JPS59180943A - Electrostatic deflector for charged particle beam - Google Patents
Electrostatic deflector for charged particle beamInfo
- Publication number
- JPS59180943A JPS59180943A JP5239683A JP5239683A JPS59180943A JP S59180943 A JPS59180943 A JP S59180943A JP 5239683 A JP5239683 A JP 5239683A JP 5239683 A JP5239683 A JP 5239683A JP S59180943 A JPS59180943 A JP S59180943A
- Authority
- JP
- Japan
- Prior art keywords
- electrodes
- insulating case
- charged particle
- circular
- particle beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 11
- 239000012212 insulator Substances 0.000 claims description 4
- 201000009310 astigmatism Diseases 0.000 abstract description 6
- 238000010884 ion-beam technique Methods 0.000 abstract description 5
- 239000011810 insulating material Substances 0.000 abstract 1
- 208000008918 voyeurism Diseases 0.000 abstract 1
- 238000000034 method Methods 0.000 description 4
- 230000004075 alteration Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/147—Arrangements for directing or deflecting the discharge along a desired path
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electron Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、荷電粒子線に用いられる静電型偏向器に関し
、特に偏向ひずみや偏向非点の収差を最小にするのに好
適な偏向電極構成を具備する荷電粒子線用静電偏向器に
関する。Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to an electrostatic deflector used for charged particle beams, and in particular to a deflection electrode configuration suitable for minimizing deflection distortion and deflection astigmatism aberrations. The present invention relates to an electrostatic deflector for charged particle beams comprising:
静電型偏向器は、磁界型に比べて収差が大きいために、
一般に磁界型が用いられているが、もしくは小角度偏向
のみに静電型が用いられていた。Electrostatic deflectors have larger aberrations than magnetic field deflectors, so
Generally, a magnetic field type is used, or an electrostatic type is used only for small angle deflection.
一方、近年高輝度イオン源の開発に伴ない、マイクロイ
オン線の半導体への応用が考えられるに至つて、大角度
偏向が必要となってきた。On the other hand, with the recent development of high-intensity ion sources, the application of micro-ion beams to semiconductors has come to be considered, and large-angle deflection has become necessary.
従来は第1図(上図は平面図、下図はその断面図)に示
すように、板状からなり、取付部1の突起をもつ各電極
2が絶縁ケース3に対して、単独にネジ4等で取付けら
れていた。すなわち、電極の一部が、絶縁ケースに対し
て一部接触し、取付いている構造であった。このため、
(1)荷電粒子線に対する電極板の幾何学な平行度、対
称性が充分でない、
(2)電極板の円周方向の等内配置精度(放射状の位置
梢度)が悪い。Conventionally, as shown in Fig. 1 (the upper figure is a plan view and the lower figure is a cross-sectional view), each electrode 2, which is plate-shaped and has a protrusion on the mounting part 1, is attached to an insulating case 3 by a screw 4. It was installed with etc. In other words, the structure was such that a part of the electrode was attached to the insulating case while being in contact with the insulating case. For this reason, (1) the geometrical parallelism and symmetry of the electrode plate with respect to the charged particle beam are insufficient; and (2) the accuracy of the circumferential positioning of the electrode plate (radial position accuracy) is poor.
(3)電極の取付けに個人差が人シ、品質の一定した良
いものができにくい、
などの欠点があった。(3) There were drawbacks such as individual differences in electrode attachment, making it difficult to produce products of consistent quality.
従来は小角偏向であったため、これでも何とが使用でき
たが、これをそのままに大角偏向用に用いると、偏向ひ
ずみゃ、偏向非点収差が大きくなる等の欠点があった。Conventionally, this was used for small-angle deflection, so anything could be used, but if this was used as is for large-angle deflection, it would have drawbacks such as increased deflection distortion and deflection astigmatism.
本発明の目的は、このような欠点をとシ除き、大角偏向
時にも、偏向ひずみや、偏向非点収差の小さな荷電粒子
線用静電偏向器を提供することである。An object of the present invention is to eliminate such drawbacks and provide an electrostatic deflector for charged particle beams that exhibits small deflection distortion and small deflection astigmatism even during large-angle deflection.
このため、本発明においては、精度出しのため電極の絶
縁ケースに対する取付法を変え、円形あるいは長方形の
゛電極を絶縁ケースにうめ込む構成としたものである。Therefore, in the present invention, the method of attaching the electrode to the insulating case is changed in order to improve accuracy, and a circular or rectangular electrode is embedded in the insulating case.
この意味は、機械的に精度良く加工された電極を、機械
的にはめ込みということであり、工作機械の加工精度と
、はめ合いのすきまだけに依存し、高梢厖の工作機械を
用いて電極および絶縁ケースを作ることにより、いくら
でも精度を上げうるものである。This means that electrodes that have been mechanically machined with high precision are mechanically fitted, and it depends only on the processing precision of the machine tool and the fitting clearance. By making an insulating case, the accuracy can be increased as much as possible.
以下、本発明の実施例を図面を参照して詳細に説明する
。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
本発明の静電偏向器は、第2図(上図は平面図、下図は
その断面図)に示すように、8個の電極12を絶縁ケー
ス11の絶縁物を介して軸対称に配置してなる構成にあ
って、絶縁ケース11に対する8個の電極12の固定部
および電極そのものの形状金円形とし、イオン線が通る
ケース中心の丸穴13を、上記8個の電極の円の包絡線
よシもわずかに大きい径とした。絶縁ケースと各電極の
結合部は、加工し易く、加工精度乞七げ易い円形とし、
精度よく加工された絶縁ケースの電極挿入孔にすきまな
くうめ込む構成(打込み)とした。As shown in FIG. 2 (the upper figure is a plan view and the lower figure is a cross-sectional view), the electrostatic deflector of the present invention has eight electrodes 12 arranged axially symmetrically through an insulator of an insulating case 11. The fixed part of the eight electrodes 12 to the insulating case 11 and the electrodes themselves have a golden circular shape, and the circular hole 13 in the center of the case through which the ion beam passes is defined by the envelope of the circle of the eight electrodes. The diameter was also made slightly larger. The connection part between the insulating case and each electrode is circular, which is easy to process and easy to maintain accuracy.
The structure is such that the electrode is inserted into the precisely machined electrode insertion hole of the insulating case (drive-in) without any gaps.
従って、その絶縁ケースの中心丸穴は、電極棒のところ
で、8個の切欠きが生ずるようになる。その切欠部から
露出する電極部が、8個の偏向電極として作用するわけ
である。Therefore, eight notches are formed in the center round hole of the insulating case at the electrode rod. The electrode portions exposed from the notch function as eight deflection electrodes.
なお、電・さ数は上記8個に限定されるものではなく、
一般には静゛4江偏向に必要な4N(N22)個につい
て適用し得るものである。In addition, the number of electricity/sample is not limited to the above eight,
Generally, it can be applied to 4N (N22) pieces required for static four-way deflection.
本実施例における、絶縁ケースと電極の固定法は、打込
みであるが、場合によっては、接層剤の併用も可能であ
る。In this embodiment, the method of fixing the insulating case and the electrode is by implantation, but depending on the case, it is also possible to use an adhesive in combination.
偏向精度が高く、絶縁ケースの絶縁物が荷電粒子線側か
らみえるのが不適当な場合には、第3図(上図は平面図
、下図は、その断面図)に示すように、中心寄シに、電
極21の一部に絶縁ケース24をかくすような突起22
をつけたことで対応できる。この場合の角度法めとして
は、電極21に軸方向と直角方向に打たれたピン23に
より決めることができる。また、これらのビン23を用
いずに、第4図(上図は平面図、下図はその断面図)に
示すような長方形形状のうめ込み部をもつ電極31であ
っても、もちろん適用可能である。If the deflection accuracy is high and it is inappropriate for the insulator of the insulating case to be visible from the charged particle beam side, it is necessary to move it closer to the center as shown in Figure 3 (the upper figure is a plan view and the lower figure is a cross-sectional view). In addition, a protrusion 22 that hides the insulating case 24 is provided on a part of the electrode 21.
This can be done by adding . The angle measurement in this case can be determined by a pin 23 driven into the electrode 21 in a direction perpendicular to the axial direction. Furthermore, it is of course possible to use an electrode 31 having a rectangular embedded part as shown in FIG. 4 (the upper figure is a plan view and the lower figure is a cross-sectional view) without using these bottles 23. be.
図中、32は絶縁ケースを示す。In the figure, 32 indicates an insulating case.
本発明を適用することにより、次の利点が得られた。 By applying the present invention, the following advantages were obtained.
絶縁ケースと各電極の結合部?、もともと加工しやすく
、加工精度を上げ易い円形とし、鞘肛良く加工された絶
縁ケースの電極挿入孔にすきまなくうめ込むようにした
ため(打込み)、その絶縁ケースの穴の精度で電極の配
置が決まるようになり、この静電偏向器は次の長所ケも
つようになった。The connection part between the insulation case and each electrode? The shape is originally circular, which is easy to process and improves machining accuracy, and the sheath is inserted into the well-processed electrode insertion hole of the insulating case without any gaps (driving), so the electrode placement can be done with the precision of the hole in the insulating case. This electrostatic deflector now has the following advantages.
(1) 電極の円周方向の分割精度が上った。(1) The accuracy of dividing the electrode in the circumferential direction has been improved.
(2)対向電極の軸方向(イオン線通過方向)の平行度
、対称度が向上した。(2) The parallelism and symmetry of the counter electrode in the axial direction (ion beam passing direction) were improved.
(3)電極を絶縁ケースに取付ける時の調整も不要とな
り、数多く作る場合の品質のばらつきが減った。また作
業時間も短縮できた。(3) There is no need to adjust the electrodes when attaching them to the insulating case, reducing variations in quality when making a large number of electrodes. It also reduced work time.
これらの結果、従来の偏向器の偏向ひずみや非点収差に
対して、約10%にこれらヲ減らすことができ、極めて
高性能な偏向器が実現できた。この偏向器を例えば、イ
オン線等の荷電粒子線によυ試料上に所望の微細パター
ンを形成する描画装置に適用した場合に、例えば3 X
3 crA偏向用イオン光学系にあって、0.1μm
線幅のパターン形成が可能となった。As a result, the deflection distortion and astigmatism of conventional deflectors can be reduced to about 10%, making it possible to realize an extremely high-performance deflector. For example, when this deflector is applied to a drawing device that forms a desired fine pattern on a υ sample using a charged particle beam such as an ion beam,
3 In the ion optical system for crA deflection, 0.1 μm
It is now possible to form patterns with different line widths.
本発明は、電極数ケ変えることなどにより、スティグマ
、アライナ等に適用できることはあきらかである。It is obvious that the present invention can be applied to stigmas, aligners, etc. by changing the number of electrodes.
第1図は、従来の偏向器をあられす平面図及び正面図(
断面図)である。第2図は、本発明の偏向器の一実施例
を示す平面図及び正面図(断面図)である。第3図は、
本発明の他の実施例ケ示す平面図及び正面図(断面図)
である。第4図は、本発明のさらに他の実施例を示す平
面図及び正面図(断面図)である。Figure 1 shows a plan view and a front view of a conventional deflector (
sectional view). FIG. 2 is a plan view and a front view (sectional view) showing an embodiment of the deflector of the present invention. Figure 3 shows
A plan view and a front view (sectional view) showing other embodiments of the present invention
It is. FIG. 4 is a plan view and a front view (sectional view) showing still another embodiment of the present invention.
Claims (1)
置してなる静電偏向器において、前記絶縁物に電極形状
の一部と同一の形状の切込みを設け、その部分に電極を
挿入したことを特徴とする荷電粒子線用静電偏向器。1. In an electrostatic deflector in which electrodes of 41 mm or more are arranged axially symmetrically with an insulator in between, a notch having the same shape as a part of the electrode shape is provided in the insulator, and the electrode is placed in that part. An electrostatic deflector for charged particle beams, characterized in that a charged particle beam is inserted therein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5239683A JPS59180943A (en) | 1983-03-30 | 1983-03-30 | Electrostatic deflector for charged particle beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5239683A JPS59180943A (en) | 1983-03-30 | 1983-03-30 | Electrostatic deflector for charged particle beam |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59180943A true JPS59180943A (en) | 1984-10-15 |
Family
ID=12913640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5239683A Pending JPS59180943A (en) | 1983-03-30 | 1983-03-30 | Electrostatic deflector for charged particle beam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59180943A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1688964A2 (en) * | 2005-02-04 | 2006-08-09 | Leica Microsystems Lithography GmbH | Electrostatic deflection system for corpuscular radiation |
US7473905B2 (en) * | 2005-10-04 | 2009-01-06 | Jeol Ltd. | Electrostatic deflector |
-
1983
- 1983-03-30 JP JP5239683A patent/JPS59180943A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1688964A2 (en) * | 2005-02-04 | 2006-08-09 | Leica Microsystems Lithography GmbH | Electrostatic deflection system for corpuscular radiation |
EP1688964A3 (en) * | 2005-02-04 | 2008-08-13 | Leica Microsystems Lithography GmbH | Electrostatic deflection system for corpuscular radiation |
US7491946B2 (en) | 2005-02-04 | 2009-02-17 | Leica Microsystems Lithography Gmbh | Electrostatic deflection system for corpuscular radiation |
US7473905B2 (en) * | 2005-10-04 | 2009-01-06 | Jeol Ltd. | Electrostatic deflector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6125522A (en) | Manufacturing method for electrostatic deflector | |
JP2878112B2 (en) | Compact high current wide beam ion implanter | |
US3326176A (en) | Work-registration device including ionic beam probe | |
DE3852097T2 (en) | Telecentric deflection on secondary fields using an immersion lens with a variable axis. | |
JPH01501187A (en) | Ion beam high-speed parallel scanning device and method | |
JP2009516335A (en) | Technique for providing a segmented electric field lens for an ion implanter | |
JP3402998B2 (en) | Manufacturing method of electrostatic deflection electrode for charged beam writing apparatus | |
JPS59180943A (en) | Electrostatic deflector for charged particle beam | |
DE255981T1 (en) | OPTICAL SYSTEM FOR LOADED PARTICLES WITH DEVICE FOR CORRECTING THE ABERRATION. | |
GB850527A (en) | Improvements in and relating to magnetic means for deflecting electron beams | |
JPH05129193A (en) | Charged beam exposure device | |
US3546450A (en) | Aperture devices for mass spectrometers | |
JPH08171881A (en) | Electron beam deflector | |
US20220199388A1 (en) | Manufacturing method for an ion guide | |
JPH04174510A (en) | Manufacture of electrostatic deflector for electron beam exposure device | |
JPS60136129A (en) | Alignment mechanism of ion source-electrode axis | |
JPS6336923Y2 (en) | ||
SU1631591A1 (en) | Double-track magnetic heads assembly | |
JPS5820118B2 (en) | ion cassock house | |
JP2672502B2 (en) | Method for manufacturing electrode for color cathode ray tube electron gun | |
JP2644790B2 (en) | Electron gun | |
JPS60153126A (en) | Formation of adjacent extra minute wires | |
JPH02192117A (en) | Electron beam exposing device | |
JPH0493800A (en) | Generating device of micro ion beam | |
JPH0582695B2 (en) |