JPS59182217A - Production of polycrystal silicon wafer - Google Patents

Production of polycrystal silicon wafer

Info

Publication number
JPS59182217A
JPS59182217A JP5445583A JP5445583A JPS59182217A JP S59182217 A JPS59182217 A JP S59182217A JP 5445583 A JP5445583 A JP 5445583A JP 5445583 A JP5445583 A JP 5445583A JP S59182217 A JPS59182217 A JP S59182217A
Authority
JP
Japan
Prior art keywords
layer
melt
release agent
silicon
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5445583A
Other languages
Japanese (ja)
Other versions
JPH0314767B2 (en
Inventor
Takashi Yokoyama
敬志 横山
Ichiro Hide
一郎 秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoxan Corp
Hokusan Co Ltd
Original Assignee
Hoxan Corp
Hokusan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoxan Corp, Hokusan Co Ltd filed Critical Hoxan Corp
Priority to JP5445583A priority Critical patent/JPS59182217A/en
Publication of JPS59182217A publication Critical patent/JPS59182217A/en
Publication of JPH0314767B2 publication Critical patent/JPH0314767B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain easily the titled wafer having high quality and characteristics, by forming two or more layers of release agent layers consisting of the topmost layer of SiO2 film layer and an underlying layer of silicon based powder layer on the top of a production dish, and further forming a thin melt layer on the topmost layer. CONSTITUTION:Two or more layers of release agent layers are formed on the top of a production dish 1, and the topmost layer (A4) is an SiO2 film layer formed by sputtering. The underlying layer (A1) is a silicon based powder layer left and formed by applying a release agent prepared by dissolving silicon based powder in an organic solvent to the top of the production dish 1, and heating and drying the release agent. The production dish 1 having the resultant release agent layer (A) is placed on a recovery pan 10 of a turntable mechanism 8, and a silicon base material melt is dropped onto the center thereof. A thin melt layer 3 is formed on the whole surface of the topmost layer (A4) by the centrifugal force, cooled, solidified and peeled. Thus, the aimed polycrystal silicon wafer having high quality and characteristics can be easily obtained without fear or contamination of the release agent nor components of the production dish 1 in the melt.

Description

【発明の詳細な説明】 本発明は太陽電池その他の光電変換素子等に用いられて
いる多結晶シリコンウエハノ製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing polycrystalline silicon wafers used in solar cells and other photoelectric conversion elements.

従来から多結晶シリコンウェハは各種の方法によって製
造されており、最も一般的にはシリコン母相により一た
ん所定形状のインゴットを鋳造し、これをスライスする
ことによってウェハを得るようにしているが、これでは
スライス作業に大変な時間をかけなければならないだけ
でなく、インゴットの約50%がスライス時のロスとな
ってしまうため、製品がコスト高につき大量生産も不可
能である。
Conventionally, polycrystalline silicon wafers have been manufactured by various methods, and the most common method is to cast an ingot of a predetermined shape from a silicon matrix and then obtain wafers by slicing this. In this case, not only does the slicing process take a lot of time, but also about 50% of the ingot is lost during slicing, making the product expensive and making mass production impossible.

そこでスライスによらない方法としてリボン法とキャス
ティング法(鋳造法)が既に実施されているが、リボン
法は例えば回転ドラムの周面に溶融シリコ2ンを噴当さ
せ、当該周面にリボン状のウェハを形成するものであり
、同法によるときは実際上リボン幅が数層程度のものし
がV:造することができず、大形の太陽電池素材等が得
られない難点がある。
Therefore, ribbon method and casting method (casting method) have already been implemented as methods that do not involve slicing, but in the ribbon method, for example, molten silicone is sprayed onto the circumferential surface of a rotating drum, and a ribbon-shaped coating is applied to the circumferential surface of the drum. This method is used to form wafers, and when using this method, it is practically impossible to fabricate ribbons with a width of several layers, making it difficult to obtain large-sized solar cell materials.

また上記ギヤスティング法と呼ばれているものは、シリ
コン母材を加熱して融液となし、これを製品ウェハの寸
法に応じた鋳型に流し込み、さらに当該型の可動部分に
より融液を抑圧成型して固化させるものであるが、同法
によるときは、一度に所定形状のウェハが得られ、量産
性の点で望ましい結果が期待できるもの\、上記のよう
に融液は四方から押えつけられることになる。
In addition, the above-mentioned gearing method heats the silicon base material to form a melt, pours it into a mold according to the dimensions of the product wafer, and then presses and molds the melt using the movable parts of the mold. However, when this method is used, wafers of a predetermined shape can be obtained at once, and desirable results can be expected in terms of mass production.As mentioned above, the melt is pressed down from all sides. It turns out.

このため同法では鋳型の上下面と側面が上記融液の同化
に際し、/リコン結晶粒(グレイン)の成長を抑制して
しまうこと\なり、固化製品の前記各面と接する部分近
傍が、非常に細かい結晶粒となって大きな結晶粒が得ら
れず、太陽電池用シリコンウェハ等にあって望ましいと
されている大結晶粒生μの要請を満足させることができ
ないため、当該ウニ・・によって得られた太陽電池の光
電変換効率も2〜3%と極度に悪くなってしまう欠陥を
もっている。
Therefore, in this method, when the upper and lower surfaces and side surfaces of the mold assimilate the above-mentioned melt, the growth of silicon crystal grains (grains) is suppressed, and the vicinity of the parts of the solidified product that are in contact with each of the above-mentioned surfaces is extremely Because the crystal grains become fine and large crystal grains cannot be obtained, and the requirement for large crystal grains μ, which is desirable for silicon wafers for solar cells, etc., cannot be obtained, the sea urchin... The photovoltaic conversion efficiency of the resulting solar cells is also extremely poor at 2 to 3%.

そこで本出願人は、上記諸法の欠陥を大幅に改善するこ
とができ÷多結晶シリコンウェハの製造方法として、既
に、シリコン母材を溶融し、この融液を、石英又はカー
ボンで形成され、かつ回転状態にある製造皿上に滴下し
、遠心力を有効利用することにより所望拡径状態の融液
薄層を形成し、同層の固化後、これを製造器から剥離す
る方法(スピン法)を提案した。
Therefore, the present applicant has already proposed a method for manufacturing polycrystalline silicon wafers that can significantly improve the deficiencies of the above-mentioned methods, by melting a silicon base material and using this melt to form a polycrystalline silicon wafer. A thin layer of molten liquid with a desired expanded diameter is formed by dripping onto a rotating production plate, effectively utilizing centrifugal force, and after the layer solidifies, this is peeled off from the production device (spin method). ) was proposed.

このスピン法は、多くの優れた特徴をもっているが、上
記の固化した融液薄層の剥離(こ際し、同層は製造器に
癒着していることから、剥離作業の際に破損してしまい
易く、同作業が槓めて煩雑で熟練を要求されることとな
り、このことが大量生産の隘路となっていた。また、こ
の方法によれば、溶融したシリコン母材の融液を製造器
に直接滴下して融液薄層を形成することから、同融液中
に、製造器の成分が拡散し易く、特に置皿がカーボン製
である場合には、このカーボンがti染不純物として融
液中に混入し、製品たるウェハの特性に悪影響を及ぼす
という問題を有していた。
This spin method has many excellent features, but the thin layer of the solidified melt mentioned above is peeled off (at this time, since the layer is adhered to the manufacturing device, it may be damaged during the peeling process). It was easy to put away, and the work was complicated and required skill, which became a bottleneck in mass production.In addition, according to this method, the melt of the molten silicon base material was transferred to the manufacturing equipment. Since a thin layer of the melt is formed by directly dropping it onto the glass, the components of the manufacturing device are likely to diffuse into the melt, and especially if the tray is made of carbon, this carbon may be dissolved as impurities in the Ti dye. There was a problem in that it got mixed into the liquid and had an adverse effect on the characteristics of the wafer product.

この問題を解決するため、従来では、製造器の上面に離
型剤として窒化硅素を溶媒とし揮発性溶剤に溶液として
、これを塗布し、数ミクロンの膜を製造器の上面に形成
し、同層の上面にシリコン母材の融液を滴下して融液薄
層を形成し、これを固化させることによって上記問題を
解決しようとしていた。
In order to solve this problem, in the past, silicon nitride was applied as a solution in a volatile solvent as a mold release agent to the top surface of the manufacturing device, and a film of several microns was formed on the top surface of the manufacturing device. Attempts have been made to solve the above problem by dropping a melt of the silicon base material onto the upper surface of the layer to form a thin layer of the melt, and solidifying this.

しかしながら、このような離型剤を製造器に塗布してお
くことによりシリコンシートを製造器から分離する方法
にあっては、離型剤が溶解された溶液を単に製造器に塗
布するだけであったため、シリコン母材の融液を製造器
に滴下させた際の衝撃により、該融液中に離型剤が混入
してシリコンウェハの特性と品質が低下し易いばかりで
なく、同衝撃により離型剤が剥離飛散してしまった個所
では、結局融液と製造器とが直接々触してしまい、製造
器の成分が融液中に混入して結晶欠陥を生起させ、これ
によりその特性・品質を低下させてしまうという問題を
有していた。
However, in this method of separating the silicone sheet from the manufacturing device by applying a mold release agent to the manufacturing device, it is necessary to simply apply a solution in which the mold release agent is dissolved to the manufacturing device. Therefore, when the melt of the silicon base material is dropped into the manufacturing equipment, the impact causes release agent to be mixed into the melt, which not only tends to deteriorate the properties and quality of the silicon wafer, but also causes the impact to cause the silicon wafer to release. In areas where the molding agent has peeled off and scattered, the melt and the manufacturing equipment end up coming into direct contact, and components from the manufacturing equipment mix into the melt, causing crystal defects, which impair its properties. This had the problem of deteriorating quality.

この発明は、かかる現状に鑑み創案されたものであって
、その目的とするところは、シリコン母材の融液を製造
器の上面に滴下させて所望大きさの融液薄層を形成し、
これを固化した後に製造器から剥離して多結晶シリコン
ウニハラ製造する場合、上記融液中に〃1型剤や製造器
の成分が混入する虞れをなくして、高品質・高特性の多
結晶シリコンウェハを容易に得ることができる多結晶シ
リコンウェハの製造方法を提供しようとするものである
This invention was devised in view of the current situation, and its purpose is to form a thin layer of melt of a desired size by dropping a melt of silicon base material onto the top surface of a manufacturing device,
When manufacturing polycrystalline silicon unihara by peeling it from the manufacturing device after solidifying it, it is possible to eliminate the risk of mixing the molding agent 1 or the components of the manufacturing device into the melt, and to produce a polycrystalline silicone material with high quality and high properties. It is an object of the present invention to provide a method for manufacturing polycrystalline silicon wafers that allows crystalline silicon wafers to be easily obtained.

かかる目的を達成するため、この発明にあっては、 所望雰囲気内にあって、回転する製造器]二におけるシ
リコン母料の融液を、当該回転による遠心力によって、
拡径方向へ流動させることにより、当該融液による所望
径の融液薄層を形成し、これを固化した後、同薄層を製
造器より剥離する多結晶シリコンウェハの製造方法にお
いて、 上記製造皿の上面には、二層以上の離型剤層が形成され
、同離型剤層の最上層はスパッタリングにより形成され
た酸化硅素被膜層であると共に、その下積層は、有機溶
剤によりシリコン系粉末を溶かして生成した離型剤の塗
布後、これを所要温度で加熱して有機溶剤を乾燥させる
ことにより残存形成されたシリコン系粉末層であり、上
記最上層上に前記融液薄層が形成されるようにして多結
晶シリコンウェハを製造しようとするものである。
In order to achieve such an object, in the present invention, the melt of the silicon base material in the rotating manufacturing device in a desired atmosphere is heated by the centrifugal force caused by the rotation.
In the method for manufacturing a polycrystalline silicon wafer, the method for manufacturing a polycrystalline silicon wafer comprises forming a thin layer of melt with a desired diameter by flowing the melt in the direction of diameter expansion, solidifying this, and then peeling off the thin layer from a manufacturing device. Two or more mold release agent layers are formed on the top surface of the dish, and the top layer of the mold release agent layer is a silicon oxide coating layer formed by sputtering, and the lower layer is a silicon-based film layer formed by sputtering. This is a silicon-based powder layer that remains after coating a mold release agent produced by melting the powder and then heating it at a required temperature to dry the organic solvent. It is intended to manufacture polycrystalline silicon wafers in such a manner as to form polycrystalline silicon wafers.

以下、添付図面に示、す−実例に1もとづき、この発明
の詳細な説明する。
The present invention will now be described in detail based on an example illustrated in the accompanying drawings.

この実施例において製造皿(1)は、シリコンとの反応
性が少ない石英(’Sing)  やカーボン(c)等
の拐質で各種寸法の円形、四角形等、所望形状の上面(
1a)をもったものが用意され、これを任意選択して用
いられる。
In this embodiment, the production plate (1) is made of a material such as quartz ('Sing) or carbon (c), which has low reactivity with silicon, and is made of a desired shape such as a circle or a square of various dimensions.
1a) is prepared and can be optionally used.

そして、この製造皿(1)の上面(1a)上には、複数
層の離型剤層(A)が形成される。
A plurality of mold release agent layers (A) are formed on the upper surface (1a) of this production plate (1).

この離型剤層(A)の第1層目(AI)は、窒化硅素(
SisN4)とポリビ= ルア ル:I−ル(P V 
A )との混合液を、刷毛又はスプレー等の手段で製造
皿(1)の上面(1a)に塗布し、これを加熱炉で高温
乾燥(約600℃以上)して形成する。これにより窒化
硅素は、第1図に示すように、固化して製造皿(1)の
上面(1a)にて約50μの層を形成する。
The first layer (AI) of this mold release agent layer (A) is silicon nitride (
SisN4) and polyviral: I-ru (PV
A) is applied to the upper surface (1a) of the production plate (1) by means such as a brush or spray, and then dried at high temperature (approximately 600° C. or higher) in a heating furnace to form the mixture. As a result, the silicon nitride solidifies and forms a layer of approximately 50 μm on the upper surface (1a) of the production plate (1), as shown in FIG.

第2層目(A、)は、酸化硅素(Si02)を加熱炉で
加熱(約300℃)してスパッタリングにより第1層目
(A、)に気化したS’i 02を付着し、薄い被膜層
(厚さ約05μ)として形成される。これにより、第1
層目(A、)の上面には第2図に示すように、第1層目
(A、)より硬度の大きい厘型剤被膜層が形成される。
The second layer (A,) is made by heating silicon oxide (Si02) in a heating furnace (approximately 300°C) and depositing the vaporized S'i02 on the first layer (A,) by sputtering to form a thin film. Formed as a layer (approximately 05μ thick). This allows the first
As shown in FIG. 2, on the upper surface of the layer (A,), a roll-forming agent coating layer having a harder hardness than that of the first layer (A,) is formed.

第3層目(ADは、第1層目(AI、)・と同様の累月
と手法で第2層目(ADの上面に形成されており、その
厚さは約50μである。
The third layer (AD) is formed on the upper surface of the second layer (AD) in the same manner as the first layer (AI), and its thickness is approximately 50 μm.

第4層目(A、)は、第2層目(AJと同様の素材と手
法で第3層目(ADの上面に形成したもので、その厚さ
は約1μである。
The fourth layer (A,) is formed on the upper surface of the third layer (AD) using the same material and method as the second layer (AJ), and its thickness is approximately 1 μm.

このようにして、製造皿(1)の上面(1a)に4層に
より構成の離型剤層■が形成されたなら+gこの製造皿
(1)を第5図に示すごとき設備に装置nする。すなわ
ち、製造皿(1)はターンデープル機構(8)の回収受
皿(10に載置され、この回収受皿(10)に固設され
た回転軸(9)を回転中心として製造皿(1)は回収受
皿(10)と同期して回動される。次に、坩堝(4)に
シリコン母材を投入して、これを溶融用熱源(5)によ
り加熱融解し、当該融液を坩堝(4)の転勤によって漏
斗(7)へ放流し、こ\で−たん漏斗(7)に受承され
て、さらにその流出口(7)から、図中点線で示すよう
に当該融液を最上層の離型剤層Aの最上層にあって、そ
の略中心部に滴下する。
In this way, if a mold release agent layer consisting of four layers is formed on the upper surface (1a) of the production plate (1), then the production plate (1) is placed in the equipment as shown in Fig. 5. . That is, the production tray (1) is placed on the collection tray (10) of the turntable mechanism (8), and the production tray (1) is collected around the rotating shaft (9) fixed to the collection tray (10). It is rotated in synchronization with the saucer (10).Next, the silicon base material is put into the crucible (4), heated and melted by the melting heat source (5), and the melt is transferred to the crucible (4). The melt is discharged into the funnel (7) by the transfer of the melt, which is received by the funnel (7), and from the outlet (7), the melt is transferred to the uppermost layer as shown by the dotted line in the figure. It is on the uppermost layer of the mold agent layer A and is dropped approximately at the center thereof.

そしてこの際ターンテーブル機構(8)は予め回転させ
ておくのがよいが、同時回転でも、滴下完了後融液が固
化しないうちに回転を開始させてもよく、当該回転によ
る遠心力によって融液は拡径方向へ流動する。そして、
この拡径流動する融液は上記最上層の全面にわたり、そ
の外周縁まで拡径され、余剰供給の融液は当該外周縁か
ら遠心力により放出され、この結果製造器(1)の形状
に見合った融液薄層(3)が形成され、これを自然放冷
か適宜の冷却手段によって固化し、第6図に示すように
多結晶シリコンウェハが製造皿(1)の上面に形成され
た上記最上層上に形成される。
At this time, it is preferable to rotate the turntable mechanism (8) in advance, but the rotation may be started at the same time or before the melt solidifies after the dropping is completed, and the centrifugal force caused by the rotation causes the melt to flows in the direction of diameter expansion. and,
This diameter-expanding flowing melt is expanded over the entire surface of the uppermost layer to its outer periphery, and the excess supply of melt is discharged from the outer periphery by centrifugal force. A thin melt layer (3) is formed, which is solidified by natural cooling or by an appropriate cooling means, and as shown in FIG. Formed on top layer.

尚、上記シリコン母材としては金属級シリコン、半導体
級高純度シリコンなどを用いるようにし、同母相は、坩
堝(4)の外周側に配設された電気ヒータ等による溶融
用熱源5によって、当該シリコンの溶融温度1420℃
を考慮して加熱すgことにより、これを溶融し得るよう
になっており、当紡熱源(5)としては、図示例のよう
に電熱線であるとか、高周波加熱装置によることができ
、もちろん適時当該加熱を停止したり、加熱条件を制御
可能にしておくことが望ましい。
The silicon base material used is metal-grade silicon, semiconductor-grade high-purity silicon, etc., and the base phase is melted by a heat source 5 for melting, such as an electric heater, provided on the outer circumference of the crucible (4). Melting temperature of the silicon: 1420°C
It is possible to melt this by heating it in consideration of It is desirable to be able to stop the heating at an appropriate time or to control the heating conditions.

このようにして、最上層の上面に所望拡径のシリコンシ
ートが形成された後、同シートを同層より剥肉[するが
、この場合、同シリコンシートと最」二層との界面にお
ける溶着性は弱いので、同シートを手動で容易に剥離で
きる。
In this way, after a silicone sheet with a desired enlarged diameter is formed on the upper surface of the uppermost layer, the sheet is peeled from the uppermost layer, but in this case, welding occurs at the interface between the same silicone sheet and the second uppermost layer. Since the adhesiveness is weak, the sheet can be easily peeled off manually.

尚、上記実施例では、離型剤層(A)を4層に構成した
場合を例にとり説明したが、この発明にあっては、必ず
しもこれに限定されず、2層以上であれはよい。しかし
、この際離型剤のシリコンノートへの混入を防止すると
いう点を考慮すれは、高11型剤層の最上層は、硬度の
より高い離型剤層が得られる前記スパッタリングにより
形成したものであることが好ましい。
In the above embodiments, the case where the mold release agent layer (A) is composed of four layers is explained as an example, but the present invention is not necessarily limited to this, and two or more layers may be used. However, in order to prevent the release agent from being mixed into the silicone notebook, the uppermost layer of the high 11 type agent layer should be formed by the sputtering method, which yields a release agent layer with higher hardness. It is preferable that

1−記のとおり、この発明によれは、従来のインコント
スライス法やリボン法の難点が解消されるのはもちろん
、親元キャスティング法のように鋳型の各面による制限
を受けることなくシリコンウェハを形成することができ
、しかも製造器の上面には離型剤層が二層以上形成され
ている゛ので剥部作業が簡易となってシリコンシートが
破損することもない。
As described in 1-1, this invention not only solves the difficulties of the conventional inconto slicing method and ribbon method, but also allows silicon wafers to be formed without being limited by the various sides of the mold as in the parent casting method. Moreover, since two or more mold release agent layers are formed on the upper surface of the manufacturing device, the peeling operation is easy and the silicone sheet is not damaged.

また、この発明によれは、シリコンシートと製造器との
間に複数層の離型剤層が介装されているので、シリコン
母料融液を滴下して、融液薄層を形成する際、離型剤が
飛散等して製造器の成分がシリコンシート内に混入する
虞れも皆無となり、その結果、太陽電池ウニ・・等の特
性・品質を大幅に保持向上することができると共に、同
離型剤層は7リコンシー1・と同系の材料で形成し、し
かも最上層をスパッタリングで形成した層で4i1成し
たので、シリコン母材m!li液の注湯による衝撃によ
り損傷し、離型剤が融液中に混入するといったこともな
く、その結果、上記ウェハの特性が低下するようなこと
も生じない。
In addition, according to the present invention, since a plurality of mold release agent layers are interposed between the silicon sheet and the manufacturing device, when dropping the silicon matrix melt to form a thin layer of the melt, There is no risk of the mold release agent scattering and other components from the manufacturing equipment getting mixed into the silicone sheet, and as a result, the characteristics and quality of the solar cells etc. can be significantly maintained and improved. The mold release agent layer was formed from a material similar to that of 7 Recon Sea 1, and the uppermost layer was formed by sputtering to form 4i1, so the silicon base material m! There is no possibility that the wafer will be damaged by the impact caused by pouring the Li liquid, and the mold release agent will not be mixed into the melt, and as a result, the properties of the wafer will not deteriorate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は、この発明に係る製造方法における
離型剤層の形成過程を順に示す正面説明図、第5図は、
多結晶シリコンウェハ・を製造する設備例の構成を示す
正面斜視図、第6図は、同段(AHにより製造されたI
ンエノ・の生成状態を示す正面図である。 (A)・・・・・用型剤層 (A、)・・・・・第1層目 (Aの・・・・・第2層目 (A◇・・・・・第3層目 (A、3・・・・・第4層目 ′C1)・・・・・製造器 (1a) ・・・・・ 」二面 (3)・・・・・融液薄層 特許出願人 代理人 弁理士  井 藤   酸 第1図 第2図 第3図 第4閃
1 to 4 are front explanatory views sequentially showing the process of forming a mold release agent layer in the manufacturing method according to the present invention, and FIG.
FIG. 6 is a front perspective view showing the configuration of an example of equipment for manufacturing polycrystalline silicon wafers.
FIG. (A)...Mold agent layer (A,)...1st layer (A...2nd layer (A◇...3rd layer ( A, 3...Fourth layer'C1)...Manufacturer (1a)...''Second side (3)...Melt thin layer Patent applicant's agent Patent Attorney Ifuji Ashi Figure 1 Figure 2 Figure 3 Figure 4 Flash

Claims (1)

【特許請求の範囲】 所望雰囲気内にあって、回転する製造皿上におけるシリ
コン母材の融液を、当該回転による遠心力によって、拡
径方向へ流動させることにより、当該融液による所望径
の融液薄層を形成し、これを固化した後、同薄1層を製
造器より剥離する多結晶シリコンウェハの製造方法にお
いて、 上記製造器の上面には、二層以上の離型剤層が形成され
、同離型剤層の最上層はスパッタリングにより形成され
た酸化硅素被膜層であると共に、その下積層は、有機溶
剤によりンリコン系粉末を溶かして生成した離型剤の塗
布後、これを所要温度で加熱して有機溶剤を乾燥させる
ことにより残存形成されたシリコン系粉末層であり、上
記最上層上に前記融液薄層が形成されるようにしたこと
を特徴とする多結晶シリコンウェハの製造方法。
[Claims] By causing the melt of the silicon base material on a rotating production plate in a desired atmosphere to flow in the diameter-expanding direction by the centrifugal force caused by the rotation, the desired diameter is formed by the melt. In a polycrystalline silicon wafer manufacturing method in which a thin melt layer is formed, solidified, and then one thin layer is peeled off from a manufacturing device, two or more mold release agent layers are provided on the top surface of the manufacturing device. The uppermost layer of the mold release agent layer is a silicon oxide coating layer formed by sputtering, and the lower layer is a mold release agent produced by dissolving phosphorus powder with an organic solvent, and then applying this. A polycrystalline silicon wafer, characterized in that the layer is a residual silicon powder layer formed by heating at a required temperature and drying an organic solvent, and the thin melt layer is formed on the uppermost layer. manufacturing method.
JP5445583A 1983-03-30 1983-03-30 Production of polycrystal silicon wafer Granted JPS59182217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5445583A JPS59182217A (en) 1983-03-30 1983-03-30 Production of polycrystal silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5445583A JPS59182217A (en) 1983-03-30 1983-03-30 Production of polycrystal silicon wafer

Publications (2)

Publication Number Publication Date
JPS59182217A true JPS59182217A (en) 1984-10-17
JPH0314767B2 JPH0314767B2 (en) 1991-02-27

Family

ID=12971151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5445583A Granted JPS59182217A (en) 1983-03-30 1983-03-30 Production of polycrystal silicon wafer

Country Status (1)

Country Link
JP (1) JPS59182217A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4200283A1 (en) * 1991-01-08 1992-07-09 Sematech Inc Forming silicon@ wafers by spin-casting on rotating table - by forming melt of polycrystalline silicon@ granules and recrystallising using embedded seed-crystal
JPH04133118U (en) * 1991-05-31 1992-12-10 ヤンマー農機株式会社 Vertical transport device for seedlings on a seedling stand
CN1073005C (en) * 1996-12-19 2001-10-17 艾利森电话股份有限公司 Method for making elastic bumps

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4200283A1 (en) * 1991-01-08 1992-07-09 Sematech Inc Forming silicon@ wafers by spin-casting on rotating table - by forming melt of polycrystalline silicon@ granules and recrystallising using embedded seed-crystal
DE4200283C2 (en) * 1991-01-08 1998-01-29 Sematech Inc Method and device for centrifugal casting of silicon wafers with regrowth of silicon
JPH04133118U (en) * 1991-05-31 1992-12-10 ヤンマー農機株式会社 Vertical transport device for seedlings on a seedling stand
CN1073005C (en) * 1996-12-19 2001-10-17 艾利森电话股份有限公司 Method for making elastic bumps

Also Published As

Publication number Publication date
JPH0314767B2 (en) 1991-02-27

Similar Documents

Publication Publication Date Title
US4637855A (en) Process for producing crystalline silicon spheres
US5431127A (en) Process for producing semiconductor spheres
JP2001516324A (en) Columnar crystalline granular polycrystalline solar cell substrate and improved manufacturing method
JPWO2013031923A1 (en) Manufacturing method of semiconductor ingot
WO2013064626A1 (en) Crucible and method for the production of a (near) monocrystalline semiconductor ingot
WO2009104049A1 (en) Silicon substrate, method and equipment for making the silicon substrate
JPS59182217A (en) Production of polycrystal silicon wafer
JPH09175809A (en) Casting method for silicon
JPS59182218A (en) Production of polycrystal silicon wafer
JP4884150B2 (en) Manufacturing method of mold for silicon casting
JPH0142339Y2 (en)
JPS59174514A (en) Manufacture of polycrystalline silicon wafer
KR20130019992A (en) Manufacturing method of high quality multicrystalline silicon ingot using monocrystalline silicon seed
JPH038578B2 (en)
JP4025611B2 (en) Silicon casting mold
JP2006327912A (en) Casting mold for forming silicon ingot and method for manufacturing silicon ingot
JP4051181B2 (en) Silicon casting mold and method for forming solar cell using the same
JP2000159593A (en) Production of silica glass crucible
JPS58162035A (en) Preparation of polycrystalline silicon wafer
JP2005104743A (en) Silicon casting mold
JPS59182216A (en) Dish for producing polycrystal silicon wafer
JPH01110776A (en) Manufacture of semiconductor polycrystalline thin film
JPS59174513A (en) Manufacture of polycrystalline silicon wafer
CN101565852B (en) Crystal continuous producing device and method for continuously producing polysilicon by using same
JPS58162029A (en) Preparation of polycrystalline silicon wafer