JPH02123651A - Manufacture of semiconductor device manufacture device - Google Patents

Manufacture of semiconductor device manufacture device

Info

Publication number
JPH02123651A
JPH02123651A JP63277654A JP27765488A JPH02123651A JP H02123651 A JPH02123651 A JP H02123651A JP 63277654 A JP63277654 A JP 63277654A JP 27765488 A JP27765488 A JP 27765488A JP H02123651 A JPH02123651 A JP H02123651A
Authority
JP
Japan
Prior art keywords
cuts
electron beam
electrode
electrodes
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63277654A
Other languages
Japanese (ja)
Inventor
Akio Yamada
章夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63277654A priority Critical patent/JPH02123651A/en
Publication of JPH02123651A publication Critical patent/JPH02123651A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the drawing of high-precision charged particle beam pattern by coupling the second part comprising an insulation material to the hollow and symmetrical first part comprising a conductive semiconductor, and cutting the first part for forming an electrostatic type deflection electrode. CONSTITUTION:The first part 10 comprises a conductive SiC and is finished as a cylindrical part of high roundness. The second part 11 is made of an insulation material such as an alumina ceramic and wiring 12 is formed on the surface thereof by the screen printing method and the like. A leading form part 11a is formed integrally with the cylindrical part 11b of the second part 11 coupled to the lower end of the first part 10 for taking out the wiring 12. With the first and second parts 10 and 11 coupled to each other, a cutout part 13 is formed to divide the first part 10 into eight pieces. The cutout part 13 completely penetrates the first part 10 in an axial direction and reaches the second part 11, thereby separating electrically electrodes 3 from each other. According to the aforesaid construction, the precise operability of an electron beam can be improved.

Description

【発明の詳細な説明】 〔概要〕 半導体装置の製造工程において荷電粒子ビーム露光、イ
オン打込みなどに他用される静電型向電極の製造方法に
関し、 高精度の荷電粒子ビームパターンを描くことができろ静
電偏向型電極を製造する方法を提供することを目1内と
し、 導電性半導体又は金属からなり、中空対称形状を有する
一体物の第1部品を用意し、第1部品の外面または内面
に絶縁物からなる第2部品を嵌め込み、前記第1部品の
一端から他端に及びかつ第2部品に達する切り込みを複
数個形成して、該り刀り込みで第1部品を分断して所定
極数の電極とするように構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing an electrostatic facing electrode used for charged particle beam exposure, ion implantation, etc. in the manufacturing process of semiconductor devices, it is possible to draw a highly accurate charged particle beam pattern. It is an object of the present invention to provide a method for manufacturing an electrostatic deflection type electrode, which includes: preparing a first integral part made of a conductive semiconductor or metal and having a hollow symmetrical shape; Fitting a second part made of an insulating material into the inner surface, forming a plurality of cuts extending from one end of the first part to the other end and reaching the second part, and dividing the first part by cutting. It is configured to have a predetermined number of electrodes.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置の製造工程において荷電粒子ビー
ム露光、イオン打込みなどに使用される静電偏向型電極
の製造方法に関するものであるや 以下、半導体装置の電子ビーム露光工程において、電子
ビームを細く絞ってウェハーまたはマスク上で走査して
パターンを描かせる電子ビーム露光に用いられる露光装
置の静電偏向型電極について主として説明する。
The present invention relates to a method for manufacturing an electrostatic deflection type electrode used for charged particle beam exposure, ion implantation, etc. in the manufacturing process of semiconductor devices. The electrostatic deflection type electrode of an exposure apparatus used for electron beam exposure that scans a wafer or mask to draw a pattern will be mainly described.

電子ビームを走査する方法としては、磁場を利用する方
法と電場を利用する方法が考えられるが、本発明は後者
の静電鋼内型走査方法に属する。
As a method for scanning an electron beam, a method using a magnetic field and a method using an electric field can be considered, and the present invention belongs to the latter method, which is an electrostatic steel internal mold scanning method.

〔従来の技術〕[Conventional technology]

第2図は電子ビーム露光装置の基本要素を示す。図中、
1はウェハー、2は集束コイル、3は偏向電極、4は電
子ビームである。偏向型電極4は8極、16極等の極数
の電極であり、これに加えられる電圧を制御して偏向の
ための静電場を作り出す。偏向していない電子ビームを
4aで示し、偏向された電子ビームを4bで示す。この
電子ビーム4をウェハー1上に正確に振ることにより電
子ビーム露光が行なわれる。ここで、精度良く電子ビー
ムを走査するためには偏向電極4で作り出される電場の
制御が重要である。これに影響する多々の因子のなかに
各電極の位置があり、電極配置が正確でないと、電子ビ
ーム走査の精度が落ち、所望のパターンが描けなくなる
という問題がある。電極配置は、8極電極の例について
第3図に示すように、ビーム中心軸5に対して各電極3
が対称的に配置される。
FIG. 2 shows the basic elements of an electron beam exposure apparatus. In the figure,
1 is a wafer, 2 is a focusing coil, 3 is a deflection electrode, and 4 is an electron beam. The deflection type electrode 4 is an electrode having a number of poles, such as 8 or 16 poles, and creates an electrostatic field for deflection by controlling the voltage applied thereto. The undeflected electron beam is designated 4a and the deflected electron beam is designated 4b. Electron beam exposure is performed by accurately swinging this electron beam 4 onto the wafer 1. Here, in order to accurately scan the electron beam, it is important to control the electric field created by the deflection electrode 4. Among the many factors that affect this is the position of each electrode, and if the electrode placement is not accurate, the accuracy of electron beam scanning will drop and there will be a problem that the desired pattern will not be drawn. The electrode arrangement is as shown in FIG.
are arranged symmetrically.

従来の静1Itl貝向型電極製造方法では、各電極3を
別個に製造し、これらを寄せ集め、ボルト等の適当な固
定方法で支持部に固定する方法が行なわれていた。
In the conventional method for manufacturing static single-sided electrodes, each electrode 3 was manufactured separately, assembled together, and fixed to a support using a suitable fixing method such as bolts.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の電子ビーム露光方法で所望のパターンを正確に描
くためには、電極配置に関しては、各電極3がビーム中
心軸5に対して正確に対称的に配置されていることが重
要である。各電極3へ印加される偏向電圧は各電圧3が
対称的に配置されていることを前提として為される。と
ころが、各電極のいずれかが対称位置からずれていると
、電圧印加によって電子ビームが所定の位置に偏向され
ないことになる。
In order to accurately draw a desired pattern using the above-mentioned electron beam exposure method, it is important for the electrode arrangement that each electrode 3 is arranged accurately and symmetrically with respect to the beam center axis 5. The deflection voltages applied to each electrode 3 are made on the premise that each voltage 3 is arranged symmetrically. However, if any of the electrodes deviates from the symmetrical position, the electron beam will not be deflected to a predetermined position by voltage application.

従来法で製造された静電偏向型電極を組み込んだ電子ビ
ーム露光装置でパターニングを行ない、所望の高精度パ
ターンが描かれないことがあった。具体的には、同じ千
様/性能の電子ビーム露光装置であれば、同じ精度のパ
ターンが描かれる筈であるが、個々の装置により上下左
右方向の何れかでパターン精度が崩れるという個々の装
置特有のくせが認められた。従来はオペレータが個々の
装置のくせを熟知して経験と熟練によりビーム操作を微
妙に修正しながらパターニングを行なってきた。本発明
者等は上述のように電子ビームの操作性が不正確になる
原因を検討したところ、各電極の中には電子ビーム中心
軸からの距離が数十ミクロン−100ミクロン程度基準
値から多くあるいは少なくなっているものがあり、これ
が原因であることを究明しな。この原因は、各電極を別
々に作り、寄せ集めているために、ボルト締め等の操作
の過程で、電極の非対称的配置がもたらされることにあ
ることが分かっな。以上、電子ビーム露光について説明
したが、従来の静電偏向型電極製造法により製造された
イオン打ち込み装置などでも同様にイオン打ち込みパタ
ーンの精度が低下するおそれがある。したがって、本発
明は、高精度の荷電粒子ビームパターンを描くことがで
きる静電偏向型電極を製造する方法を提供することを目
的とする。
When patterning is performed using an electron beam exposure device incorporating an electrostatic deflection type electrode manufactured by a conventional method, the desired high-precision pattern may not be drawn. Specifically, if the electron beam exposure equipment has the same quality/performance, it should draw a pattern with the same accuracy, but depending on the individual equipment, the pattern accuracy may deteriorate in either the vertical or horizontal direction. A unique habit was recognized. Conventionally, operators have been familiar with the peculiarities of individual devices and have performed patterning while subtly modifying beam operations based on their experience and skill. The inventors investigated the cause of the inaccurate operation of the electron beam as described above, and found that some electrodes have a distance from the center axis of the electron beam of several tens of microns to 100 microns from the standard value. Or maybe there is something that is decreasing, and you need to find out what is the cause of this. It has been found that the cause of this is that each electrode is made separately and grouped together, resulting in an asymmetrical arrangement of the electrodes during operations such as bolt tightening. Although electron beam exposure has been described above, there is a possibility that the accuracy of the ion implantation pattern may similarly decrease in an ion implantation device manufactured by the conventional electrostatic deflection type electrode manufacturing method. Therefore, it is an object of the present invention to provide a method for manufacturing an electrostatic deflection type electrode that can draw a highly accurate charged particle beam pattern.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、荷電粒子ビームを偏向するとともに、試料面
で集束し、試料面の所望の位置に荷電粒子ビームを照射
する荷電粒子ビーム処理装置に用いられ、中心軸に対し
てn極配置された@極よつ構成される静電偏向型電極を
製造する方法に関するものであって、その第1は、導電
性半導体又は金属からなり、中空対称形状を有する一体
物の第1部品を用意し、前記第1部品の外面または内面
に絶縁物からなる第2部品を嵌め込み、前記第1部品の
一端から他端に及びかつ第2部品に達する切り込みを複
数個形成して、該切り込みで第1部品を分断して所定極
数の電極とすることを特徴とするものであり、その第2
は、絶縁物からなり、中空対称形状を有する一体物の第
1部品を用意し、前記第1部品の外面または内面に絶縁
物からなる第2部品を嵌め込み、前記第1部品の一端か
ら他端に及びかつ第2部品に達する切り込みを複数個形
成して、該切り込みで第1部品を分断して所定極数の電
極とするとともに、切り込み形成前または後に第1部品
の表面に導電性薄膜を被覆することを特徴とする。
The present invention is used in a charged particle beam processing device that deflects a charged particle beam, focuses it on a sample surface, and irradiates the charged particle beam to a desired position on the sample surface, and has an n-pole arrangement with respect to the central axis. A method for manufacturing an electrostatic deflection type electrode configured as a pole, the first step being to prepare a first integral part made of a conductive semiconductor or metal and having a hollow symmetrical shape; A second component made of an insulator is fitted onto the outer or inner surface of the first component, and a plurality of cuts extending from one end of the first component to the other end and reaching the second component are formed, and the first component is It is characterized by dividing the electrode into a predetermined number of electrodes, and the second
A first component made of an insulating material and having a hollow symmetrical shape is prepared, a second component made of an insulating material is fitted onto the outer surface or the inner surface of the first component, and the second component is connected from one end of the first component to the other end. A plurality of cuts are formed extending over the area and reaching the second part, the first part is divided by the cuts to form electrodes with a predetermined number of poles, and a conductive thin film is applied to the surface of the first part before or after forming the cuts. It is characterized by being coated.

(牛用) 第1発明および第2発明の共通の特徴は、中空対称形状
を有する一体物の第1部品を用意し、第1部品の外面ま
たは内面に絶縁物からなる第2部品を嵌め込み、前記第
1部品の一端から他端に及びかつ第2部品に達する切り
込みを複数個形成l−て、該切り込みで第1部品を分断
して所定極数の電極とすることである。ここで第1部品
を中空対称形状を有する一体物としたのは次の理由によ
る。まず、電子ビームを中心とする対称配置の電極を作
るためには中空形状とすることが必要である0次に、高
精度の対称性を有する電極を作るためには中空対称形状
の一体物が必要である。このような一体物は旋盤加工な
どにより容易に数十ミクロンオーダーの真円度の部品を
得ることができる。
(For cattle) The common feature of the first invention and the second invention is that a first part of an integral body having a hollow symmetrical shape is prepared, a second part made of an insulating material is fitted on the outer surface or inner surface of the first part, A plurality of cuts extending from one end of the first part to the other end and reaching the second part are formed, and the first part is divided by the cuts to form a predetermined number of electrodes. The reason why the first part is made into a single piece having a hollow symmetrical shape is as follows. Firstly, in order to make electrodes with a symmetrical arrangement around the electron beam, it is necessary to have a hollow shape.Secondly, in order to make electrodes with high precision symmetry, a hollow symmetrical integral body is required. is necessary. Such an integral part can be easily manufactured into a part with a roundness on the order of several tens of microns by lathe processing or the like.

第1発明および第2発明に共通な他の特徴は第1部品の
一端から他端に及びかつ第2部品に達する切り込みを複
数個形成して、該切り込みで第1部品を分断して所定極
数の電極とすることであある。このように切り込みを形
成すると優れた真円度をもつ第1部品の一部をそのまま
電極とすることができ、部品を寄せ薬める必要がなくな
る。
Another feature common to the first invention and the second invention is that a plurality of cuts extending from one end of the first part to the other end and reaching the second part are formed, and the first part is divided by the cuts to form predetermined electrodes. The number of electrodes should be several. By forming the cut in this way, a part of the first component having excellent roundness can be used as an electrode as it is, and there is no need to stack the components together.

また切り込みを第2部品にまで延長させるのは各電極を
電気的に分離する必要があるからである。
Further, the reason why the cut is extended to the second part is that each electrode needs to be electrically isolated.

第1発明は、第1部品に導電性材料を使用し、第2部品
に絶縁物を使用するものであり、第2発明は第1部品に
導電性被膜が塗布された絶縁物を使用するのである。
The first invention uses a conductive material for the first part and the insulating material for the second part, and the second invention uses an insulating material coated with a conductive film for the first part. be.

金属部品を使用する場合は、周囲に磁場が存在するとき
は非磁性金属を使用しなければならない。また、ビーム
の近くに変動磁場を作る部品がある場合電磁誘導により
金属にうず電流が流れ、これがビームの偏向をひきおこ
す可能性があるため、金属の使用はできない。好ましく
は第1部品としては導電性SiCなとの半導体を使用す
る。
If metal parts are used, non-magnetic metals must be used when a surrounding magnetic field is present. Also, if there are parts that create a fluctuating magnetic field near the beam, electromagnetic induction can cause eddy currents to flow in the metal, which may cause the beam to deflect, so metal cannot be used. Preferably, a semiconductor such as conductive SiC is used as the first component.

第1部品の形状は中空対称形であれば、円筒、多角形な
ど任意の形状であってよい。第2部品の形状は通常第1
部品と同じ形状であるが、切り込みが入れられた後の第
1部品を固定できる形状であれば同じ形状である必要は
ない。
The shape of the first part may be any shape, such as a cylinder or a polygon, as long as it is hollow and symmetrical. The shape of the second part is usually the same as that of the first part.
Although it has the same shape as the part, it does not need to be the same shape as long as it can fix the first part after the cut is made.

〔実施例〕 以下、実施例により本発明の詳細な説明する。〔Example〕 Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図および第4図は第1発明の実施例を示す図面であ
る。
1 and 4 are drawings showing an embodiment of the first invention.

第1部品10は導電性SiCなどからなり、SICを焼
成後旋盤加工などにより高い真円度の円筒形部品として
仕上げたものである。導電性SiCは電気伝導度がかな
り高く、完全非磁性といえるから、金属よりも電極材料
に適する。その寸法は電子ビーム装置の定格などにより
定められるが、例えば外径が20mmである。第2部品
はアルミナ系のセラミックなどの絶縁物質からなる。ア
ルミナ系セラミックは高温焼成されておりまたガス系不
純物が少ないために、電子ビーム発生のための高真空度
にさらされても、汚染物質を放出しないために、第2部
品用絶縁物質としてとして好ましい、第2部品の表面に
はスクリーン印刷法などにより配線12が所定電極の個
数だけ形成されている。第2部品は、第1部品10の下
端に嵌め込まれる円筒形部分11bに、配線12の引き
だしのためのリング状部分11aを一体にしたものであ
る0円筒形部分11bの真円度は電子ビームの偏向特性
に影響を及ぼさないが、第1部品10を嵌め込むために
これと同等の真円度が必要になる。第1図に示されるよ
うに第1部品1゜と第2部品11を一体にした状態で、
第4図に示すように、第1部品10を所定個数くこの実
施例では8個)の部品に分断する切り込み13を形成す
る、そうすると、第1部品の真円度がそのまま電極の完
全対称性に転換されることとなる。この切り込み13は
第1部品を軸方向で完全に貫通しており、さらに第2部
品12まで達しているので、電極3は相互に電気的に分
離される。切り込み13を形成する場合は0−180°
方向の2個を1回の切削加工により形成し、次に、方向
を90゛ずらして、90−270’方向の2個を同様に
1回の切削加工により形成して4個の切り込みを形成す
ると、これらの切り込みの形状は対称的になる。すなわ
ち、向かい合う電極3の形状寸法は実質的に等しくなる
。続いて、45“切削方向をずらして同様の操作を行な
う。このようにすると電極30円周方向の寸法が対称的
になる。この円周方向の寸法が電子ビームの正確な操作
性に及ぼす影響は、中心軸に関する電極の対称配置より
も本質的に少ないが、上記のように切り込みを形成し円
周方向の寸法も対称的にすると、電子ビームの正確操作
性はさらに高められる。
The first part 10 is made of conductive SiC or the like, and is made of SIC which is finished as a highly circular cylindrical part by lathe processing or the like after firing. Conductive SiC has fairly high electrical conductivity and can be said to be completely non-magnetic, making it more suitable as an electrode material than metals. Its dimensions are determined by the rating of the electron beam device, and for example, the outer diameter is 20 mm. The second component is made of an insulating material such as an alumina-based ceramic. Alumina-based ceramics are fired at high temperatures and contain few gaseous impurities, so they do not emit contaminants even when exposed to high vacuum for electron beam generation, making them preferable as insulating materials for the second component. A predetermined number of wirings 12 are formed on the surface of the second component by screen printing or the like. The second part is a cylindrical part 11b that is fitted into the lower end of the first part 10, and a ring-shaped part 11a for drawing out the wiring 12.0 The roundness of the cylindrical part 11b is determined by the electron beam. Although it does not affect the deflection characteristics of the first part 10, a roundness equivalent to this is required in order to fit the first part 10. As shown in FIG. 1, when the first part 1° and the second part 11 are integrated,
As shown in FIG. 4, a cut 13 is formed to divide the first part 10 into a predetermined number of parts (eight in this embodiment), so that the roundness of the first part remains the same and the perfect symmetry of the electrode is achieved. It will be converted to This cut 13 passes completely through the first part in the axial direction and even reaches the second part 12, so that the electrodes 3 are electrically isolated from each other. 0-180° when forming notch 13
Two notches in the direction are formed by one cutting process, and then the direction is shifted by 90° and two notches in the 90-270' direction are similarly formed by one cutting process to form four notches. The shapes of these cuts then become symmetrical. That is, the shapes and dimensions of the electrodes 3 facing each other are substantially equal. Next, perform the same operation by shifting the cutting direction by 45". In this way, the circumferential dimension of the electrode 30 becomes symmetrical. The influence of this circumferential dimension on the precise operability of the electron beam. Although this is essentially less than a symmetrical arrangement of the electrodes with respect to the central axis, if the notches are formed as described above and the circumferential dimension is also symmetrical, the precision operability of the electron beam is further enhanced.

第5図、第6図および第7図は第2発明の実施例を示す
図面である。第1部品10および第2部品11ともに絶
縁物質である。第6図に示すように切り込み13を形成
した後に、第7図に示すようにtf13の表面に導電性
物質の皮[14を形成し、また電極引き出し用配線12
を形成する。
FIG. 5, FIG. 6, and FIG. 7 are drawings showing an embodiment of the second invention. Both the first part 10 and the second part 11 are made of an insulating material. After forming the cut 13 as shown in FIG. 6, a conductive skin [14] is formed on the surface of the tf 13 as shown in FIG.
form.

上記以外のところは実施例1と同様である。なお、第2
発明では電極引き出し用配線12を省略し、導電性皮膜
14に直接配線用ワイヤをボンディングしてもよい。
The parts other than the above are the same as in Example 1. In addition, the second
In the invention, the electrode lead wiring 12 may be omitted and the wiring wire may be directly bonded to the conductive film 14.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、荷電粒子ビームが被処理面の上下左右
のどの方向に振られたときも同じような精度で照射図形
、領域を描くことができるようになるので、本発明は半
導体装置の製造において高集積化/ファインパターン化
に貢献するとともに、荷電粒子ビームの操作においてオ
ペレータの熟練によるところを少なくする。
According to the present invention, the irradiation figure and area can be drawn with the same accuracy even when the charged particle beam is swung in any direction (up, down, left, right, top, bottom, right, left, etc.) of the surface to be processed. This contributes to high integration/fine patterning in manufacturing, and reduces the dependence on operator skill in operating charged particle beams.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1発明の実施例において第1部品と第2部品
を嵌め込む工程の説明図5、第2図は電子ビーム露光装
置の基本要素の説明図、 第3図は偏向電極の配置図、 第4図は第1図に続き第1部品に切り込みを形成する工
程の説明図、 第5図は第2発明の実施例において第1部品と第2部品
を嵌め込む工程の説明図、 第6図は第5図に続き第1部品に切り込みを形成する工
程の説明図、 第7図は第6図に続く導電性皮膜と配線形成工程の説明
図である。 図中、1−ウェハー、2−電束コイル、3−偏向電極、
4−電子ビーム、5−ビーム中心軸、は8極、1〇−第
1部品、11−第2部品、13−切り込みである。
Figure 1 is an explanatory diagram 5 of the process of fitting the first part and the second part in the embodiment of the first invention, Figure 2 is an explanatory diagram of the basic elements of the electron beam exposure apparatus, and Figure 3 is the arrangement of the deflection electrodes. 4 is an explanatory diagram of the step of forming a notch in the first component following FIG. 1, FIG. 5 is an explanatory diagram of the step of fitting the first component and the second component in the embodiment of the second invention, FIG. 6 is an explanatory diagram of the step of forming a notch in the first component following FIG. 5, and FIG. 7 is an explanatory diagram of the conductive film and wiring forming step following FIG. 6. In the figure, 1 - wafer, 2 - electric flux coil, 3 - deflection electrode,
4 - electron beam, 5 - beam center axis, 8 poles, 10 - first part, 11 - second part, 13 - notch.

Claims (1)

【特許請求の範囲】 1、導電性半導体又は金属からなり、中空対称形状を有
する一体物の第1部品を用意し、前記第1部品の外面ま
たは内面に絶縁物からなる第2部品を嵌め込み、前記第
1部品の一端から他端に及びかつ第2部品に達する切り
込みを複数個形成して、該切り込みで第1部品を分断し
て所定極数の電極を有した静電型偏向電極を製造するこ
とを特徴とする半導体装置製造装置の製造方法。 2、絶縁物からなり、中空対称形状を有する一体物の第
1部品を用意し、前記第1部品の外面または内面に絶縁
物からなる第2部品を嵌め込み、前記第1部品の一端か
ら他端に及びかつ第2部品に達する切り込みを複数個形
成して、該切り込みで第1部品を分断して所定極数の電
極とするとともに、切り込み形成前または後に第1部品
の表面に導電性薄膜を被覆して静電型偏向電極を製造す
ることを特徴とする半導体装置製造装置の製造方法。
[Claims] 1. A first component made of a conductive semiconductor or metal and having a hollow symmetrical shape is prepared, and a second component made of an insulating material is fitted onto the outer or inner surface of the first component, Forming a plurality of cuts extending from one end of the first part to the other end and reaching the second part, and dividing the first part with the cuts to produce an electrostatic deflection electrode having a predetermined number of electrodes. A method of manufacturing a semiconductor device manufacturing apparatus, characterized in that: 2. Prepare a first integral part made of an insulating material and having a hollow symmetrical shape, fit a second part made of an insulating material onto the outer or inner surface of the first part, and move from one end of the first part to the other end. A plurality of cuts are formed extending over the area and reaching the second part, the first part is divided by the cuts to form electrodes with a predetermined number of poles, and a conductive thin film is applied to the surface of the first part before or after forming the cuts. 1. A method of manufacturing a semiconductor device manufacturing apparatus, comprising manufacturing an electrostatic deflection electrode by coating.
JP63277654A 1988-11-02 1988-11-02 Manufacture of semiconductor device manufacture device Pending JPH02123651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63277654A JPH02123651A (en) 1988-11-02 1988-11-02 Manufacture of semiconductor device manufacture device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63277654A JPH02123651A (en) 1988-11-02 1988-11-02 Manufacture of semiconductor device manufacture device

Publications (1)

Publication Number Publication Date
JPH02123651A true JPH02123651A (en) 1990-05-11

Family

ID=17586440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63277654A Pending JPH02123651A (en) 1988-11-02 1988-11-02 Manufacture of semiconductor device manufacture device

Country Status (1)

Country Link
JP (1) JPH02123651A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929452A (en) * 1997-03-18 1999-07-27 Kabushiki Kaisha Toshiba Electrostatic deflecting electrode unit for use in charged beam lithography apparatus and method of manufacture the same
FR2817080A1 (en) * 2000-11-21 2002-05-24 Schlumberger Technologies Inc Electronic microscope charged particle directing electrostatic element manufacture method having cylindrical non conductor with conductor central hole placed having longitudinal channels forming isolated pole pieces
WO2022246897A1 (en) * 2021-05-27 2022-12-01 中科晶源微电子技术(北京)有限公司 Electrostatic field deflector and processing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929452A (en) * 1997-03-18 1999-07-27 Kabushiki Kaisha Toshiba Electrostatic deflecting electrode unit for use in charged beam lithography apparatus and method of manufacture the same
FR2817080A1 (en) * 2000-11-21 2002-05-24 Schlumberger Technologies Inc Electronic microscope charged particle directing electrostatic element manufacture method having cylindrical non conductor with conductor central hole placed having longitudinal channels forming isolated pole pieces
WO2022246897A1 (en) * 2021-05-27 2022-12-01 中科晶源微电子技术(北京)有限公司 Electrostatic field deflector and processing method therefor

Similar Documents

Publication Publication Date Title
JP4812238B2 (en) Objective lens for electron microscope system and electron microscope system
JP2001513258A (en) SEM equipped with electrostatic objective lens and electric scanning device
US20070262255A1 (en) Focussing Lens for Charged Particle Beams
JPS5871545A (en) Variable forming beam electron optical system
KR970005756B1 (en) Method for producing an electro-static lens
US4544845A (en) Electron gun with a field emission cathode and a magnetic lens
US5753922A (en) Electromagnetic deflector
CN112088418B (en) Multipole lens, aberration corrector using the multipole lens, and charged particle beam device
JP4588602B2 (en) Manufacturing method of electrostatic deflector
JPH02123651A (en) Manufacture of semiconductor device manufacture device
JPS5944744B2 (en) magnetic deflection coil
US5731586A (en) Magnetic-electrostatic compound objective lens
JP2886277B2 (en) Electron beam exposure equipment
EP0079931A4 (en) Focused ion beam microfabrication column.
JP2569011B2 (en) Scanning electron microscope
US2438971A (en) Compound electron objective lens
JPH09134665A (en) Electron beam device
US20220037113A1 (en) Multistage-Connected Multipole, Multistage Multipole Unit, and Charged Particle Beam Device
JPS6331895B2 (en)
US2554170A (en) Electronic lens for microscopes
JP3236472B2 (en) Electromagnetic field superimposition type objective lens
JPH0982255A (en) Field emission type charged particle gun
TW548664B (en) Split magnetic lens for controlling a charged particle beam
JPS5931546A (en) Multipole electrode
JPH08124821A (en) Electrostatic deflector and charged particle beam exposure device equipped therewith