JPS59182275A - Manufacture of high strength silicon nitride sintered body - Google Patents

Manufacture of high strength silicon nitride sintered body

Info

Publication number
JPS59182275A
JPS59182275A JP58053369A JP5336983A JPS59182275A JP S59182275 A JPS59182275 A JP S59182275A JP 58053369 A JP58053369 A JP 58053369A JP 5336983 A JP5336983 A JP 5336983A JP S59182275 A JPS59182275 A JP S59182275A
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
weight
nitride sintered
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58053369A
Other languages
Japanese (ja)
Other versions
JPS612624B2 (en
Inventor
町田 充秀
正市 粂
登 中山
修三 神崎
田端 英世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58053369A priority Critical patent/JPS59182275A/en
Publication of JPS59182275A publication Critical patent/JPS59182275A/en
Publication of JPS612624B2 publication Critical patent/JPS612624B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 不発明は高強度窒化ケイ素焼結体の製造法に関し、さら
に詳しくは、窒化ケイ素に、その―結助剤として酸化ベ
リリウム(Bed)と酸化アルミニウム(Ax20s)
の二成分又は酸化ベリl]ウムと酸化アルミニウムと酸
化マグネシウムの三成分を所定の割合で配合して焼結す
ることを特徴とする窒化ケイ素焼結体の製造法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to a method for producing a high-strength silicon nitride sintered body, and more particularly, silicon nitride is combined with beryllium oxide (Bed) and aluminum oxide (Ax20s) as binders.
The present invention relates to a method for producing a silicon nitride sintered body, which is characterized in that the two components or the three components of beryl oxide, aluminum oxide, and magnesium oxide are mixed and sintered in a predetermined ratio.

Si3N4を主成分とする焼結体は耐熱性、高強度及び
低い熱膨張係数の緒特性をもつことから、例えば自動車
用エンジン部品、ガスタービン部品、あるいは切削工具
に用いられるなど、近年特に脚光を浴びている。
Sintered bodies containing Si3N4 as the main component have heat resistance, high strength, and a low coefficient of thermal expansion, so they have been attracting attention in recent years, as they are used in, for example, automobile engine parts, gas turbine parts, and cutting tools. Bathing.

ところで、従来この窒化ケイ素焼結体を高強度化や高密
度化ずろためには、Eli 5N4の焼結助剤とL ”
CY2O2−A(8205、MJ70、A/h05Mg
o系の化合物をSi 3 N4に添刀口して焼結するこ
とが試みられている。しかしながら、これらの焼結助剤
を添刀口して得られた焼結体でも、その強度は必ずしも
十分に満足しうろものではなかった。
By the way, conventionally, in order to increase the strength and density of this silicon nitride sintered body, a sintering aid of Eli 5N4 and L "
CY2O2-A (8205, MJ70, A/h05Mg
Attempts have been made to add an o-based compound to Si 3 N4 and sinter it. However, even the sintered bodies obtained by adding these sintering aids have not always had sufficient strength.

本発明者らは、窒化ケイ素焼結体の強度を、前記の従来
品よりさらに増加させろことについて鋭意研究を重ねた
結果、Si3N4ニBeOとAA20sの二成分又はB
eOとAIJ20sとM、i90の三成分を所定の割合
で配合した組成物乞ある温度で焼結することによって、
その目的を達成しうろことを見出し、この知見に基づい
て本発明を完成するに至った。
As a result of extensive research into increasing the strength of silicon nitride sintered bodies compared to the conventional products, the present inventors discovered that two components of Si3N4, BeO and AA20s or B
By sintering a composition of eO, AIJ20s, M, and i90 in a predetermined ratio at a certain temperature,
We have found a way to achieve this objective, and based on this knowledge, we have completed the present invention.

すなわち、不発明は、5i3N45Q〜99.9重量部
及びBe0とAl2O5から成り、かつA4203/B
eOの値が重量基準で3.4〜4.9の範囲にある被焼
結組成物を、1300〜1850℃の温度で焼結するこ
とを特徴とする高強度窒化ケイ素焼結体の製造法、並び
にSj、 3N450〜99.9重量部及びBeOとA
IJ203とM、!70から成り、かつ重量基準でA4
2o3ハeOO値が3.4〜4.9、M、90./E3
eCX1)値が0.40以下及びMgo/Al2O3の
値が0.08以下である被焼結組成物を、1300〜1
850℃の温度で焼結することを特徴とずろ高強度窒化
ケイ素焼結体の製造法を提供するものである。
That is, the invention consists of 5i3N45Q~99.9 parts by weight, Be0 and Al2O5, and A4203/B
A method for producing a high-strength silicon nitride sintered body, which comprises sintering a composition to be sintered having an eO value in the range of 3.4 to 4.9 on a weight basis at a temperature of 1300 to 1850°C. , and Sj, 450 to 99.9 parts by weight of 3N and BeO and A
IJ203 and M! 70, and A4 size by weight
2o3 eOO value is 3.4-4.9, M, 90. /E3
A composition to be sintered having an eCX1) value of 0.40 or less and a Mgo/Al2O3 value of 0.08 or less was
The present invention provides a method for producing a high-strength silicon nitride sintered body characterized by sintering at a temperature of 850°C.

本発明方法においては、Si3N+とじてα型、β型、
無定型のいずれのものも用いることができろし、あるい
はそれらの混合物を用いてもよく、その量は被焼結組成
物中50〜99.9重量部を占めろことが必要である。
In the method of the present invention, Si3N+ is α-type, β-type,
Any amorphous type may be used, or a mixture thereof may be used, and the amount thereof should be 50 to 99.9 parts by weight in the composition to be sintered.

不発明方法においては、Si3N4の焼結助剤としてB
eO及びAl2O3の二成分、又はBe0− Al2O
5及びM、90の三成分を使用し、これらの焼結助剤の
量は被焼結組成物中0.1〜50重量係の範囲である。
In the uninvented method, B is used as a sintering aid for Si3N4.
Binary components of eO and Al2O3, or Be0- Al2O
Three components, 5 and M, 90, are used, and the amount of these sintering aids ranges from 0.1 to 50 parts by weight in the composition to be sintered.

この量が0.1重量部未満では焼結が困難となり、また
500重量部超えると窒化ケイ素焼結体としての本来の
特性がなくなる。
If this amount is less than 0.1 parts by weight, sintering will be difficult, and if it exceeds 500 parts by weight, the original characteristics of the silicon nitride sintered body will be lost.

本発明方法において焼結助剤としてBeO及びAl2O
3の二成分を用いろ場合、それらの使用割合は重量基準
でAl2O3/BeOの値が3.4〜4.9、さらに好
ましくは3.88〜4.28の範囲である。
BeO and Al2O are used as sintering aids in the method of the present invention.
When the two components No. 3 are used, the ratio of their use is such that the value of Al2O3/BeO is in the range of 3.4 to 4.9, more preferably 3.88 to 4.28, on a weight basis.

また、焼結助剤としてBed、Al2O5及びM、90
の三成分を用いろ場合、それらの使用割合については、
重量基準でMgO/BeOの値が帆40以下、好ましく
は018以下、MI O/A12030)値が0.08
以下、好ましくは0.05以下であり、またAll 2
03/ Be Oの値は前記と同じ範囲である。
In addition, as sintering aids Bed, Al2O5 and M, 90
When using the three components, their usage ratio is as follows:
MgO/BeO value on weight basis is 40 or less, preferably 018 or less, MI O/A12030) value is 0.08
below, preferably 0.05 or below, and All 2
03/Be O values are in the same range as above.

なお、原料のS i 5 N 4中に不純物としてA6
20s又はFe2O3が含まれているか、あるいは焼結
によってFe2O3を生ずる不純物が含まれている場合
には、その不純物に対応する量のA6205を前記焼結
助剤中から除くことができろ。
In addition, A6 is present as an impurity in the raw material S i 5 N 4.
If the sintering aid contains 20s or Fe2O3, or if it contains impurities that produce Fe2O3 upon sintering, an amount of A6205 corresponding to the impurity can be removed from the sintering aid.

さらに、本発明方法は、焼結助剤として最初からBed
、 Al2O3、Mgoのような酸化物を用いろ代りに
、焼結過程でこれらの酸化物になり5るベリリウム、ア
ルミニウム、マグネシウムの塩類を使用しうろことも包
含する。また、BeO、Al2O3、M、90は独立し
た酸化物原料として加えろ代りに。
Furthermore, the method of the present invention uses Bed as a sintering aid from the beginning.
Instead of using oxides such as Al2O3, Mgo, etc., it also includes scales using salts of beryllium, aluminum, and magnesium, which convert to these oxides during the sintering process. Also, BeO, Al2O3, M, and 90 should be added as independent oxide raw materials instead.

予め反応させてべIJ IJウムアルミネイト型結晶構
造をもつ複酸化物固溶体としたものでも使用できろ。
It is also possible to use a mixed oxide solid solution that has been reacted in advance and has an aluminate type crystal structure.

次に本発明の実施態様について説明すると、まず、原料
のSi 3N4粉末に、BeO粉末とAl1203粉末
又はBeO粉末とAl2O3粉末とMgO粉末を所定の
割合で混合して被焼結組成物を調整する。次いでこの組
成物に、必要に応じて粘結剤を加えてプレスし所定の成
形体を得たのち、この成形体を一定の雰囲気において、
1300〜1850℃、好ましくは1400〜1800
℃の温度範囲で加圧しながら焼結する。この際、焼結助
剤の割合が、重量基準で次式乞満足しつる範囲にある場
合は、必ずしも加圧を必要としない。
Next, an embodiment of the present invention will be described. First, a composition to be sintered is prepared by mixing BeO powder and Al1203 powder or BeO powder, Al2O3 powder, and MgO powder in a predetermined ratio to Si 3N4 powder as a raw material. . Next, a binder is added to this composition as needed and pressed to obtain a predetermined molded product.
1300-1850°C, preferably 1400-1800
Sinter under pressure in the temperature range of °C. At this time, if the proportion of the sintering aid is within a range that satisfies the following formula on a weight basis, pressurization is not necessarily required.

加圧による焼結は、通常黒鉛型によろ一軸ホットプレス
又は熱間静水圧プレスで行われろ。その圧力は一般に高
いほど良好な結果が得られろが、通常黒鉛型では100
〜400Kg/crl、熱間静水圧プレスでは1000
−2000 Kg / cdlの範囲である。
Pressure sintering is usually carried out in a graphite mold using a uniaxial hot press or a hot isostatic press. In general, the higher the pressure, the better the results will be obtained, but for graphite type it is usually 100
~400Kg/crl, 1000 in hot isostatic press
-2000 Kg/cdl range.

このようにして焼結すると、ベリリウムアルミネイト型
結晶構造を有するMgA6z04− BeA4204系
の固溶体と、Si3N4との酸窒化物固溶体相を含む新
規な窒化ケイ素焼結体が得られろ。この焼結体の組成は
ほとんどがβ型に移行した513N4と前記の酸窒化物
固溶体相とから成る結晶相のみであって、ガラス相はほ
とんど含まれていない。
By sintering in this manner, a novel silicon nitride sintered body containing a MgA6z04-BeA4204 solid solution having a beryllium aluminate type crystal structure and an oxynitride solid solution phase with Si3N4 can be obtained. The composition of this sintered body is almost exclusively a crystalline phase consisting of 513N4 that has shifted to the β type and the above-mentioned oxynitride solid solution phase, and contains almost no glass phase.

不発明方法によって得られた新規な高強度窒化ケイ素焼
結体は、1300℃以下の温度における強度に関して従
来の窒化ケイ素焼結体より優れており、したがってこの
焼結体は衝撃や疲労などの応力集中が問題となる構造体
の材料に適している。
The new high-strength silicon nitride sintered body obtained by the uninvented method is superior to the conventional silicon nitride sintered body in terms of strength at temperatures below 1300°C, and therefore this sintered body is resistant to stress such as impact and fatigue. Suitable for structural materials where concentration is a problem.

本発明の窒化ケイ素焼結体が優れた強度を有している理
由は、ベリリウムアルミネイト型結晶構造を有ずろ複酸
化物固溶体が焼結過程において、Si 5N4ど容易に
反応して酸窒化物固溶体を形成し、粒子−粒子間に異質
の結晶相あるいはガラス相を形成することなく、均一組
成かつ均一組織をもった焼結体となるためと考えられろ
The reason why the silicon nitride sintered body of the present invention has excellent strength is that the double oxide solid solution having a beryllium aluminate type crystal structure easily reacts with Si5N4 to form oxynitrides during the sintering process. This is thought to be because a solid solution is formed and a sintered body having a uniform composition and uniform structure is obtained without forming a foreign crystal phase or glass phase between particles.

また、この酸窒化固溶体の熱膨張係数がa軸方向、C軸
方向ともに約3X10/”C程度の値でであって、β型
Si3N4の熱膨張係数と極めて近い値であるため、粒
界相を含めた焼結体全体の熱膨張係数が低くて熱衝撃に
対する抵抗が大きく、高温におけろ強度も大きい焼結体
が得られろものと考えられろ。
In addition, the thermal expansion coefficient of this oxynitrided solid solution is about 3×10/”C in both the a-axis direction and the c-axis direction, which is extremely close to the thermal expansion coefficient of β-type Si3N4, so the grain boundary phase It is thought that a sintered body with a low coefficient of thermal expansion, high resistance to thermal shock, and high strength even at high temperatures can be obtained.

さらに、従来の焼結体においては、強度低下の原因とな
っていたFe2O3などの不純物が、本発明の焼結体に
おいては酸窒化物固溶体中にとり込まれて均一な組織の
焼結体となることも強度向乍の要因の一つと考えられる
Furthermore, impurities such as Fe2O3, which caused a decrease in strength in conventional sintered bodies, are incorporated into the oxynitride solid solution in the sintered body of the present invention, resulting in a sintered body with a uniform structure. This is also considered to be one of the factors contributing to the improvement in strength.

次に、不発明を実施例によってさらに詳細に説明するが
、本発明はその要旨を越えないかぎり、この実施例に限
定されろものではない。
Next, the invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples unless the gist thereof is exceeded.

実施例1 純度99係、平均粒径(50係径)0.7μmのα型9
0%、β型10φより成る窒化ケイ素粉末90重量部に
、純度99.9係の酸化ベリリウム19.3重量係、純
度99.峠  の酸化マグネシウム0.7重量係及び純
度99.9%の酸化アルミニウム80・0重量係から成
る焼結助剤10重量部を加えアルミナ製ポット及びアル
ミナ製ボールを用(・て振動ミルによって100時間粉
砕混合し、得られた混合物を直径40mm、厚さ約5−
の円板状に成型して窒素ガス中温度1750°C1圧力
300 K9 / c疏で30分間加圧焼結した。得ら
れた焼結体を3×3×30膿の角棒に加工したのち、抗
折試験を行って抗折強度を測定した。また抗折強度値及
びX線回折によって構成物質を同定した。その結果を第
1表に示す。
Example 1 α type 9 with purity factor 99 and average particle diameter (50 factor diameter) 0.7 μm
0%, β-type 10φ silicon nitride powder, 19.3 parts by weight of beryllium oxide of 99.9 purity, 99.9 parts by weight of silicon nitride powder. Add 10 parts by weight of a sintering aid consisting of 0.7 parts by weight of magnesium oxide and 80 parts by weight of aluminum oxide of 99.9% purity using an alumina pot and an alumina ball. The resulting mixture was pulverized and mixed for a period of time to a diameter of 40 mm and a thickness of about 5 mm.
It was molded into a disk shape and pressure sintered in nitrogen gas at a temperature of 1750°C and a pressure of 300 K9/c for 30 minutes. The obtained sintered body was processed into a square bar of 3×3×30 mm, and then subjected to a bending test to measure the bending strength. In addition, the constituent substances were identified by transverse refraction intensity values and X-ray diffraction. The results are shown in Table 1.

実施例2 純度99.9係、平均粒径0.35μm1α型85係、
β型15チより成る窒化ケイ素粉末92重量部に、実施
例1で用いた酸化べIJ IJウムと酸化アルミニウム
を等モル比で混合し、1300°Cで3時間焼成して得
たベリリウム了ルミネイトを8重量部加え、アルミブー
製ボットとアルミナ製ボールを月](・て、エタノール
を添加して湿式粉砕を行った。振動ミルで50時間粉砕
後得られた粉末を乾燥し、実施例1と同様に成型したの
ち、アルコ゛ンガス中で温度1700℃、圧力200K
g、/C4で30分間加圧焼結した。この焼結体を実施
例1と同じ寸法に刀ロエし、抗折強度を測定した。
Example 2 Purity: 99.9, average particle size: 0.35 μm, 1α type, 85:
Beryllium phosphorous oxide obtained by mixing 92 parts by weight of silicon nitride powder consisting of β-type 15 nitride with the same molar ratio of beryllium oxide and aluminum oxide used in Example 1, and firing the mixture at 1300°C for 3 hours. 8 parts by weight of aluminum bot and alumina balls were added, ethanol was added, and wet pulverization was performed. After molding in the same way, it was molded in alco gas at a temperature of 1700℃ and a pressure of 200K.
g, /C4 for 30 minutes. This sintered body was cut into the same dimensions as in Example 1, and the bending strength was measured.

その結果を同定した構成物質とともに第1表に示す。The results are shown in Table 1 along with the identified constituent substances.

理論密度の値から計算した密度との比を百分率で示す・ 第1表から判るようVC1本発明方法によって得られた
窒化ケイ素焼結体は、室温におげろ抗析弓蛍度が93〜
98Kg/−と極めて大きな値を示している。これは添
刃口物として刃口えプこBed、MiO5A1203が
焼結の過程で5i31hと反応してβ−8i乙N4と同
じ結晶構造をもつ酸窒化物置m体相を粒界に形成し、こ
れによって粒子間が強固に結合さJtたためと考えられ
る。
The ratio to the density calculated from the theoretical density value is shown as a percentage. As can be seen from Table 1, the silicon nitride sintered body obtained by the VC1 method of the present invention has an anti-degradation bow fluorescence of 93 to 93 when left at room temperature.
It shows an extremely large value of 98Kg/-. This is because MiO5A1203 reacts with 5i31h during the sintering process to form an oxynitride phase with the same crystal structure as β-8iN4 at the grain boundaries. This is thought to be due to the strong bonding between particles Jt.

Claims (1)

【特許請求の範囲】 I  5ixN450〜99.9重量%及びBeOとA
ltosから成り、かつAl2O3/Be0Q直が重量
基準テ3.4〜4.9の範囲にある被焼結組成物を、1
300〜1850℃の温度で焼結することを特徴とする
高強度窒化ケイ素焼結体の製造法。 2 5i5Na50〜99.9重量係及びBeOとAl
2O3とM、170から成り、かつ重量基準でAl2O
5/ BeOの値が3.4〜4.9、MgO,/BeO
の値が0.40以下及びMjjO/Al1203の値が
0.08以下である被焼結組成物を、1300〜185
0℃の温度で焼結することを特徴とする高強度窒化ケイ
素焼結体の製造法。
[Claims] I5ixN450-99.9% by weight and BeO and A
A composition to be sintered consisting of ltos and having an Al2O3/Be0Q ratio in the range of 3.4 to 4.9 on a weight basis was
A method for producing a high-strength silicon nitride sintered body, characterized by sintering at a temperature of 300 to 1850°C. 2 5i5Na50~99.9 weight factor and BeO and Al
Consisting of 2O3 and M, 170, and Al2O on a weight basis
5/ BeO value is 3.4 to 4.9, MgO, /BeO
The composition to be sintered has a value of 0.40 or less and a value of MjjO/Al1203 of 0.08 or less.
A method for producing a high-strength silicon nitride sintered body, characterized by sintering at a temperature of 0°C.
JP58053369A 1983-03-29 1983-03-29 Manufacture of high strength silicon nitride sintered body Granted JPS59182275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58053369A JPS59182275A (en) 1983-03-29 1983-03-29 Manufacture of high strength silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053369A JPS59182275A (en) 1983-03-29 1983-03-29 Manufacture of high strength silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS59182275A true JPS59182275A (en) 1984-10-17
JPS612624B2 JPS612624B2 (en) 1986-01-27

Family

ID=12940897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053369A Granted JPS59182275A (en) 1983-03-29 1983-03-29 Manufacture of high strength silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS59182275A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216926U (en) * 1985-07-12 1987-01-31
JPS6380530U (en) * 1986-11-13 1988-05-27
CN110105055B (en) * 2019-06-20 2021-08-24 宜宾红星电子有限公司 Method for manufacturing beryllium oxide ceramic polished substrate for thin film circuit

Also Published As

Publication number Publication date
JPS612624B2 (en) 1986-01-27

Similar Documents

Publication Publication Date Title
CA1200257A (en) Methods of forming ceramic materials and ceramic products, and ceramic materials and ceramic products formed thereby
US4365022A (en) Method for manufacture of high-strength sintered article of substances having β-silicon nitride type crystal structure
JPS5851910B2 (en) Titsukakeisokeishyouketsutainoseizouhouhou
US20040067838A1 (en) Multication doped alpha-beta sialon ceramics
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
JPS59182275A (en) Manufacture of high strength silicon nitride sintered body
JP2002513374A (en) Gas pressure sintered silicon nitride with high strength and stress rupture resistance
JPS6335594B2 (en)
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPS6337075B2 (en)
JP2892246B2 (en) Silicon nitride sintered body and method for producing the same
JP2565305B2 (en) High thermal conductivity aluminum nitride sintered body and manufacturing method thereof
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JP2851721B2 (en) Silicon nitride sintered body for cutting tools
JPH042664A (en) High-strength sialon based sintered compact
JPS5819630B2 (en) Manufacturing method of high-strength β′-SiAlON sintered body
JPH054870A (en) High-toughness silicon carbide-based sintered compact
JPH06287066A (en) Silicon nitride sintered compact and its production
JPH09286660A (en) High strength alumina ceramic and its production
JPS5835951B2 (en) Manufacturing method of high-strength silicon nitride sintered body
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JPH02233560A (en) High-strength calcined sialon-based compact
JPS63260869A (en) Silicon carbide whisker reinforced composite material
JPH0818875B2 (en) Method for manufacturing silicon nitride sintered body
JPS63147867A (en) Manufacture of silicon nitride sintered body