JPS59177978A - Multichannel type semiconductor optical coupler - Google Patents

Multichannel type semiconductor optical coupler

Info

Publication number
JPS59177978A
JPS59177978A JP58051229A JP5122983A JPS59177978A JP S59177978 A JPS59177978 A JP S59177978A JP 58051229 A JP58051229 A JP 58051229A JP 5122983 A JP5122983 A JP 5122983A JP S59177978 A JPS59177978 A JP S59177978A
Authority
JP
Japan
Prior art keywords
light
receiving element
emitting element
element array
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58051229A
Other languages
Japanese (ja)
Inventor
Hirokazu Fujisawa
藤澤 弘和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58051229A priority Critical patent/JPS59177978A/en
Publication of JPS59177978A publication Critical patent/JPS59177978A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To obtain a semiconductor optical coupler, the uniformity of current transmission characteristics and dielectric resistance characteristics thereof is very excellent, by holding a spacer with an independent optical path of a fixed shape between a light-emitting element and a light-receiving element. CONSTITUTION:A light-emitting element array 71 is mounted to a lead frame 76 on the light-emitting element side by silver paste, and a light-receiving element array 72 is mounted similarly to a lead frame 77 on the light-receiving element side by silver paste. The lead frames are thermally treated, silver paste is polidified, and the arrays are bonded by gold wires 78. A silicon group resin as optical paths is attached to each light-receiving element section of the light-receiving element array 72, and a fin for positioning a spacer 74 is fixed along the longer side of a light-receiving element array pellet. The lead frame on the light- receiving element side is combined with the lead frame on the light-emitting element side to which the light-emitting element array 71 is mounted, a light-emitting section and a light-receiving section are opposed, and sealed with an epoxy group resin 75, and the lead 76 on the light-emitting element side and the lead 77 on the light-receiving element side are formed and completed through normal processes, such as a tie bar cutting, soder plating, etc.

Description

【発明の詳細な説明】 本発明は半導体光結合装置、特に複数の発光素子、およ
び複数の受光素子からなるマルチチャンネル型半導体光
結合装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor optical coupling device, and particularly to a multichannel semiconductor optical coupling device comprising a plurality of light emitting elements and a plurality of light receiving elements.

従来、マルチチャンネル型半導体光結合装置の閘造は第
1図に示すように各々個別のリードフレーム15、およ
び16にマウントされた複数の発光素子ベレット11、
および複数の受光素子ペレット12を一定間隔に対向さ
せ、両者の間隙に透光性のシリコン系樹脂13を充填し
、これを通常筺用されているエポキシ樹脂等のモールド
樹脂14で封止したものである。これは第1図から明ら
かなように、マルチチャンネル型光結合装置を製造する
場合、発光側、受光側の双方のペレ・シトが個別である
ために、チャンネル数が多い場合等には各々のペレット
についてそれぞれマウント作業が必要となり、組立に要
する工数は多大となる。
Conventionally, the structure of a multi-channel semiconductor optical coupling device has a plurality of light emitting element pellets 11 mounted on individual lead frames 15 and 16, respectively, as shown in FIG.
A plurality of light-receiving element pellets 12 are arranged facing each other at regular intervals, the gap between the two is filled with a translucent silicone resin 13, and this is sealed with a mold resin 14 such as epoxy resin that is usually used in the case. It is. As is clear from Figure 1, when manufacturing a multi-channel optical coupler, the light emitting side and the light receiving side are both separate, so when there are a large number of channels, each Mounting work is required for each pellet, and the number of man-hours required for assembly is large.

また、各チャンネルが独立した発光素子ペレット。In addition, each channel is an independent light emitting element pellet.

受光素子ベレットを有しているため、電流伝達特性や耐
圧特性のバラツキが大きくまた小型化する上でも制約が
大きいという欠点がある。
Since it has a light-receiving element pellet, there are drawbacks such as large variations in current transfer characteristics and breakdown voltage characteristics, and large restrictions on miniaturization.

以上のような欠点を解消するため、リードフレームの組
合せを必要とせず、組立工程の簡略化を進めた半導体光
結合装置が考えられた。第2図はその断面構造を示すも
のである。これは、同一・平面上のリードフレーム25
および26に発光素子ペレット21、および受光素子ペ
レット22をマウントし、金線をボンディングした後、
透光性のシリコン系樹脂23により発光素子ベレット、
受光素子ペレットをともに被覆してこれを光路とし、ざ
らに通常開用されているエポキシ系樹脂等のモールド樹
脂24で封止したものである。これは第1図2枚のリー
ドフレームを用いていないため、組立が比較的容易では
あるが、発光側、受光側、ともに個別のベレットを用い
ていることから、マルチチャンネル型光結合装置を製造
する場合、特にチャンネル数が多い場合等には各々のペ
レットについてそれぞれマウント作業が必要となること
および電流伝達特性や耐圧特性のバラツキが大きいこと
等に加えて、小型化する上でも制約が小さくないという
欠点は解消されない。
In order to eliminate the above-mentioned drawbacks, a semiconductor optical coupling device was devised that does not require the combination of lead frames and that simplifies the assembly process. FIG. 2 shows its cross-sectional structure. This is a lead frame 25 on the same plane.
After mounting the light emitting element pellet 21 and the light receiving element pellet 22 on and 26 and bonding the gold wire,
A light emitting element pellet is formed using a transparent silicone resin 23.
The light-receiving element pellets are coated together to form an optical path, which is then sealed with a molding resin 24 such as a commonly used epoxy resin. This is relatively easy to assemble because it does not use two lead frames (Figure 1), but it uses separate pellets for both the light emitting side and the light receiving side, making it possible to manufacture a multi-channel optical coupling device. When doing so, especially when the number of channels is large, mounting work is required for each pellet, and there are large variations in current transfer characteristics and withstand voltage characteristics, and there are also considerable restrictions on miniaturization. This shortcoming cannot be resolved.

本発明の目的は上記のような欠点を改良し、実用化可能
なマルチチャンネル型半導体光結合装置を提供すること
にある。
An object of the present invention is to improve the above-mentioned drawbacks and provide a practical multi-channel semiconductor optical coupling device.

本発明は、複数の発光素子、および複数の受光素子をそ
れぞれ単一の半導体ペレ・シト内に電気的に絶縁して形
成し、該発光素子の各々をそれぞれ別個の受光素子に対
向せしめ、該発光素子ベレ・シトおよび受光素子ベレッ
トの間隙に対向せる一対の発光素子、受光素子が独立し
た光結合を行うように形成した独立せる複数の光路を有
するスペーサを挟持してなることを特徴としたマルチチ
ャンネル型半導体光結合装置に関するものである。
The present invention includes forming a plurality of light-emitting elements and a plurality of light-receiving elements electrically insulated within a single semiconductor sheet, each of the light-emitting elements facing a separate light-receiving element, and A pair of light-emitting elements and a light-receiving element are sandwiched between spacers having a plurality of independent optical paths formed so as to perform independent optical coupling between the light-emitting element and the light-receiving element, which face each other in the gap between the light-emitting element and the light-receiving element. The present invention relates to a multi-channel semiconductor optical coupling device.

本発明によれば、発光素子、受光素子間に一定の形状の
光路を有したスペーサを挟持してなることにより、電流
伝達特性のバラツキの少ない半導体光結合装置が得られ
る。また本発明によれば特性の一様な発光素子アレー、
および受光素子アレーを用い、かつ一定の形状を有した
スペーサを用いて電気特性の一様なマルチチャンネル型
の半導体光結合装置が得られる。ざらに本発明によれば
、前記特性のそろった発光素子アレー、受光素子アレー
を用いて、組立も容易な超小型のマルチチャンネル型の
半導体光結合装置が得られる。
According to the present invention, a semiconductor optical coupling device with less variation in current transfer characteristics can be obtained by sandwiching a spacer having an optical path of a certain shape between a light emitting element and a light receiving element. Further, according to the present invention, a light emitting element array with uniform characteristics,
A multi-channel semiconductor optical coupling device with uniform electrical characteristics can be obtained by using a photodetector array and a spacer having a certain shape. In summary, according to the present invention, an ultra-small multi-channel semiconductor optical coupling device that is easy to assemble can be obtained by using a light emitting element array and a light receiving element array having the same characteristics as described above.

以下、本発明の詳細を実施例に基づき、第3図〜第7図
に従って説明する。第3図は本発明の実施例に用いた発
光素子アレーの正面図を示している。31は発光素子ア
レーであり、半導体材料としてn W GaAs 1−
xPx (x = 0.2 )を用いており、400μ
m×1750μm×220μm の大きざである。32
は直径280μmφの発光部、33は電極である。各発
光部は35 Q 74m  ピッチで5個配列されてお
り、n型GaAs1−xPx (X = 0.2 )ウ
ェーハに発光部のみ選択的に亜鉛を拡散して形成される
。拡散深さは4.5μmである。第4図は、本発明の実
施例に用いた受光素子アV−の正面図を示している。4
1は受光素子アレーであり、半導体材料としてnilシ
リコンを用いており、500μm5− X1750μm×220μmの大きさである。42は受
光部面積300μmX 300μm のホトトランジス
タであり、各々350μmのピッチで511ffi配列
されている。43はエミ・ツタ電極、44はコレクタ電
極、45はペース電極である。第5図は、白色のホウケ
イ酸ガラスを用いたスペーサを示している。51は前記
スペーサ本体であり、金属酸化物を混合してあり白色を
呈し、可視または赤外領域の元に対し、不透明である。
Hereinafter, details of the present invention will be explained based on examples and according to FIGS. 3 to 7. FIG. 3 shows a front view of a light emitting element array used in an example of the present invention. 31 is a light emitting element array, and the semiconductor material is n W GaAs 1-
xPx (x = 0.2) and 400μ
The size is m x 1750 μm x 220 μm. 32
is a light emitting part with a diameter of 280 μmφ, and 33 is an electrode. Five light-emitting parts are arranged at a pitch of 35Q74m, and are formed by selectively diffusing zinc only in the light-emitting parts on an n-type GaAs1-xPx (X = 0.2) wafer. The diffusion depth is 4.5 μm. FIG. 4 shows a front view of the light receiving element AV- used in the embodiment of the present invention. 4
Reference numeral 1 denotes a light receiving element array, which uses nil silicon as a semiconductor material and has a size of 500 μm5-×1750 μm×220 μm. 42 is a phototransistor with a light receiving area of 300 μm×300 μm, and each phototransistor is arranged in 511ffi at a pitch of 350 μm. 43 is an emitter electrode, 44 is a collector electrode, and 45 is a pace electrode. FIG. 5 shows a spacer using white borosilicate glass. Reference numeral 51 denotes the spacer body, which is mixed with metal oxide, exhibits a white color, and is opaque to visible or infrared light.

52は各発光素子から発光された光の光路を形成する孔
であり、組立時にはその孔は透光性のシリコン系樹脂で
充填される。党略は各発光素子、受光素子に対応して3
50μmピッチで5 +Il配列されている。第6図は
前記スペーサの断面図であり、61はスペーサ本体、6
2は光路を示している。スペーサの寸法は350μm×
1750μm×200μmであり、一方の長辺側に沿っ
てついているフィン63は光路の位置決めの役割を果た
し、高さは150μmである。
Reference numeral 52 denotes a hole that forms an optical path for light emitted from each light emitting element, and during assembly, the hole is filled with a translucent silicone resin. The party abbreviation is 3 corresponding to each light emitting element and light receiving element.
They are arranged in a 5+Il array with a pitch of 50 μm. FIG. 6 is a sectional view of the spacer, where 61 is the spacer body, 6
2 indicates the optical path. Spacer dimensions are 350μm×
The size is 1750 μm×200 μm, and the fin 63 attached along one long side plays the role of positioning the optical path, and the height is 150 μm.

第7図は、本発明による実施例の5連のマルチチャンネ
ル型光結合装置の断面図を示す。71は発6一 元素子アレー、72は受光素子アレー、73は党略に充
填された透光部のシリコン系樹脂、74はスペーサ本体
、75はエポキシ系樹脂、76は発光素子側リードフレ
ーム、77は受光素子側IJ ++ドフレーム、78は
25μmφの金線である。
FIG. 7 shows a sectional view of a five-channel multichannel optical coupling device according to an embodiment of the present invention. 71 is a light emitting element array, 72 is a light receiving element array, 73 is a silicon resin of a light-transmitting part that is filled with the material, 74 is a spacer body, 75 is an epoxy resin, 76 is a lead frame on the light emitting element side, and 77 is a light emitting element side lead frame. The IJ++ deframe 78 on the light receiving element side is a gold wire with a diameter of 25 μm.

本実施例における光結合装置は以下のように作l@!!
すれる。発光素子アレー71を銀ペーストにより発光素
子側リード7ノーム76にマウントし、同様に受光素子
アレー72を受光素子側リードフレーム77に銀ペース
トでマウントする。その後それぞれのリードフレームを
熱処理し、銀ペーストを固化させ、25μmφの金R7
Bによりボンディングを行う。受′yt、累子アレー7
2の各受光累子部に光路となるシリコン系樹脂を付着さ
せた後、スペーサ74の位置決め用フィンを受光素子ア
レーペレットの長辺に沿って固定する。Oの際、シリコ
ン系樹脂がスペーサの各光路部分内にシリコン系樹脂が
はいり込むように樹脂量を調節して付着させる必要があ
り、未充填部分がある場合は補充が必要である。光路内
にシリコン系樹脂73が充填された後、発光素子アV−
71がマウントされた発光側リードフレームと組合せ、
発元部、受光部とを対向させ、これをトランスファーモ
ールド法により、エポキシ系樹脂75により封止した後
、発光側、受光側リードフレームのタイバー切断、ハン
ダメッキ等の通常の工程を経て、発光素子側リード76
、受光素子側リード77を形成し、完成されるものであ
る。
The optical coupling device in this example was made as follows. !
I can pass. The light emitting element array 71 is mounted on the light emitting element side lead 7 norm 76 with silver paste, and the light receiving element array 72 is similarly mounted on the light receiving element side lead frame 77 with silver paste. After that, each lead frame was heat-treated to solidify the silver paste, and a 25 μmφ gold R7
Bonding is performed by B. Uke'yt, Yuko array 7
After attaching a silicon-based resin to each of the light-receiving elements 2 to serve as an optical path, the positioning fins of the spacer 74 are fixed along the long sides of the light-receiving element array pellet. At the time of O, it is necessary to adjust the amount of silicon-based resin so that it fits into each optical path portion of the spacer and deposit it, and if there is an unfilled portion, it is necessary to replenish it. After the optical path is filled with silicone resin 73, the light emitting element A V-
In combination with the light-emitting side lead frame on which 71 is mounted,
After the source part and the light receiving part are placed facing each other and sealed with epoxy resin 75 by transfer molding, the light emitting part and the light receiving part are cut through tie bars, solder plating, etc. Element side lead 76
, a light receiving element side lead 77 is formed, and the process is completed.

以上図面により詳細に説明したように、本発明によれば
、発光素子、受光素子間に独立した、一定形状の光路を
有するスペーサを挟持せしめることにより、電流伝達特
性、および耐圧特性の一様性が極めて良好な半導体光結
合装置が得られる。
As described above in detail with reference to the drawings, according to the present invention, by sandwiching a spacer having an independent optical path of a constant shape between a light emitting element and a light receiving element, uniformity of current transfer characteristics and breakdown voltage characteristics can be achieved. A semiconductor optical coupling device with extremely good properties can be obtained.

また本発明によれば、発光素子アレーペレット。Further, according to the present invention, a light emitting element array pellet is provided.

受光菓子アレーペレットを用いて、容易にマルチチャン
ネル型の半導体光結合装置を得ることができるため、各
素子の特性の一様性が良好であり、マルチチャンネル型
光結合装置の歩留を向上させる上で極めて効果が大きい
。さらに本発明によれば、発光側、受光側ともにアレー
ペレットを用いることができ、マルチチャンネル型の半
導体光結合装置の超小型化、およびチャンネル数の多数
化に対しその効果は多大である。またペレットマウント
、およびボンディング作業に対する省力化効果も極めて
太きいものがある。
Since a multi-channel type semiconductor optical coupling device can be easily obtained using light-receiving confectionery array pellets, the uniformity of characteristics of each element is good, which improves the yield of multi-channel type optical coupling devices. It is extremely effective on the above. Further, according to the present invention, array pellets can be used on both the light emitting side and the light receiving side, which has a great effect on miniaturizing a multi-channel type semiconductor optical coupling device and increasing the number of channels. In addition, the labor-saving effect on pellet mounting and bonding work is extremely significant.

以上、詳細に説明したように、本発明によれば電流伝達
特性、耐圧特性の一様性が良好で、省力化も容易な半導
体光結合装置が得られる。また上記特性の良好な超小型
のマルチチャンネル型半導体光結合装置が得られる。
As described above in detail, according to the present invention, a semiconductor optical coupling device can be obtained that has good uniformity in current transfer characteristics and breakdown voltage characteristics, and is easy to save labor. Furthermore, an ultra-small multi-channel semiconductor optical coupling device having the above-mentioned favorable characteristics can be obtained.

また本発明の実施例においては累材として発光素子ペレ
ットにn型GaAst−xpx (x = 0.2 )
 、受光素子ペレットにn型シリコンを用いたが、本発
明はこれらの材料に限らず、広く変形応用させ得るもの
である。ざらに、本実施例においては、5連アレーによ
るマルチチャンネル型の半導体光結合装置について説明
したが、5連アレーでなく、あらゆる複数のチャンネル
型について適用可能であることは言う迄もない。
In addition, in the embodiment of the present invention, n-type GaAst-xpx (x = 0.2) was used as a cumulative material in the light emitting device pellet.
Although n-type silicon was used for the light-receiving element pellet, the present invention is not limited to these materials and can be widely modified and applied. Roughly speaking, in this embodiment, a multi-channel type semiconductor optical coupling device with a 5-array has been described, but it goes without saying that the present invention is applicable to any plurality of channel types, not just a 5-array.

9−9-

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来例の断面図、第3図は発光素子ア
レー正面図、第4図は受光素子アレー正面図、第5図は
スペーサ正面図、第6図はスペーサ断面図、第7図は本
発明の半導体光結合装置断面図である。 11.21・・・・・・発光素子ペレット、12,22
・・・・・・受光素子ペレット、13.23・・・・・
・透光性樹脂、14. 24. 75・・・・・・エボ
キク樹脂、15゜25.76・・・・・・発光側リード
フレーム、16゜26.77・・・・・・受光側リード
7ノーム、31゜71・・・・・・発光素子アレー、3
2・・・・・・発光部、33・・・・・・電極、41.
72・・・・・・受光素子アン−142・・・・・・受
光部、43・・・・・・エミッタ電極、44・・印・コ
レクタ電極、45・・・・・・ベース電!、51,61
゜74・・・・・・スペーサ、52.62・・・・・・
光路、63・・・・・・位置決め用フィン、73・・・
・・・シリコン樹脂、78・・・・・・金線。 −1〇− 弊1 回 キ2旧
1 and 2 are sectional views of the conventional example, FIG. 3 is a front view of the light emitting element array, FIG. 4 is a front view of the light receiving element array, FIG. 5 is a front view of the spacer, and FIG. 6 is a sectional view of the spacer. FIG. 7 is a sectional view of the semiconductor optical coupling device of the present invention. 11.21...Light emitting element pellet, 12,22
・・・・・・Photodetector pellet, 13.23・・・・・・
・Translucent resin, 14. 24. 75... Evokiku resin, 15°25.76... Emitting side lead frame, 16°26.77... Light receiving side lead 7 norm, 31°71... ...Light emitting element array, 3
2... Light emitting part, 33... Electrode, 41.
72... Light-receiving element A-142... Light-receiving section, 43... Emitter electrode, 44... Mark/Collector electrode, 45... Base electrode! ,51,61
゜74...Spacer, 52.62...
Optical path, 63...Positioning fin, 73...
...Silicone resin, 78...Gold wire. -1〇- Our 1st time Ki 2nd old

Claims (2)

【特許請求の範囲】[Claims] (1)複数の発光素子および複数の受光素子をそれぞれ
単一の半導体ベレット内に電気的に絶縁して形成し、該
発光素子の各々をそれぞれ別個の受光素子に対向せしめ
、該発光素子ペレ・シトおよび受光素子ベレ・シトの間
隙に、対向せる一対の発光素子、受光素子がそれぞれの
独立した光結合を行うように独立せる複数の光路を有す
るスペーサを挟持してなることを特徴とするマルチチャ
ンネル型半導体光結合装置。
(1) A plurality of light-emitting elements and a plurality of light-receiving elements are each electrically insulated and formed in a single semiconductor pellet, each of the light-emitting elements is made to face a separate light-receiving element, and the light-emitting element pellet is A multi-function device characterized in that a spacer having a plurality of independent optical paths is sandwiched between a pair of opposing light-emitting elements and a light-receiving element so as to perform independent optical coupling between the light-emitting element and the light-receiving element. Channel type semiconductor optical coupling device.
(2)前記該半導体光結合装置において複数の発光素子
、および複数の受光素子として、それぞれ単一の半導体
ベレット内に電気的に相絶縁して形成されてなる発光素
子アレー、および受光素子アレーを用いたマルチチャン
ネル型半導体光結合装置。
(2) In the semiconductor optical coupling device, the plurality of light emitting elements and the plurality of light receiving elements include a light emitting element array and a light receiving element array, each of which is formed electrically insulated from each other within a single semiconductor pellet. Multi-channel semiconductor optical coupling device used.
JP58051229A 1983-03-26 1983-03-26 Multichannel type semiconductor optical coupler Pending JPS59177978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58051229A JPS59177978A (en) 1983-03-26 1983-03-26 Multichannel type semiconductor optical coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58051229A JPS59177978A (en) 1983-03-26 1983-03-26 Multichannel type semiconductor optical coupler

Publications (1)

Publication Number Publication Date
JPS59177978A true JPS59177978A (en) 1984-10-08

Family

ID=12881113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58051229A Pending JPS59177978A (en) 1983-03-26 1983-03-26 Multichannel type semiconductor optical coupler

Country Status (1)

Country Link
JP (1) JPS59177978A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0399703A2 (en) * 1989-05-22 1990-11-28 Hewlett-Packard Company High voltage optical isolator
US5654559A (en) * 1993-09-23 1997-08-05 Siemens Aktiengesellschaft Optical coupling device and method for manufacturing the same
US6507048B1 (en) * 1999-08-23 2003-01-14 Sharp Kabushiki Kaisha Light coupled device with insulating and light shielding element and light insulating and transmitting element
US7170099B2 (en) * 2004-03-31 2007-01-30 Kabushiki Kaisha Toshiba Optical semiconductor device and a method for manufacturing the same
JP2016086098A (en) * 2014-10-27 2016-05-19 パナソニックIpマネジメント株式会社 Optical coupling device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0399703A2 (en) * 1989-05-22 1990-11-28 Hewlett-Packard Company High voltage optical isolator
US5654559A (en) * 1993-09-23 1997-08-05 Siemens Aktiengesellschaft Optical coupling device and method for manufacturing the same
US6507048B1 (en) * 1999-08-23 2003-01-14 Sharp Kabushiki Kaisha Light coupled device with insulating and light shielding element and light insulating and transmitting element
US7170099B2 (en) * 2004-03-31 2007-01-30 Kabushiki Kaisha Toshiba Optical semiconductor device and a method for manufacturing the same
US7307285B2 (en) 2004-03-31 2007-12-11 Kabushiki Kaisha Toshiba Optical semiconductor device and a method for manufacturing the same
JP2016086098A (en) * 2014-10-27 2016-05-19 パナソニックIpマネジメント株式会社 Optical coupling device

Similar Documents

Publication Publication Date Title
KR101258889B1 (en) Solar cell module and method for producing the same
US6921926B2 (en) LED package and the process making the same
KR20050010003A (en) Light-receiving or light-emitting device and its production method
US3590328A (en) Module assembly and method of making same
JPH084148B2 (en) Manufacturing method of optical isolator
JPS59177978A (en) Multichannel type semiconductor optical coupler
JP3139613B2 (en) Surface mounted semiconductor light emitting device and method of manufacturing the same
JP3638328B2 (en) Surface mount type photocoupler and manufacturing method thereof
JPS63274188A (en) Optical coupling element
JPS63136684A (en) Photoelectron device, manufacture thereof and lead frame used for the method
JPS59113672A (en) Manufacture of semiconductor device
JPS60126874A (en) Optical coupling semiconductor device
JPS59222973A (en) Semiconductor optical coupling device
JPH0355989B2 (en)
JPS6068678A (en) Photocoupling semiconductor device
JP3699783B2 (en) Chip-type semiconductor and manufacturing method thereof
JPS6127192Y2 (en)
KR101768549B1 (en) Semiconductor light emitting device and method of manufacturing the same
JPS6068679A (en) Semiconductor photocoupler
JPH065906A (en) Manufacture of monolithic photo-coupler
JPH0927635A (en) Surface mount photoreflector and photointerruptor
JPH0479380A (en) Multi-channel photo coupler
JPS63304676A (en) Manufacture of semiconductor photocoupler
JPS63287045A (en) Manufacture of optical semiconductor device
JP3432088B2 (en) Optical coupling device