JPS59182520A - Optical cvd method - Google Patents

Optical cvd method

Info

Publication number
JPS59182520A
JPS59182520A JP5505983A JP5505983A JPS59182520A JP S59182520 A JPS59182520 A JP S59182520A JP 5505983 A JP5505983 A JP 5505983A JP 5505983 A JP5505983 A JP 5505983A JP S59182520 A JPS59182520 A JP S59182520A
Authority
JP
Japan
Prior art keywords
gas
reaction tube
light source
cvd method
introducing pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5505983A
Other languages
Japanese (ja)
Inventor
Akira Shintani
新谷 昭
Teruaki Motooka
本岡 輝昭
Hidekazu Okudaira
奥平 秀和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5505983A priority Critical patent/JPS59182520A/en
Publication of JPS59182520A publication Critical patent/JPS59182520A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

PURPOSE:To improve the growing speed significantly and prevent the exhaust system from contamination by a method wherein the gas, which is the same as used for the emission source of a light source, or the gas, which has light absorption near the wavelength of the emitted light, is introduced into a reaction vessel. CONSTITUTION:An Si wafer 3 is put in a reaction tube 2 and the reaction tube 2 is exhausted. Then Xe gas is introduced through a gas introducing pipe 5. At that time, the wafer 3 is heated by a heater 4. Then NH3 is introduced through a gas introducing pipe 6. After an Xe-mercury lamp of a light source 1 is lit, SiH4 is supplied into the reaction tube 2 through an introducing pipe 7. After that, the supply of the gases is discontinued in the order of SiH4 and NH3 and the lamp is put out. With this constitution, as the growing speed is improved significantly, the intensity of the light source need not be so high. Because mercury vapor is not introduced into the reaction tube, the exhaust system is not contaminated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光を利用した化学気相成長(CV D )に係
り、特にその温度の低温化と成長速度の向上に好適な光
CVD法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to chemical vapor deposition (CVD) using light, and particularly to a photoCVD method suitable for lowering the temperature and improving the growth rate.

〔背景技術〕[Background technology]

従来の光CVD法ではその光源としてArFやKrFの
エキツマ−レーザの様な光強度の強いものを用いるのが
通例である。レーザ光を用いるとき光束に広がりがない
ので基板ウェハー全面に一度に所望膜を形成するのが難
しい。まだレーザー光特有のビーム内強度分布の為にj
模厚等を均一にすル+7)Kモ難がある(J、 vac
、Sci、 Technol、 21(1)23.19
82)。これらの問題を避けるために水銀ランプを用い
る例があるが、このときには増感材として、水銀蒸気を
反応管内に導入する必要がある。このような増感材を入
れても、たとえば5iH402による5iCh形成速度
は2〜4人/Sと遅い。この水銀蒸気の形成膜質への影
響は不明であるが、水銀蒸気の排気系への流入により金
属とのアマルガム形成が予想され排気系の劣化を誘起す
る。万一、水銀蒸気が装置系外へ漏れたとき、人体への
影響も憂慮される。従来法では以上の様な欠点があった
(集積回路シンポジウムS57.6゜4、 p、 90
)。
In conventional optical CVD methods, it is customary to use a light source with high light intensity, such as an ArF or KrF excimer laser. When a laser beam is used, it is difficult to form a desired film on the entire surface of a substrate wafer at once because the beam does not spread. However, due to the intra-beam intensity distribution peculiar to laser light,
Make the thickness uniform +7) There is a problem with K (J, vac
, Sci, Technol, 21(1) 23.19
82). There are examples of using a mercury lamp to avoid these problems, but in this case it is necessary to introduce mercury vapor into the reaction tube as a sensitizer. Even if such a sensitizer is added, the rate of 5iCh formation by 5iH402, for example, is slow at 2 to 4 people/s. Although the influence of this mercury vapor on the quality of the formed film is unknown, the inflow of mercury vapor into the exhaust system is expected to form an amalgam with metals, which induces deterioration of the exhaust system. In the unlikely event that mercury vapor leaks outside the equipment system, there are concerns that it may affect the human body. The conventional method had the following drawbacks (Integrated Circuit Symposium S57.6゜4, p. 90)
).

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記したような従来の光CVD法のもつ
欠点をなりシ、安全でかつ有効な光CVD法を提供する
ことにある。
An object of the present invention is to provide a safe and effective photo-CVD method that overcomes the above-mentioned drawbacks of the conventional photo-CVD method.

〔発明の概要〕[Summary of the invention]

上記したような光CVD法の欠点をなくすためには反応
管内に導入する水銀蒸気を他の物質に換えで同等もしく
はそれ以上の効果を出させる工夫をすればよい。このた
めには、水銀ランプの光を吸収する水銀蒸気以外の気体
f:専大するか、あるいは、用いる光源を換えその発y
c体に用いられ一〇いる気体を増感材として反応管内に
導入する。さらに化孝反応の効率を上げ膜形成速度を向
上するために、導入した気体とは別の気体を導入する。
In order to eliminate the above-mentioned drawbacks of the photo-CVD method, the mercury vapor introduced into the reaction tube may be replaced with another substance to achieve the same or better effect. To do this, it is necessary to use a gas other than mercury vapor that absorbs the light from the mercury lamp, or to change the light source used and emit it.
A gas used for the c-form is introduced into the reaction tube as a sensitizer. Furthermore, in order to increase the efficiency of the chemical reaction and the rate of film formation, a gas different from the introduced gas is introduced.

これは−極の触媒的な役割をはだす。This exposes the negative pole to its catalytic role.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

十分洗浄を施した7リコンウエハー3を反応管2内に設
置し、排気系9によシ反応管内を十分に排気する。この
ときの到達真壁度はI X 10 ’−3程度とした。
The thoroughly cleaned 7-recon wafer 3 is placed in the reaction tube 2, and the inside of the reaction tube is sufficiently evacuated using the exhaust system 9. The degree of wall thickness achieved at this time was about I x 10'-3.

この後、ガス導入管5よりキセノンカスを約0. OI
 Torr導入する。このときシリコンウェハー3はヒ
ーター4により約400Cに加熱されている。ついでガ
ス導管6からアンモニア(NH3)を0.7Torr導
入する。その後光源1のキセノン−水銀ラング(強度0
.5 mW/ cm2)を点灯し、その後モノ7ラン’
(S 1H4)を0.3Torr反応官内に導入管7か
ら供  た。10分後、5i)(4,NH3の順序でガ
ス供給を止め、ランプも消灯する。キでツノガスを止め
、導入管8より窒素を反応管内に供給し、反応管内が窒
素で十分置換されたのち、シリコンウェハーを取り出し
た。
After this, about 0.0% of xenon scum is added from the gas introduction pipe 5. OI
Introduce Torr. At this time, the silicon wafer 3 is heated to about 400C by the heater 4. Then, ammonia (NH3) is introduced from the gas conduit 6 at a pressure of 0.7 Torr. Then the xenon-mercury rung of light source 1 (intensity 0)
.. 5 mW/cm2), then mono 7 runs'
(S 1H4) was fed into the 0.3 Torr reactor from the inlet tube 7. After 10 minutes, the gas supply is stopped in the order of 5i) (4, NH3), and the lamp is also turned off.The horn gas is stopped with K, and nitrogen is supplied into the reaction tube from the introduction tube 8, and the inside of the reaction tube is sufficiently replaced with nitrogen. Afterwards, the silicon wafer was removed.

このようにして、屈折−*1.99膜厚4000人のシ
リコン窒化膜が得られた。従来の光CVD法より膜成長
速度が約2倍〜4oo人/mmで得ら扛た。
In this way, a silicon nitride film with a refraction of -*1.99 and a thickness of 4,000 yen was obtained. The film growth rate was about twice to 400 nm/mm compared to the conventional photo-CVD method.

上記実施例にさらにN2 、 He、 A rのいずI
Lか1糧類のガスを0.01 Torr導入すると、成
長速度はさらに上9600人/minであった。
In addition to the above examples, N2, He, Ar I
When L or 1 gas was introduced at 0.01 Torr, the growth rate was even higher, at 9,600 people/min.

〔発明の効果〕〔Effect of the invention〕

本発明によれば成長速度を著しく向上させることができ
るので、光源強度tそれほど強いものを用いる必要がな
い。又反応管内に水銀蒸気を導入しないので、排気系が
汚染されることもなく安全である。
According to the present invention, the growth rate can be significantly improved, so there is no need to use a light source with a very strong intensity t. Furthermore, since mercury vapor is not introduced into the reaction tube, the exhaust system is not contaminated and is safe.

なお、反応ガスSiH+単独の場合でも同様の効果が見
出され、従来光CVD法では一度の実験で400Å以上
の厚さのアモルファスシリコンヲ得るのが困難であった
のが、成長速度100 人/rr、inで1000人の
厚さを得ることが出来た。
A similar effect was found in the case of the reactant gas SiH+ alone, and although it was difficult to obtain amorphous silicon with a thickness of 400 Å or more in a single experiment using the conventional photoCVD method, the growth rate was 100 Å/100 Å. We were able to obtain a thickness of 1000 people with rr, in.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、光CVD装置の概念を表わす系統図である。 1・・・光源、2・・・反応管、3・・・基板ウニノ・
−14・・・基板加熱用ヒーター、5〜8・・・ガス系
、9・・・排気系。 代理人 弁理士 高橋明夫 第 1 聡
FIG. 1 is a system diagram showing the concept of an optical CVD apparatus. 1...Light source, 2...Reaction tube, 3...Substrate Unino・
-14... Heater for heating the substrate, 5 to 8... Gas system, 9... Exhaust system. Agent Patent Attorney Akio Takahashi No. 1 Satoshi

Claims (1)

【特許請求の範囲】 1、光源のエミッションソースに用いた気体と同じもし
くは発光波長付近に光吸収をもつ気体を反応容器内に導
入したことを特徴とする光CVD法。 2、上記反応容器内には上記活性化気体のほかに不活性
気体を導入することを特徴とする特許請求の範囲第1項
記載の光CVD法。
[Scope of Claims] 1. A photo-CVD method characterized in that a gas having light absorption at or near the emission wavelength of the gas used as the emission source of the light source is introduced into the reaction vessel. 2. The photo-CVD method according to claim 1, wherein an inert gas is introduced into the reaction vessel in addition to the activated gas.
JP5505983A 1983-04-01 1983-04-01 Optical cvd method Pending JPS59182520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5505983A JPS59182520A (en) 1983-04-01 1983-04-01 Optical cvd method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5505983A JPS59182520A (en) 1983-04-01 1983-04-01 Optical cvd method

Publications (1)

Publication Number Publication Date
JPS59182520A true JPS59182520A (en) 1984-10-17

Family

ID=12988104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5505983A Pending JPS59182520A (en) 1983-04-01 1983-04-01 Optical cvd method

Country Status (1)

Country Link
JP (1) JPS59182520A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136932A (en) * 1981-02-17 1982-08-24 Seiko Epson Corp Photochemical reaction device
JPS57211735A (en) * 1981-06-24 1982-12-25 Seiko Epson Corp Manufacture of amorphous silicon film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136932A (en) * 1981-02-17 1982-08-24 Seiko Epson Corp Photochemical reaction device
JPS57211735A (en) * 1981-06-24 1982-12-25 Seiko Epson Corp Manufacture of amorphous silicon film

Similar Documents

Publication Publication Date Title
JPS61127121A (en) Formation of thin film
JPS59215732A (en) Manufacture of silicon nitride film
JPS59182520A (en) Optical cvd method
JPS59207621A (en) Formation of thin film
JPH0351675B2 (en)
JPS58119334A (en) Apparatus for vapor deposition by photochemical reaction
JPS60202928A (en) Optical pumping reaction device
JPH0128830B2 (en)
JPS634454B2 (en)
JPS59215731A (en) Manufacture of silicon oxide film
JPS61230326A (en) Vapor growth apparatus
JPH09260251A (en) Manufacture of mask membrane for x-ray lithography use
JPS60182127A (en) Photoexcitation reactor
JPS62160713A (en) Photoexcitation film forming equipment
JPS59143318A (en) Optical annealing method
JPS60253212A (en) Vapor growth device
JPH03166369A (en) Formation of diamond film
JPS6075328A (en) Process and device for photo gaseous phase reaction
JPS6156278A (en) Film forming method
JPS5982720A (en) Optical vapor growth method
JPS6118122A (en) Semiconductor manufacturing apparatus
JPS59202625A (en) Manufacture of semiconductor material
JPS62285424A (en) Plasma treatment apparatus
JPS6128443A (en) Photochemical gaseous phase growing apparatus
JPS61288431A (en) Manufacture of insulating layer