度が必要となる。本発明は前述の如き大気汚染の防止
や白煙の防止を図る上で優れた実用的効用を有するもの
である。
In addition, even if the components of detection part A are corroded by corrosive gas in the exhaust gas, they can be replaced extremely easily, and the corrosion of the components will not have a direct adverse effect on the measurement as in the bridge method. In addition, the concentration regulations of hazardous substances based on the Air Pollution Control Act are as follows:
Since it is regulated based on the concentration relative to dry gas, the moisture concentration in the exhaust gas is required to calculate the total amount of emissions from the measured values of hazardous substances. In addition, the exhaust gas discharged from a garbage incinerator equipped with a wet cleaning device tends to generate white smoke due to its moisture concentration, and in order to prevent this, the moisture concentration in the exhaust gas must be adjusted. The present invention has excellent practical effects in preventing air pollution and white smoke as described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係る水分濃度検出装置の
検出部Aの系統図である。 第2図は、本発明の一実施例に係る水分濃度検出装置の
演算部Bのブロックダイヤグラムである。 l 煙道ダクト 2 プローブ 3 サンプリングプローブ箱 4 加熱導管 5.8.10温度計 6.11  流量計 7 冷却器 9 加熱器 12  試料ポンプ 13  ドレーントラップ 14、15.19演算器 16  減算器 17  関数発生器 18  加算器 20  水分濃度表示器 T+ 、 T2 、 T−温度 Fl、F2流量 Vwz  冷却器出口の試料排ガス中の水分量Vwr 
 冷却器入口の試料排ガス中の水分量A 検出器 B 水分濃度演算器
FIG. 1 is a system diagram of a detection section A of a water concentration detection device according to an embodiment of the present invention. FIG. 2 is a block diagram of the calculation section B of the water concentration detection device according to an embodiment of the present invention. l Flue duct 2 Probe 3 Sampling probe box 4 Heating conduit 5.8.10 Thermometer 6.11 Flow meter 7 Cooler 9 Heater 12 Sample pump 13 Drain trap 14, 15.19 Arithmetic unit 16 Subtractor 17 Function generation Unit 18 Adder 20 Moisture concentration display T+, T2, T- temperature Fl, F2 flow rate Vwz Moisture content Vwr in sample exhaust gas at cooler outlet
Moisture content A in the sample exhaust gas at the cooler inlet Detector B Moisture concentration calculator

Claims (3)

【特許請求の範囲】[Claims] (1)不飽和湿りガス状態の試料排ガスを冷却器(7)
へ導入して冷却し、試料排ガス中の水蒸気の一部を除去
してこれを飽和湿りガス状態とすると共に、前記冷却器
(7)へ導入前の試料排ガスの温度(T_1)と流量(
F_1)及び冷却器(7)を通した後の試料排ガスの温
度(T_2)と流量(F_2)並びに前記飽和湿りガス
状態の試料排ガス中の水蒸気量(Vw_2)を夫々検知
し、前記各検知値(T_1)、(T_2)、(F_1)
、(F_2)、(Vw_2)から試料排ガス中の水分量
を算出することを特徴とするごみ焼却炉における排ガス
中の水分濃度検出方法。
(1) Cooler (7) for sample exhaust gas in unsaturated wet gas state
The temperature (T_1) and flow rate (
F_1) and cooler (7), the temperature (T_2) and flow rate (F_2) of the sample exhaust gas as well as the amount of water vapor (Vw_2) in the sample exhaust gas in the saturated wet gas state are detected, and each of the detected values is (T_1), (T_2), (F_1)
, (F_2), and (Vw_2) to calculate the amount of water in the sample exhaust gas.
(2)特許請求の範囲第1項に記載のごみ焼却炉におけ
る排ガス中の水分濃度検出方法に於いて、飽和湿りガス
状態の試料排ガス中の水蒸気量(Vw_2)を空気線図
及びガス定数により求めると共に、前記温度(T_1)
と流量(F_1)及び温度(T_2)と流量(F_2)
の各検出値より、不飽和湿りガス状態及び飽和湿りガス
状態の流量(F_1)、(F_2)を常温・常圧状態の
流量値(F)、(F_2)に変換し、前記水蒸気量(V
w_2)と前記各流量値(F)(F_2)の変化量より
試料排ガス中の水分量を算出するようにしたごみ焼却炉
における排ガス中の水分濃度検出方法。
(2) In the method for detecting moisture concentration in exhaust gas in a waste incinerator as set forth in claim 1, the amount of water vapor (Vw_2) in a sample exhaust gas in a saturated wet gas state is determined using an psychrometric diagram and a gas constant. In addition, the temperature (T_1)
and flow rate (F_1) and temperature (T_2) and flow rate (F_2)
From each detected value, the flow rates (F_1) and (F_2) in the unsaturated wet gas state and the saturated wet gas state are converted to flow values (F) and (F_2) in the normal temperature and normal pressure state, and the water vapor amount (V
w_2) and the amount of change in each of the flow values (F) (F_2) to calculate the amount of water in the sample exhaust gas.
(3)不飽和湿りガス状態の試料排ガスを冷却してこれ
を飽和湿りガス状態とする冷却器(7)と、冷却器(7
)の入口側に設けた温度計(5)及び流量計(6)と、
冷却器(7)の出口側に設けた温度計(8)及び流量計
(11)と、冷却器(7)内の凝縮水を排出するドレー
ントラップ(13)とを含む検出器(A)と;温度計(
5)からの温度信号(T_1)及び流量計(6)からの
流量信号(F_1)により冷却器(7)へ流入する試料
排ガス流量を常温・常圧状態の流量に換算する演算器(
14)と、温度計(10)からの温度信号(T_3)及
び流量計(11)からの流量信号(F_2)により冷却
器(7)より流出する試料排ガス流量を常温・常圧状態
の流量に換算する演算器(15)と、前記冷却器(7)
より流出する飽和湿りガス中の水蒸気量(Vw_2)を
決定する関数発生器(17)とを含む水分濃度の演算器
(B)とから構成したごみ焼却炉における排ガス中の水
分濃度検出装置。
(3) A cooler (7) that cools the sample exhaust gas in an unsaturated wet gas state to bring it into a saturated wet gas state;
) a thermometer (5) and a flowmeter (6) provided on the inlet side of the
A detector (A) including a thermometer (8) and a flow meter (11) provided on the outlet side of the cooler (7), and a drain trap (13) for discharging condensed water in the cooler (7); ;thermometer(
A computing unit (
14), the temperature signal (T_3) from the thermometer (10), and the flow rate signal (F_2) from the flow meter (11), the flow rate of the sample exhaust gas flowing out from the cooler (7) is adjusted to the flow rate at room temperature and normal pressure. A calculator for conversion (15) and the cooler (7)
A device for detecting moisture concentration in exhaust gas in a waste incinerator, comprising a function generator (17) that determines the amount of water vapor (Vw_2) in saturated wet gas flowing out from the waste incinerator, and a moisture concentration calculator (B) including a moisture concentration calculator (B).
JP8694185A 1985-04-23 1985-04-23 Detecting method and device for water concentration of exhaust gas in incinerator Pending JPS61246515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8694185A JPS61246515A (en) 1985-04-23 1985-04-23 Detecting method and device for water concentration of exhaust gas in incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8694185A JPS61246515A (en) 1985-04-23 1985-04-23 Detecting method and device for water concentration of exhaust gas in incinerator

Publications (1)

Publication Number Publication Date
JPS61246515A true JPS61246515A (en) 1986-11-01

Family

ID=13900892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8694185A Pending JPS61246515A (en) 1985-04-23 1985-04-23 Detecting method and device for water concentration of exhaust gas in incinerator

Country Status (1)

Country Link
JP (1) JPS61246515A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164672A (en) * 1991-12-13 1993-06-29 Tlv Co Ltd Wetness measuring apparatus
JPH0649986U (en) * 1991-07-04 1994-07-08 収二 光野 Water content measuring device
JP2007278889A (en) * 2006-04-07 2007-10-25 Sozosha:Kk Measuring implement for moisture in high-temperature moist air, and measurement method
JP2020046100A (en) * 2018-09-18 2020-03-26 株式会社デンソーウェーブ Method and device of estimating moisture content

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426788A (en) * 1977-07-30 1979-02-28 Nippon Steel Corp Metering system for water vapor in gases

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426788A (en) * 1977-07-30 1979-02-28 Nippon Steel Corp Metering system for water vapor in gases

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649986U (en) * 1991-07-04 1994-07-08 収二 光野 Water content measuring device
JPH05164672A (en) * 1991-12-13 1993-06-29 Tlv Co Ltd Wetness measuring apparatus
JP2007278889A (en) * 2006-04-07 2007-10-25 Sozosha:Kk Measuring implement for moisture in high-temperature moist air, and measurement method
JP2020046100A (en) * 2018-09-18 2020-03-26 株式会社デンソーウェーブ Method and device of estimating moisture content

Similar Documents

Publication Publication Date Title
JP5961962B2 (en) Boiler steam amount measuring method, boiler load analyzing method, boiler steam amount measuring device, and boiler load analyzing device
JPH01201148A (en) Dryness factor calculation of fluid, energy supply rate calculation and dryness factor calculator
JPS61246515A (en) Detecting method and device for water concentration of exhaust gas in incinerator
US5847263A (en) Method and device for determining the moisture content of a gas stream
JPH03207425A (en) Discrimination device for filter exchanging time
CN205027683U (en) Detection apparatus for flue gas water capacity
CN217687307U (en) Synchronous measuring device for waste gas moisture content, particulate matter sampling flow and waste gas discharge amount of fixed pollution source
CN102103045A (en) Constant speed mechanical water sampling device and sampling method
JP3381122B2 (en) Steam dryness measuring device
JP2698399B2 (en) Acoustic combustion gas temperature measurement device
JP4011473B2 (en) Steam dryness measuring device
CN212432909U (en) Device for measuring concentration value of particulate matter in gas on site
CN112857481B (en) Vortex street moisture split-phase flow measurement method based on liquid film thickness modeling
SU1103066A1 (en) Device for determining degree of condenser fouling
CN113670767B (en) Flue gas humidity detection device and method
RU111709U1 (en) HEATING LEAK DETECTION SYSTEM IN NPP ROOMS
SU928163A1 (en) Apparatus for determining condenser contamination degree
CN2164548Y (en) Steam measurer
SU1198358A1 (en) System for controlling condenser operation
JPS59182884A (en) Measurement of circulating gas flow in coke dry extinguishing equipment
JP2004162948A (en) Steam generating amount measuring device
SU452779A1 (en) Condensing vapor sensor
CN111855516A (en) Device for measuring concentration value of particulate matter in gas on site
JP3345510B2 (en) Signal processing method for simultaneous and continuous measurement of moisture and oxygen
JPH0649986U (en) Water content measuring device