JP2698399B2 - Acoustic combustion gas temperature measurement device - Google Patents

Acoustic combustion gas temperature measurement device

Info

Publication number
JP2698399B2
JP2698399B2 JP63265427A JP26542788A JP2698399B2 JP 2698399 B2 JP2698399 B2 JP 2698399B2 JP 63265427 A JP63265427 A JP 63265427A JP 26542788 A JP26542788 A JP 26542788A JP 2698399 B2 JP2698399 B2 JP 2698399B2
Authority
JP
Japan
Prior art keywords
combustion gas
temperature
sound wave
calculating
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63265427A
Other languages
Japanese (ja)
Other versions
JPH02112740A (en
Inventor
秀久 吉廻
典幸 今田
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP63265427A priority Critical patent/JP2698399B2/en
Publication of JPH02112740A publication Critical patent/JPH02112740A/en
Application granted granted Critical
Publication of JP2698399B2 publication Critical patent/JP2698399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃焼ガスの温度測定装置に係り、特にガス
成分の変化する燃焼ガスの温度を計測するに好適な音響
式燃焼ガス温度測定装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion gas temperature measurement device, and more particularly to an acoustic combustion gas temperature measurement device suitable for measuring the temperature of a combustion gas in which a gas component changes. About.

〔従来の技術〕[Conventional technology]

従来、温度の計測方法は数多くあるが、その使用形式
から接触式のものと非接触式のものとの2つに分けられ
る。接触式のものは熱電対に代表されるように、挿入点
の温度を極めて高精度に測定することができる。これに
対し、輻射温度計のような非接触式のものは精度はやや
落ちるものの、高温の物体を遠距離からでも測定できる
ことから工業的には利用度が高い。
2. Description of the Related Art Conventionally, there are many methods for measuring temperature, and they are classified into two types, a contact type and a non-contact type, depending on the type of use. The contact type can measure the temperature at the insertion point with extremely high precision, as represented by a thermocouple. On the other hand, a non-contact type device such as a radiation thermometer has a slightly lower accuracy, but can be used to measure a high-temperature object even from a long distance, so that it is industrially useful.

非接触式のものには光を応用したものが多いが、最近
では音波を用いる方法が着目されている。代表的な例を
第5図に示す。第5図において、ボイラ火炉1には風箱
6から燃焼用空気を供給されて燃料を燃焼させるバーナ
5がついている。燃焼ガスは冷却水管等で構成された炉
壁2および伝熱管群4で熱吸収された後、煙道3を通り
排出される。火炉出口部には音波の発信器22と受信器23
が装着されている。
Many of the non-contact types use light, but recently methods using sound waves have attracted attention. A typical example is shown in FIG. In FIG. 5, the boiler furnace 1 is provided with a burner 5 supplied with combustion air from a wind box 6 to burn fuel. The combustion gas is discharged through the flue 3 after being absorbed by the furnace wall 2 composed of cooling water pipes and the like and the heat transfer tube group 4. At the furnace exit, a sound wave transmitter 22 and receiver 23
Is installed.

伝播時間計測器20から出たパルス信号はアンプ21で増
幅され、発信器22から音波を発する。この音波は対向壁
側の受信器23で検出され、電気信号となりアンプで増幅
されて伝播時間計測器に戻る。この間の時間tは、音波
が送信器から受信器に到るまでの伝播時間にほぼ等し
い。送信器から受信器までの距離Lと被測定流体の温度
定数aがわかっていれば、温度T(k)と音速C(m/
s)の関係式 から温度を求めることができる。
The pulse signal output from the propagation time measuring device 20 is amplified by the amplifier 21, and the transmitter 22 emits a sound wave. This sound wave is detected by the receiver 23 on the opposite wall side, becomes an electric signal, is amplified by the amplifier, and returns to the propagation time measuring device. The time t during this time is approximately equal to the propagation time of the sound wave from the transmitter to the receiver. If the distance L from the transmitter to the receiver and the temperature constant a of the fluid to be measured are known, the temperature T (k) and the sound velocity C (m /
s) relational expression The temperature can be obtained from

この演算は温度算出器28で行なわれ、温度表示器29に
表示される。
This calculation is performed by the temperature calculator 28 and displayed on the temperature display 29.

(1)式において、温度定数aは燃焼ガスの組成によ
って大きく異なる。第6図に燃焼ガスの主な成分の音速
と温度との関係を示す。第6図において、イは窒素、ロ
は酸素、ハは二酸化炭素、ニは水蒸気の関係曲線であ
る。燃焼ガスの主成分は窒素(N2)であるが、二酸化炭
素(CO2)とか水分(H2O)などの含有量が変われば、燃
焼排ガスの音速と温度の関係は変わってしまう。事業用
のボイラでは起動時にはCO2はほとんどゼロであるが、
定格負荷時には14%程度含まれる。したがって、温度を
正しく測定するためにはCO2を初めとする各排ガス成分
量を知っておく必要がある。
In the equation (1), the temperature constant a greatly differs depending on the composition of the combustion gas. FIG. 6 shows the relationship between the sound speed of the main components of the combustion gas and the temperature. In FIG. 6, a is a relation curve of nitrogen, b is oxygen, c is carbon dioxide, and d is water vapor. The main component of the combustion gas is nitrogen (N 2 ), but if the content of carbon dioxide (CO 2 ) or moisture (H 2 O) changes, the relationship between the sound speed and temperature of the combustion exhaust gas changes. In a commercial boiler, CO 2 is almost zero at startup,
About 14% is included at rated load. Therefore, in order to measure the temperature correctly, it is necessary to know the amount of each exhaust gas component including CO 2 .

しかし、従来の音響式温度計ではガス組成による補正
がなされておらず、温度測定の誤差が大きかった。
However, in the conventional acoustic thermometer, no correction was made according to the gas composition, and the error in the temperature measurement was large.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明の目的は、ガス成分の変化する燃焼ガスにおい
ても温度を正確に測定することができる音響式燃焼ガス
温度測定装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an acoustic combustion gas temperature measurement device capable of accurately measuring the temperature of combustion gas in which the gas component changes.

〔課題を解決するための手段〕[Means for solving the problem]

上記した従来技術の課題は、ボイラ火炉で発生した燃
焼ガスが流れる流路に配置した一対以上の音波送受信装
置と、該音波送受信装置からの信号に基づき音波送受信
装置間の音波の伝播速度を算出する装置と、上記音波の
伝播速度から燃焼排ガス温度を算出する装置とを備えた
音響式燃焼ガス温度測定装置において、少なくとも前記
ボイラ火炉の出口に配置した音波送受信装置と、前記燃
焼ガスが炉壁および伝熱管群で熱吸収された後の燃焼ガ
ス流路内に配置した酸素濃度測定装置と、該酸素濃度測
定装置の測定値に基づき燃焼ガスの組成を算出する装置
と、算出されたガス組成から燃焼ガスの温度定数を算出
する装置と、この算出された温度定数と前記音波の伝播
速度に基づき燃焼ガスの温度を算出する装置とを設けた
ことを特徴とする音響式燃焼ガス温度測定装置により解
決される。
The above-mentioned problem of the prior art is to calculate a propagation speed of a sound wave between the sound wave transmitting and receiving devices based on a signal from the sound wave transmitting and receiving device and a pair of sound wave transmitting and receiving devices arranged in a flow path of a combustion gas generated in a boiler furnace. An acoustic combustion gas temperature measuring device comprising: a device for calculating a flue gas temperature from the propagation speed of the sound wave; a sound wave transmitting / receiving device disposed at least at an outlet of the boiler furnace; And an oxygen concentration measuring device disposed in the combustion gas flow path after heat absorption by the heat transfer tube group, a device for calculating the composition of the combustion gas based on the measured value of the oxygen concentration measuring device, and a calculated gas composition A device for calculating the temperature constant of the combustion gas from the apparatus, and a device for calculating the temperature of the combustion gas based on the calculated temperature constant and the propagation speed of the sound wave. It is solved by the formula combustion gas temperature measuring device.

〔実施例〕〔Example〕

本発明における温度定数aは以下のようにして求める
ことができる。
The temperature constant a in the present invention can be determined as follows.

燃料の組成をCmHnとすると燃焼の反応式は、 となる。(2)式においてCOの発生はないものとした。Assuming that the composition of the fuel is C m H n , the reaction equation for combustion is Becomes In the equation (2), no CO was generated.

燃料の組成はあらかじめわかっているから、燃焼ガス
中のO2濃度を計測すれば空気量Aが求まり、N2、CO2
濃度が求まる。各々の濃度がわかれば、混合ガスとして
の温度定数aが計算できる。
Since the composition of the fuel is known in advance, the air amount A can be obtained by measuring the O 2 concentration in the combustion gas, and the concentrations of N 2 and CO 2 can be obtained. If the respective concentrations are known, the temperature constant a as a mixed gas can be calculated.

すなわち、各成分ガスの音速定数aiは既知であるか
ら、濃度(容積%)をViとすると、燃焼ガスの温度定数
は次の(3)式により求まる。
That is, since the sound velocity constant ai of each component gas is known, if the concentration (% by volume) is Vi, the temperature constant of the combustion gas is obtained by the following equation (3).

温度定数が決まれば音波の伝播時間から燃焼ガスの温
度が正確に算出できる。
If the temperature constant is determined, the temperature of the combustion gas can be accurately calculated from the propagation time of the sound wave.

第1図に本発明の一実施例を示す。第1図において、
煙道3には酸素濃度計25のサンプリング管24が挿入され
ている。酸素濃度計25からガス組成算出器27に酸素濃度
情報が送られ、ガス組成が算出され、次いで温度定数が
計算され、温度算出器28に送られる。温度算出器では伝
播時間とこの温度定数から温度が計算され、表示器29に
表示される。
FIG. 1 shows an embodiment of the present invention. In FIG.
A sampling tube 24 of an oxygen concentration meter 25 is inserted into the flue 3. The oxygen concentration information is sent from the oxygen concentration meter 25 to the gas composition calculator 27, the gas composition is calculated, and then the temperature constant is calculated and sent to the temperature calculator. The temperature calculator calculates the temperature from the propagation time and the temperature constant and displays the temperature on the display 29.

本発明によって、ボイラ起動時のようにCO2濃度が大
きく変化する場合にも、燃焼ガス温度を正確に測定する
ことができる。
According to the present invention, it is possible to accurately measure the combustion gas temperature even when the CO 2 concentration changes greatly, such as when starting a boiler.

第1図において、さらに二酸化炭素濃度計31を付加す
ることができる。このような装置では、起動時と定格負
荷時の濃度変化が大きく、N2を主成分とする燃焼ガスの
音速に最も影響の大きいCO2を直接はかるため、より正
確に温度を求めることができる。
In FIG. 1, a carbon dioxide concentration meter 31 can be further added. In such devices, large concentration change at the time of rated load starting, because to achieve high CO 2 most affect the acoustic velocity of the combustion gas to the N 2 as a main component directly, can be obtained more accurately temperature .

第2図に、本発明の他の実施例を示す。この例では音
波の送信器22および受信器23が各伝熱管群の前後にも設
けてある。各々の間の音波の伝播時間は切替器32によっ
て切替えて測定する。この場合、伝熱管群の上流、下流
で温度をはかっているので、伝熱管表面の汚れの度合い
も知ることができる。
FIG. 2 shows another embodiment of the present invention. In this example, a sound wave transmitter 22 and a receiver 23 are also provided before and after each heat transfer tube group. The propagation time of the sound wave between each is switched and measured by the switch 32. In this case, since the temperature is measured upstream and downstream of the heat transfer tube group, the degree of contamination on the heat transfer tube surface can also be known.

第3図に本発明のさらに他の実施例を示す。この例
は、煙道3の2カ所に酸素濃度計25を置き(b)、火炉
1側の対応する音響温度計に別々の温度定数を用いる
(a)ようにしたものである。事業用の大型ボイラで
は、燃焼ガスの組成が場所によってわずかながら異なる
場合があるので、この実施例が有効となる。
FIG. 3 shows still another embodiment of the present invention. In this example, the oxygen concentration meters 25 are placed at two locations in the flue 3 (b), and different temperature constants are used for the corresponding acoustic thermometers on the furnace 1 side (a). In a large commercial boiler, the composition of the combustion gas may slightly differ depending on the location, so this embodiment is effective.

第4図に本発明のさらに他の実施例を示す。この例は
送信器、受信器を同一断面に送受信器32として6個配置
し、これらの可能な限りの組合わせでできる伝播経路33
で音速を測定し、この断面における温度分布を求めるよ
うにしたものである。従来は相対評価しかできなかった
が、本発明により正確な絶対温度が求まるようになる。
FIG. 4 shows still another embodiment of the present invention. In this example, six transmitters and receivers are arranged on the same cross section as a transmitter / receiver 32, and a propagation path 33 formed by combining them as much as possible is used.
Is used to measure the speed of sound, and the temperature distribution in this section is determined. Conventionally, only relative evaluation could be performed, but the present invention allows accurate absolute temperature to be obtained.

〔発明の効果〕〔The invention's effect〕

本発明によれば、正確な温度定数を用いて温度の算出
が行なうので、精度の高い温度計測が可能である。特
に、酸素濃度計はボイラなどの大型燃焼炉では常時設置
されているので、温度定数を計算する演算器を付加する
だけで本発明を実施できる。
According to the present invention, since the temperature is calculated using an accurate temperature constant, highly accurate temperature measurement is possible. In particular, since the oxygen concentration meter is always installed in a large-scale combustion furnace such as a boiler, the present invention can be implemented only by adding a calculator for calculating a temperature constant.

また、温度定数を常に算出できるので、起動時とか負
荷変化時のように燃焼ガスの組成が変化する場合に正確
な温度監視ができるようになり、ボイラの異常監視に役
立つ。
In addition, since the temperature constant can always be calculated, accurate temperature monitoring can be performed when the composition of the combustion gas changes, such as when starting or when the load changes, which is useful for boiler abnormality monitoring.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例図、第2図、第3図および
第4図は、本発明の他の実施例図、第5図は、従来技術
の説明図、第6図は、各種ガスについての温度と音速の
関係図である。 1……ボイラ火炉、2……炉壁、3……煙道、4……伝
熱管群、5……バーナ、6……風箱、20……伝播時間計
測器、21……アンプ、22……送信器、23……受信器、24
……ガスサンプリング管、25……酸素濃度計、26……表
示器、27……ガス組成及び温度定数算出器、28……温度
算出器、29……温度表示器、30……信号ケーブル。
FIG. 1 is a diagram of one embodiment of the present invention, FIGS. 2, 3, and 4 are diagrams of another embodiment of the present invention, FIG. 5 is an explanatory diagram of the prior art, and FIG. FIG. 4 is a diagram showing the relationship between temperature and sound speed for various gases. 1 boiler furnace, 2 furnace wall, 3 flue, 4 flue tube group, 5 burner, 6 wind box, 20 propagation time measuring instrument, 21 amplifier, 22 …… Sender, 23 …… Receiver, 24
... gas sampling tube, 25 ... oxygen concentration meter, 26 ... indicator, 27 ... gas composition and temperature constant calculator, 28 ... temperature calculator, 29 ... temperature indicator, 30 ... signal cable.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ボイラ火炉で発生した燃焼ガスが流れる流
路に配置した一対以上の音波送受信装置と、該音波送受
信装置からの信号に基づき音波送受信装置間の音波の伝
播速度を算出する装置と、上記音波の伝播速度から燃焼
排ガス温度を算出する装置とを備えた音響式燃焼ガス温
度測定装置において、少なくとも前記ボイラ火炉の出口
に配置した音波送受信装置と、前記燃焼ガスが炉壁およ
び伝熱管群で熱吸収された後の燃焼ガス流路内に設置し
た酸素濃度測定装置と、該酸素濃度測定装置の測定値に
基づき燃焼ガスの組成を算出する装置と、算出されたガ
ス組成から燃焼ガスの温度定数を算出する装置と、この
算出された温度定数と前記音波の伝播速度に基づき燃焼
ガスの温度を算出する装置とを設けたことを特徴とする
音響式燃焼ガス温度測定装置。
An apparatus for calculating a propagation speed of a sound wave between sound wave transmitting and receiving devices based on a signal from the sound wave transmitting and receiving device disposed in a flow path through which combustion gas generated in a boiler furnace flows. An acoustic combustion gas temperature measuring device comprising: a device for calculating a flue gas temperature from the propagation speed of the sound wave, wherein a sound wave transmitting / receiving device arranged at least at an outlet of the boiler furnace; An oxygen concentration measurement device installed in the combustion gas flow path after heat absorption by the group, a device for calculating the composition of the combustion gas based on the measurement value of the oxygen concentration measurement device, and a combustion gas from the calculated gas composition And a device for calculating a temperature of the combustion gas based on the calculated temperature constant and the propagation speed of the sound wave. Measuring device.
JP63265427A 1988-10-21 1988-10-21 Acoustic combustion gas temperature measurement device Expired - Fee Related JP2698399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63265427A JP2698399B2 (en) 1988-10-21 1988-10-21 Acoustic combustion gas temperature measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63265427A JP2698399B2 (en) 1988-10-21 1988-10-21 Acoustic combustion gas temperature measurement device

Publications (2)

Publication Number Publication Date
JPH02112740A JPH02112740A (en) 1990-04-25
JP2698399B2 true JP2698399B2 (en) 1998-01-19

Family

ID=17417006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63265427A Expired - Fee Related JP2698399B2 (en) 1988-10-21 1988-10-21 Acoustic combustion gas temperature measurement device

Country Status (1)

Country Link
JP (1) JP2698399B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102525332B1 (en) * 2022-08-03 2023-04-25 주식회사 피레타 Coal-fired boiler combustion chamber temperature measuring apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3462153B1 (en) * 2017-09-29 2021-09-22 General Electric Technology GmbH Method for determining a local hot gas temperature in a hot gas duct, and devices for carrying out the method
EP3764070B1 (en) * 2019-07-09 2022-01-12 Tata Consultancy Services Limited Artificial intelligence based temperature measurement in mixed fluid chamber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157127A (en) * 1981-03-25 1982-09-28 Toshiba Corp Thermometer for gaseous body
JPS61265540A (en) * 1985-05-20 1986-11-25 Tokyo Electric Power Co Inc:The Method for measuring temperature of gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102525332B1 (en) * 2022-08-03 2023-04-25 주식회사 피레타 Coal-fired boiler combustion chamber temperature measuring apparatus

Also Published As

Publication number Publication date
JPH02112740A (en) 1990-04-25

Similar Documents

Publication Publication Date Title
ES2771798T3 (en) Procedure and measurement device for the determination of specific variables for the gas constitution
EP0598720A4 (en) Nonintrusive flow sensing system.
GB2064780B (en) Apparatus for measuring the efficiency of combustion appliances
CN106442857B (en) A kind of CO2 emission detection method based on determination of oxygen content
CN103207235A (en) On-line sound velocity measuring system for oxygen concentration of oxygen and nitrogen binary gas
Taskin et al. Instant gas concentration measurement using ultrasound from exterior of a pipe
HUP0102222A2 (en) Device and method for direct measurement of calorific value of combustible gases
CN100427952C (en) Measuring device and its method for motor vehicle exhaust pollutant total amount
JP2698399B2 (en) Acoustic combustion gas temperature measurement device
US4067230A (en) Dual turbine in-line viscometer and flowmeter
KR20010022012A (en) Measuring relative density of a gas
JPH0310157A (en) Gas-concentration measuring apparatus
JPH0694490A (en) Inline gas flow rate measuring device
DK1038160T3 (en) Method and apparatus for self-compensating measurement of the volume flow of gases
JP2686298B2 (en) Gas temperature measuring device and gas analyzer using the same
JP2001255313A (en) Gas composition measuring instrument
CN204301771U (en) Four parameter smoke discharge amount detectors
GB1561020A (en) Apparatus for determining the efficiency of a heating appliance
JPS5928259B2 (en) Gas vitreous index measuring device
JPH0280922A (en) Method for measuring flow velocity and temperature of gaseous fluid
Yu et al. Design and analysis of gas temperature measurement module in motor vehicle exhaust online measurement system
Bryant et al. The NIST 20 MW Calorimetry Measurement System: Exhaust Flow Calibration Using Tracer Gas Dilution
SU981761A1 (en) Air excess factor determining method
Godridge et al. The Venturi pneumatic pyrometer
Jones et al. Gas concentration measurements with a temperature compensated aspirating probe

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees