JPS59182218A - Production of polycrystal silicon wafer - Google Patents

Production of polycrystal silicon wafer

Info

Publication number
JPS59182218A
JPS59182218A JP58054459A JP5445983A JPS59182218A JP S59182218 A JPS59182218 A JP S59182218A JP 58054459 A JP58054459 A JP 58054459A JP 5445983 A JP5445983 A JP 5445983A JP S59182218 A JPS59182218 A JP S59182218A
Authority
JP
Japan
Prior art keywords
silicon
melt
layer
release agent
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58054459A
Other languages
Japanese (ja)
Other versions
JPH0314768B2 (en
Inventor
Takashi Yokoyama
敬志 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoxan Corp
Hokusan Co Ltd
Original Assignee
Hoxan Corp
Hokusan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoxan Corp, Hokusan Co Ltd filed Critical Hoxan Corp
Priority to JP58054459A priority Critical patent/JPS59182218A/en
Publication of JPS59182218A publication Critical patent/JPS59182218A/en
Publication of JPH0314768B2 publication Critical patent/JPH0314768B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To obtain easily the titled wafer having high quality and characteristics without fear for contamination of a release agent nor components of a production dish in a melt, by forming a thin melt layer on a release agent layer, formed on the top of the production dish, and consisting of a silicon based powder layer. CONSTITUTION:A silicon based powder layer 2 (release agent layer) is left and formed on a plane for forming a wafer of a production dish 1 by applying a release agent formed by dissolving silicon based powder in an organic solvent, heating and drying the release agent. The production dish 1 having the release agent layer 2' formed thereon is placed on a recovery pan 10 of a turntable mechanism 8, and a silicon base material melt is dropped onto the center thereof. A thin melt layer 3 is formed on the whole top surface of a plane (1a) for forming a wafer by centrifugal force, cooled, solidified and peeled to give the aimed silicon sheet 3'. Thus, the aimed polycrystal silicon wafer having high quality and characteristics can be easily obtained without fear of contamination of the release agent nor components of the production dish 1 in the melt.

Description

【発明の詳細な説明】 本発明は太陽電池その他の光電変換素子等に用いられて
いる多結晶シリコンウニ・・の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polycrystalline silicon sea urchin used in solar cells and other photoelectric conversion elements.

従来から多結晶シリコンウェハは各種の方法によって製
造されており、最も一般的にはシリコン母材により一た
ん所定形状のインゴットを鋳造し、これをスライスする
ことによってウェハを得るようにしているが、これでは
スライス作業に大変な時間をかけなければならないだけ
でなく、インゴットの約50%がスライス時のロスとな
ってしまうため、製品がコスト高につき大量生産も不可
能である。
Conventionally, polycrystalline silicon wafers have been manufactured by various methods, and the most common method is to cast an ingot of a predetermined shape from a silicon base material and then obtain wafers by slicing the ingot. In this case, not only does the slicing process take a lot of time, but also about 50% of the ingot is lost during slicing, making the product expensive and making mass production impossible.

そこでスライスによらない方法としてリボン法とキャス
ティング法(鋳造法)が既に実施されているが、リボン
法は例えば回転ドラムの周面に溶融シリコンを噴出させ
、当該周面にリボン状のウェハを形成するものであり、
同法によるときは実際上リボン幅が数mm程度のものし
が製造することができず、大形の太陽電池累月等がt(
Jられない難点がある。
Therefore, the ribbon method and the casting method (casting method) have already been implemented as methods that do not involve slicing, but the ribbon method, for example, jets molten silicon onto the circumferential surface of a rotating drum and forms a ribbon-shaped wafer on the circumferential surface. and
When using this method, it is practically impossible to manufacture ribbons with a ribbon width of several mm, and large solar cells, etc.
There is a problem with not being able to do it.

また上記ギヤスティング法と呼はれているものは、シリ
コン母相を加熱して融液とな1−1これを製品ウェハの
寸法に応じた鋳型に流し込み、さらに当該型の可動部分
により融液を抑圧成型して固化させるものであるが、同
法によるときは、一度に所定形状のウェハが彷られ、量
産性の点で望ましい結果が期待できるもの\、上記のよ
うに融液は四方から押えつりられることになる。
In addition, in the above-mentioned gearing method, the silicon matrix is heated to form a melt.1-1 This is poured into a mold according to the dimensions of the product wafer, and the movable parts of the mold are used to turn the melt into a melt. When this method is used, a wafer of a predetermined shape is moved around at once, and desirable results can be expected in terms of mass production.As mentioned above, the melt is poured from all sides. You will be held down.

このため同法では鋳型の上下面と側面が上記融液の同化
に際し、7リコ/結晶粒(グレイン)の成長を抑制して
しまうこと\なり、同化製品の1itj記各面と接する
部分近傍が、非常に細かい結晶粒となって大きな結晶粒
がfりられず、太陽電池用/リコンウエハ等にあって望
ましいとされている大結晶粒生成の要請を満足させるこ
とができないため、当該ウエトによって得られた太陽電
池の充電変換効率も2〜3%と極度に悪くなってしまう
欠陥をもっている。
Therefore, in this method, when the upper and lower surfaces and side surfaces of the mold assimilate the above-mentioned melt, the growth of crystal grains (grains) is suppressed, and the vicinity of the parts of the assimilated product in contact with each surface of the mold is However, since the crystal grains become very fine and large crystal grains cannot be removed, it is not possible to satisfy the requirement of large crystal grain generation, which is considered desirable for solar cells/recon wafers, etc. The charging conversion efficiency of the solar cells thus obtained is extremely poor at 2 to 3%.

そこで、本出願人は、上記諸法の欠陥を大幅に改善する
ことができる多結晶シリコンウェハの製造方法として、
既に、シリコン母相を溶融し、この融液を、石英又はカ
ーボンで形成され、かつ回転状態にある製造皿上に滴下
し、遠心力を有効利用することにより所望拡径状態の融
液薄層を形成し、同層の固化後、これを製造器から刺部
1する方法(スピン法)を提案した。
Therefore, the present applicant has developed a method for manufacturing polycrystalline silicon wafers that can significantly improve the defects of the above methods.
The silicon matrix is already melted, and this melt is dropped onto a rotating production plate made of quartz or carbon, and by effectively utilizing centrifugal force, a thin layer of melt with a desired diameter expansion is created. We proposed a method (spin method) in which a layer is formed, and after the same layer is solidified, it is formed into a splinter 1 from a manufacturing device.

このスピン法は、多くの優れた特徴をもっているが、上
記の固化した融液薄層の剥離に際し、同層は製造器に癒
着していることから、剥離作業の際に破損してしまい易
く、同作業が極めて煩雑で熟練を要求されることとなり
、このことが大量生産の隘路となっていた。
This spin method has many excellent features, but when the thin layer of solidified melt is peeled off, the layer adheres to the manufacturing device and is easily damaged during the peeling process. This work was extremely complicated and required great skill, which created a bottleneck in mass production.

また、この方法によれば、溶融したシリコン母相の融液
を製造器に直接滴下して融液薄層を形成することから、
同融液中に、製造器の成分が拡散し易く、特に回器がカ
ーボン族である場合には、このカーボンが汚染不純物と
して融液中に混入し、製品たるウェハの特性に悪影響を
及はずという問題を有していた。
In addition, according to this method, the melt of the molten silicon matrix is directly dropped into the manufacturing device to form a thin layer of the melt.
Components of the manufacturing equipment are likely to diffuse into the melt, and especially if the manufacturing equipment is made of carbon, this carbon will be mixed into the melt as a contaminating impurity and will have a negative impact on the characteristics of the product wafer. There was a problem.

この問題を解決するため、従来では、製造器の」二面に
離型剤として窒化硅素を溶媒とし揮発性溶剤を溶液とし
て、これを塗布し数ミクロンの膜を製造器の上面に形成
し、間膜の上面にシリコン母相のけ液を滴下して融液薄
層を形成しこれを固化させることによって上記問題を解
決しJ:うとじていた。
In order to solve this problem, conventional methods used silicon nitride as a solvent and volatile solvent as a solution to be applied as a mold release agent to two surfaces of the manufacturing device, thereby forming a film of several microns on the top surface of the manufacturing device. The above problem was solved by dropping a silicon matrix solution onto the upper surface of the interlayer to form a thin layer of melt and solidifying it.

しかしながら、このような離型剤を製造器に塗布してお
くことにより/リロンンートを製造器から分gllする
方法にあっては、離型剤が溶解された溶液を単に製造器
に塗布するだl−1であったため、/リコン母14の融
液を製造器に滴下させた際の衝撃により、該融液中に1
第11型剤が混入してンリコンウエハの特性と品質が低
下し易いばかりでなく、同衝撃により厘を剤が剥崗1r
飛散I−てしまった個所では、結局融液と製造器とが直
接当触してしまい、製造器の成分が融液中に混入して結
晶欠陥を生起させ、これによりその特性、品質を低下さ
せてしまうといった問題を有していた。
However, in the method of applying such a mold release agent to the manufacturing device/separating the release agent from the manufacturing device, it is necessary to simply apply a solution in which the mold release agent is dissolved to the manufacturing device. -1, due to the impact when the melt of /recon mother 14 was dropped into the manufacturing device, 1
Not only is it easy for the properties and quality of the silicon wafer to deteriorate due to the mixing of type 11 agent, but also that the agent is peeled off due to the same impact.
At the point where the melt is scattered, the melt and the manufacturing device end up coming into direct contact, and components from the manufacturing device are mixed into the melt, causing crystal defects, which deteriorates its properties and quality. There was a problem that the

この発明は、かかる現状に鑑み創案されたものであって
、その目的とするところは、・シリコン母相の融液を製
造器の上面に滴下させて所望大きさの融液薄層を形成し
、これを固化した後に製造器から剥離して多結晶シリコ
ンウニ・・を製造する場合、上記融液中に離型剤や製造
器の成分が混入する虞れをなくして、高品質・高特性の
多結晶シリコンウェハを容易に得ることができる多結晶
シリコンウェハの製造方法を提供しようとするものであ
る。
This invention was devised in view of the current situation, and its purpose is to: - Drop a melt of silicon matrix onto the top surface of a manufacturing device to form a thin layer of melt of a desired size; When manufacturing polycrystalline silicone sea urchin by peeling it from the manufacturing equipment after solidifying it, there is no risk of the mold release agent or components of the manufacturing equipment being mixed into the melt, resulting in high quality and high properties. It is an object of the present invention to provide a method for manufacturing polycrystalline silicon wafers that can easily obtain polycrystalline silicon wafers.

かかる目的を達成するため、この発明にあっては、所望
雰囲気内にあって、回転する製造皿上におけるシリコン
母材の融液を、当該回転による遠心力によって、拡径方
向へ流動させることにより、当該融液による所望径の融
液薄層を形成し、これを固化した後、同薄層を製造器よ
り剥難する多結晶シリコンウェハの製造方法において、 上記製造器のウェハ形成平面には、有機溶剤によりシリ
コン系粉末を溶がして生成した離型剤が塗布され、その
後当該製造器を所要温度で加熱して有機溶剤を乾燥させ
ることにより、シリコン系粉末層を残存形成し、このシ
リコン系粉末層上に前記融液薄層を形成するようにした
ものである。
In order to achieve such an object, the present invention has a method in which the melt of the silicon base material on a rotating production plate in a desired atmosphere is made to flow in the direction of diameter expansion by the centrifugal force caused by the rotation. , a polycrystalline silicon wafer manufacturing method in which a thin melt layer of a desired diameter is formed by the melt, solidified, and then the thin layer is peeled off from a manufacturing device, in which the wafer forming plane of the manufacturing device is , a mold release agent produced by dissolving silicon-based powder with an organic solvent is applied, and then the manufacturing device is heated at a required temperature to dry the organic solvent, thereby forming a remaining silicon-based powder layer. The thin melt layer is formed on the silicon-based powder layer.

以下、添(=J図面に示す実施例にもとづき、この発明
の詳細な説明する。
Hereinafter, the present invention will be described in detail based on the embodiments shown in the accompanying drawings.

第1図は、製造器(1)のウェハ形成平面(1a)に離
型剤■が塗布された状態が示されている。
FIG. 1 shows a state in which a mold release agent (2) has been applied to the wafer forming plane (1a) of the manufacturing device (1).

製造器(1)には、シリコンとの反応性が少ない石英(
SiCh)  やカーボン(c)等の材質で各種寸法の
円形、四角形等所望形状のウェハ形成平面(1a)をも
ったものが用意され、これを任意に選択して用いられる
The manufacturing device (1) contains quartz (which has little reactivity with silicon).
Materials such as SiCh) and carbon (c) having wafer forming planes (1a) of desired shapes such as circular and rectangular shapes of various sizes are prepared, and any of these can be selected and used.

また、離型剤に)には、ポリビニルアルコール(PVA
)等の有機溶剤にシリコン系粉末を溶かして生成された
ものを用い、当該粉末としては、酸化シリコンや窒化シ
リコンが好適である。
In addition, polyvinyl alcohol (PVA) is used as a mold release agent).
), etc., is used, and silicon oxide or silicon nitride is suitable as the powder.

このように離型剤に)にシリコン系粉末を用いるのは、
シリコン母相と同系材であるのでシリコンシートとの反
応性が少ないことと、加熱して固化し易いためである。
The use of silicon powder as a mold release agent in this way is
This is because it is a similar material to the silicon matrix, so it has little reactivity with the silicon sheet, and it is easily solidified by heating.

次に上記の如くして得られた離型剤(2)を製造器(1
)に塗布するが、これには、刷毛やスプレー法によるこ
とができ、このような塗布処理後は、この製造器(1)
を加熱炉内で所要温度に加熱するが、この場合の温度と
しては、600℃以上が好適である。
Next, the mold release agent (2) obtained as described above was added to the manufacturing device (1).
), but this can be done by brush or spray method, and after such application process, this manufacturing device (1)
is heated to a required temperature in a heating furnace, and the temperature in this case is preferably 600°C or higher.

この加熱により、離型剤■の有機溶剤は乾燥してしまい
、製造器(1)の上面、すなわちウェハ形成平面(1a
)にはシリコン系粉末層−が残存形成され、当該粉末層
−の厚さとしては約200μ程度が好ましい。
Due to this heating, the organic solvent of the mold release agent (1) dries, and the upper surface of the manufacturing device (1), that is, the wafer forming plane (1a), is dried.
), a silicon-based powder layer remains formed, and the thickness of the powder layer is preferably about 200 μm.

このようにして、製造器(1月こシリコン系粉末層dが
形成された後同粉末層−の上面に所望拡径状態とした融
液薄層■を形成すること\なるが、同薄層θの形成工程
を第3図によって以下説示する。
In this way, after the silicon-based powder layer d is formed in the manufacturing device, a thin layer of melt with a desired expanded diameter is formed on the upper surface of the powder layer. The process of forming θ will be explained below with reference to FIG.

同図の坩堝(4ンにシリコン母材を投入して、ごれを溶
融用熱源(5)により加熱融解し、当該融液を坩堝(4
)の転動によって漏斗(7)へ放流し、こ\で−たん漏
斗(7)に受承されて、さらにその流出口(7)から、
図中点線で示すように当該融液をウェハ形成平面(1a
)の略中心部に滴下する。
The silicon base material is put into the crucible (4) shown in the same figure, the dirt is heated and melted by the melting heat source (5), and the melt is put into the crucible (4).
) is discharged into the funnel (7), where it is received by the phlegm funnel (7), and then from the outlet (7).
As shown by the dotted line in the figure, the melt is applied to the wafer forming plane (1a
) to approximately the center of the area.

そしてこの際ターンテーブル機構(8)は予め回転させ
ておくのがよいが、同時回転でも、滴下完了後融液が固
化しないうちに回転を開始させてもよく、当該回転によ
る遠心力によって融液は拡径方向へ流動する。そして、
この拡径流動する融液はウェハ形成平面(1a)の全面
にわたり、その外周縁まで拡径され、余剰供給の融液は
当該外周縁から遠心力により放出され、この結果ウェハ
形成平面Oa)の形状に見合った融液薄層(3)が形成
され、これを自然放冷が適宜の冷却手段によって固化し
、第4図に示すように、多結晶シリコンウェハが製造器
0)のウェハ形成平面(1a)に形成される。
At this time, it is preferable to rotate the turntable mechanism (8) in advance, but the rotation may be started at the same time or before the melt solidifies after the dropping is completed, and the centrifugal force caused by the rotation causes the melt to flows in the direction of diameter expansion. and,
This diameter-expanding flowing melt is expanded over the entire surface of the wafer forming plane (1a) to its outer periphery, and the excess supply of melt is discharged from the outer periphery by centrifugal force, resulting in a change in the wafer forming plane Oa). A thin melt layer (3) matching the shape is formed, and this is solidified by natural cooling and an appropriate cooling means, and as shown in FIG. (1a).

尚、上記シリコン母材としては金属縁シリコン、半導体
級高純度シリコンなどを用いるようにし、同母材は、坩
堝に)の外周側に配設された電気ヒータ等による溶融用
熱源(5)によって、当該シリコンの溶融温度1420
℃を考慮して加熱することにより、これを溶融し得るよ
うになっており、当該熱源(5)としては、図示例のよ
うに電熱線であるとか、高周波加熱装置によることがで
き、もちろん適時当該加熱を停止したり、加熱条件を制
御可能にしておくことが望ましい。
The silicon base material used is metal-edge silicon, semiconductor-grade high-purity silicon, etc., and the base material is melted by a heat source (5) such as an electric heater placed on the outer periphery of the crucible. , the melting temperature of the silicon 1420
It is possible to melt this by heating with the temperature in mind.The heat source (5) can be a heating wire as shown in the example, or a high-frequency heating device, and of course, it can be heated at appropriate times. It is desirable to be able to stop the heating or control the heating conditions.

また、上記ターンテーブル機構(8)は、その回転軸(
9)に固設した回収受皿(10)に製造器(1)を載置
し、同軸(9)を回転中心として回収受皿(10)と製
造器el)は同期して回動される。
Further, the turntable mechanism (8) has its rotating shaft (
The manufacturing device (1) is placed on a collection tray (10) fixed to the container 9), and the collection tray (10) and the manufacturing device el) are rotated synchronously about the coaxial shaft (9).

このようにして製造器(1)のウェハ形成平面(1a)
に所望拡径の7リコンンート■が形成された後、該製造
器(1)よりシリコンシート■を剥離する。
In this way, the wafer forming plane (1a) of the manufacturing device (1)
After 7 recontents (2) with a desired diameter expansion are formed, the silicone sheet (2) is peeled off from the manufacturing device (1).

このS合、製造器(1)とシリコンシートdとの間には
固化したシリコン系粉末層2が介在されており、かつ、
同粉末層dは離型作用を発揮するので、同粉末層dとシ
リコンシート(=E4との界面における接着性が弱く、
この結果、シリコンシートdは手で容易に同粉末層dか
ら剥離できる。
In this S combination, a solidified silicon powder layer 2 is interposed between the manufacturing device (1) and the silicon sheet d, and
Since the powder layer d exerts a mold release effect, the adhesion at the interface between the powder layer d and the silicon sheet (=E4) is weak.
As a result, the silicone sheet d can be easily peeled off from the powder layer d by hand.

上記の通り本発明によれば、従来のイノゴツトスライス
法やリボン法の難点が解消されるのはもちろん、親心キ
ャスティング法のように鋳型の各面による制限を受ける
ことなく、製造器−1−で同化され、しかも回器のウェ
ハ形成平面には加熱固化したりシリコン系粉末層が形成
されており、シリコンシートは離型作用を有する同粉末
層の上面に形成されるので、シリコンシートを容易に製
造器から剥離することができ、その結果、同刺部を作業
が簡便となるとともに、シリコンシートが破損すること
も生じない。
As described above, according to the present invention, the difficulties of the conventional ingot slicing method and ribbon method can be solved, and the manufacturing device can be In addition, a layer of silicon-based powder is formed on the wafer forming plane of the turntable by heating and solidifying, and the silicon sheet is formed on the top surface of the same powder layer that has a mold release effect. It can be easily peeled off from the manufacturing device, and as a result, it is easy to work on the pricked portion, and the silicone sheet is not damaged.

また、この発明によれば、シリコンシートと製造器との
間に、離型剤としてシリコン母材と同系祠であるシリコ
ン系粉末層を形成し、しか化したものであるから、シリ
コン母料融液の滴下によって離型剤が飛散して同融液と
製造器とが直接接触する如き支障を生ぜず、その結果、
同融液中に製造器の成分が混入することもないので高特
性・高品質の多結晶ンリコンウエハを得ることができ、
更には離型剤層による同ウェハへの悪影響もない。
Further, according to the present invention, a silicon powder layer, which is similar to the silicon base material, is formed between the silicon sheet and the manufacturing device as a mold release agent, and the silicon base material melt is hardened. There is no problem such as the mold release agent scattering due to dropping of the liquid and direct contact between the melt and the manufacturing equipment, and as a result,
Since components from the manufacturing equipment do not mix into the melt, it is possible to obtain polycrystalline silicon wafers with high characteristics and high quality.
Furthermore, there is no adverse effect on the wafer due to the release agent layer.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明に係る製造方法の実施例を示すもので
あって、第1図は製造器の上面に離型剤を塗布した状態
の正面説明図、第2図は同製造皿を炉内で加熱してシリ
コン系粉末層を形成した状態を示す正面説明図、第3図
は多結晶シリコンウェハを製造する設備例を示す正面斜
視図、第4図は同設備によりウェハを製造皿上に形成し
た状態を示す正面説明図、15図は同ウェハを製造器か
ら剥離した状態を示す正面説明図である。 (1)・・・・・製造器 (1a)・・・・ウェハ形成平面 ■・・・・・離型剤 に)・・・・・シリコン系粉末層 ■・・・・・融液薄層 ■・・・・・シリコンシート 特許出願人 代理人 弁理士  井 藤   誠 第3図 4 単 4 図 第5図
The drawings show an embodiment of the manufacturing method according to the present invention, in which FIG. 1 is a front explanatory view of the manufacturing device with a mold release agent applied to the top surface, and FIG. Fig. 3 is a front perspective view showing an example of equipment for manufacturing polycrystalline silicon wafers, and Fig. 4 is a front view showing a state in which a silicon-based powder layer is formed by heating with the same equipment. FIG. 15 is a front explanatory view showing the state in which the wafer is formed, and FIG. 15 is a front explanatory view showing the state in which the wafer is peeled off from the manufacturing device. (1)...Producer (1a)...Wafer forming plane■...For mold release agent)...Silicon powder layer■...Thin layer of melt ■・・・Silicone sheet patent applicant representative Patent attorney Makoto Ifuji Figure 3 4 Single 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)所望雰囲気内にあって、回転する製造皿上におけ
るシリコン母材の融液を、当該回転による遠心力によっ
て、拡径方向へ流動させることにより、当該融液による
所望径の融液薄層を形成し、これを固化した後、同薄層
を製造皿より剥離する多結晶シリコンウェハの製造方法
において、上記製造皿のウェハ形成平面には、有機溶剤
によりシリコン系粉末を溶かして生成した離型剤が塗布
され、その後当該製造膜を所要温度で加熱して有機剤を
乾燥させることにより、シリコン系粉末層を残存形成し
、このンリコ/系粉末層上に前記融液薄層が形成される
ようにしたことを特徴とする多結晶シリコンウェハの製
造方法。
(1) In a desired atmosphere, the melt of the silicon base material on a rotating production plate is made to flow in the direction of diameter expansion due to the centrifugal force caused by the rotation, thereby thinning the melt to a desired diameter. In a method for producing polycrystalline silicon wafers in which a layer is formed, solidified, and then the same thin layer is peeled off from a production plate, the wafer forming plane of the production plate is coated with silicon powder produced by dissolving silicon-based powder with an organic solvent. A mold release agent is applied, and then the manufactured film is heated at a required temperature to dry the organic agent, thereby forming a remaining silicon-based powder layer, and the melt thin layer is formed on this Noriko/based powder layer. A method for manufacturing a polycrystalline silicon wafer, characterized in that:
(2)  シリコン系粉末には、酸化シリコン又は窒化
シリコンを採択し、約600℃で有機溶剤を乾燥する特
許請求の範囲第1項記載の多結晶シリコンウェハの製造
方法。
(2) The method for producing a polycrystalline silicon wafer according to claim 1, wherein silicon oxide or silicon nitride is used as the silicon-based powder, and the organic solvent is dried at about 600°C.
JP58054459A 1983-03-30 1983-03-30 Production of polycrystal silicon wafer Granted JPS59182218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58054459A JPS59182218A (en) 1983-03-30 1983-03-30 Production of polycrystal silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58054459A JPS59182218A (en) 1983-03-30 1983-03-30 Production of polycrystal silicon wafer

Publications (2)

Publication Number Publication Date
JPS59182218A true JPS59182218A (en) 1984-10-17
JPH0314768B2 JPH0314768B2 (en) 1991-02-27

Family

ID=12971255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58054459A Granted JPS59182218A (en) 1983-03-30 1983-03-30 Production of polycrystal silicon wafer

Country Status (1)

Country Link
JP (1) JPS59182218A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590623A (en) * 1991-09-28 1993-04-09 Nissha Printing Co Ltd Transfer material for solar battery
CN1073005C (en) * 1996-12-19 2001-10-17 艾利森电话股份有限公司 Method for making elastic bumps

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590623A (en) * 1991-09-28 1993-04-09 Nissha Printing Co Ltd Transfer material for solar battery
CN1073005C (en) * 1996-12-19 2001-10-17 艾利森电话股份有限公司 Method for making elastic bumps

Also Published As

Publication number Publication date
JPH0314768B2 (en) 1991-02-27

Similar Documents

Publication Publication Date Title
US4637855A (en) Process for producing crystalline silicon spheres
JP2001516324A (en) Columnar crystalline granular polycrystalline solar cell substrate and improved manufacturing method
JPS59182218A (en) Production of polycrystal silicon wafer
WO2009104049A1 (en) Silicon substrate, method and equipment for making the silicon substrate
JPS59182217A (en) Production of polycrystal silicon wafer
JPH09175809A (en) Casting method for silicon
JPH0314765B2 (en)
JPH0142339Y2 (en)
JPH038578B2 (en)
JPS59174513A (en) Manufacture of polycrystalline silicon wafer
JPS58162035A (en) Preparation of polycrystalline silicon wafer
JPS58162029A (en) Preparation of polycrystalline silicon wafer
JPS59182216A (en) Dish for producing polycrystal silicon wafer
JP2005104743A (en) Silicon casting mold
JPS58166716A (en) Manufacture of polycrystalline silicon wafer
JPS59181013A (en) Manufacture of polycrystalline silicon wafer
JP4741221B2 (en) Polycrystalline silicon casting method, polycrystalline silicon ingot, polycrystalline silicon substrate and solar cell element using the same
JPH046088B2 (en)
RU2390589C1 (en) Procedure and facility for growing silicon crystal on base
JP3773754B2 (en) Sphere cutting device, sphere cutting method, semiconductor device manufacturing method using the same, and solar cell manufacturing method
JP2003267716A (en) Manufacturing device and manufacturing method using the same for polycrystalline semiconductor substrate
JPH0311214Y2 (en)
JP4870859B2 (en) Liquid phase epitaxial growth apparatus and growth method
JP2004228556A (en) Pasting component, its manufacturing method, and manufacturing apparatus therefor
JPH11171689A (en) Production of oxide single crystal film