JPS59175744A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS59175744A
JPS59175744A JP4981183A JP4981183A JPS59175744A JP S59175744 A JPS59175744 A JP S59175744A JP 4981183 A JP4981183 A JP 4981183A JP 4981183 A JP4981183 A JP 4981183A JP S59175744 A JPS59175744 A JP S59175744A
Authority
JP
Japan
Prior art keywords
layer
opening
type
substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4981183A
Other languages
Japanese (ja)
Inventor
Kunihiko Wada
邦彦 和田
Yuji Furumura
雄二 古村
Hajime Kamioka
上岡 元
Takashi Yabu
薮 敬司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4981183A priority Critical patent/JPS59175744A/en
Publication of JPS59175744A publication Critical patent/JPS59175744A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To remove leakage currents between an epitaxial layer and an oxide layer by forming the thick field oxide film, an internal end surface thereof is vertical, to the peripheral section of an conduction type semiconductor substrate containing a high concentration impurity, forming a layer containing the impurity in the same high concentration as the substrate to the vertical end surface and growing the layer of the same conduction type as the substrate in low concentration onto the substrate surrounded by said layer in an epitaxial manner while the impurity is diffused from the end surface to form a thin isolation region around the epitaxial layer. CONSTITUTION:A thick field oxide film 12 is formed on a P<+> type Si substrate 11, the film 12, an internal end surface thereof is vertical, is left through anisotropic etching, and an opening 13 generated is used as an epitaxial growth region. The whole surface containing the opening 13 is coated with a P<+> type polycrystalline Si layer 16, and the layer 16 is left only on the wall surface of the opening 13 through anisotropic etching in the same manner. A P type layer 15 is grown in the opening 13 in an epitaxial manner while a P type impurity is diffused to the periphery of the layer 15 from the layer 16, and a thin P<+> type layer 14 as a channel stopper is formed fast stuck to the layer 16.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は半導体装置及びその製造方法に係シ、特に半導
体装置に於ける素子間分離構造及びその形成方法間する
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to an isolation structure between elements in a semiconductor device and a method for forming the same.

(b)  技術の背景 MI S (Metal In5ulator Sem
1conductor)型の半導体ICに於ては、従来
選択酸化(LOCO8)構造ハ、バーズ・ピークと称す
るリングラフィ技術によって規定できない酸化膜の耐酸
化マスク膜下部へのもぐシ込みのために素子間分離領域
の幅が広くなるため、該ICを高密度高集積化する際に
は不適当で娶った。
(b) Technical background MIS (Metal In5ulator Sem)
In conventional selective oxidation (LOCO8) type semiconductor ICs, the conventional selective oxidation (LOCO8) structure suffers from isolation due to the oxidation film, which cannot be defined by the phosphorography technique called bird's peak, burrows into the bottom of the oxidation-resistant mask film. Since the width of the area becomes wide, it is not suitable for high-density and high-integration of the IC.

そこでリング2フイ技術によって寸法が規定でき高密度
高集積化に適した素子間分離領域の形成方法として先ず
提供されたのは、半導体基板面に異方性のドライエツチ
ング手段を用いるフォト・リングラフィ技術によ勺はぼ
垂直な側面を有する溝を形成し、スパッタリング技術等
によシ該基板上に前記溝を充分に埋める絶縁膜を形成し
、機械的方法成るいはスパッタ・エツチング法等を用い
る平面研摩技術によシ前記絶縁膜を半導体基板面゛ ま
で除去し、前記半導体基板面の溝内に素子間を分離する
絶縁膜を残留形成せしめる方法である。
Therefore, the first method proposed as a method for forming an isolation region between elements, whose dimensions can be defined by ring-2-fi technology and is suitable for high-density and high-integration, is photolithography, which uses an anisotropic dry etching method on the semiconductor substrate surface. A groove having nearly vertical sides is formed using a technique, an insulating film is formed on the substrate to sufficiently fill the groove using a sputtering technique, and a mechanical method or a sputter etching method is used. This is a method in which the insulating film is removed to the surface of the semiconductor substrate using a surface polishing technique, and an insulating film for separating the elements is left in the grooves in the semiconductor substrate surface.

しかしこの方法に於ては半導体基板面に異方性ドライエ
ツチング手段で溝を形成する際素子形成領域となる基板
面にダメージ層が形成されるため、該領域に形成される
半導体素子の性能が損なわれICの製造歩留まシが著し
く低下するという問題があった。
However, in this method, when forming grooves on the semiconductor substrate surface using anisotropic dry etching means, a damaged layer is formed on the substrate surface that will become the device formation region, so the performance of the semiconductor device formed in the region is affected. There is a problem in that the manufacturing yield of ICs is significantly reduced.

この問題を解決する方法として提供されたのが、半導体
基板上の絶縁膜に配設した開孔内に選択エピタキシャル
成長技術を用いて素子形成領域となる半導体エピタキシ
ャル層を選択的に形成してなる絶縁膜分離構造である。
In order to solve this problem, an insulator was proposed in which a semiconductor epitaxial layer, which would become an element formation region, was selectively formed in an opening formed in an insulating film on a semiconductor substrate using a selective epitaxial growth technique. It has a membrane separation structure.

(c)  従来技術と問題点 従来該選択エピタキシャル成長技術を用いて形成する絶
縁膜分離構造は、第1図(イ)に示すように、例えばp
+型のシ・リコン(St)基板1上に熱酸化法によって
形成したフィールド酸化膜2に側面がほぼ垂直な開孔3
を形成し、次いで周知の選択エピタキシャル成長技術を
用い第1図(ロ)に示すようにフィールド酸化膜2の開
孔3内に表出している81基板1面に選択的に、フィー
ルド酸化膜2の上面とほぼ平坦な厚さに素子領域となる
p型S1エピタキシャル層4を成長させる方法で形成し
ていた。
(c) Conventional technology and problems Conventionally, the insulating film isolation structure formed using the selective epitaxial growth technique is as shown in FIG.
An opening 3 whose side surface is almost perpendicular is formed in a field oxide film 2 formed by a thermal oxidation method on a + type silicon (St) substrate 1.
Then, using a well-known selective epitaxial growth technique, as shown in FIG. The p-type S1 epitaxial layer 4, which will become the device region, is grown to a thickness that is substantially flat with the upper surface.

そのため従来構造に於とは、上記方法で形成した際エピ
タキシャル層4とフィールド酸化膜2の界面に取り込ま
れ勝ちな不純初成るいはフィールド酸化膜2に接するエ
ピタキシャル層4面に形成される欠陥等によって′、例
えば第2図に示す上面[F]) 模式図(イ)及びそのA −A’矢視断面模式酩ように
、Stエピタキシャル層4からなる島状の素子領域にM
OS)ランジスタを形成した際には、例えばエピタキシ
ャル層4とフィールド酸化膜2の界面■を介してソース
S、ドレインD間の電流リークを生じ、該MO8)ラン
ジスタの性能が損なわれるという問題があった。(図中
OXoはゲート酸化膜、Gはゲート電極) 又該フィールド酸化膜にセルフ・アラインでペースとエ
ミッタが形成されるイソブレーナ型のバイポーラ・トラ
ンジスタに於ても、エミッタ、ペース間にリークを生じ
性能が損なわれるという問題があった。
Therefore, in the conventional structure, impurities that tend to be incorporated into the interface between the epitaxial layer 4 and the field oxide film 2 when formed by the above method, or defects formed on the surface of the epitaxial layer 4 in contact with the field oxide film 2, etc. For example, as shown in the top surface [F] shown in FIG.
When a transistor (OS) is formed, there is a problem in that current leaks between the source S and drain D through the interface (1) between the epitaxial layer 4 and the field oxide film 2, which impairs the performance of the MO8) transistor. Ta. (In the figure, OXo is a gate oxide film, and G is a gate electrode.) Also, in an isobrener type bipolar transistor in which the paste and emitter are formed in self-alignment in the field oxide film, leakage occurs between the emitter and the paste. There was a problem that performance was impaired.

(d)  発明の目的 本発明は絶縁膜の開孔内に素子形成領域となる半導体エ
ピタキシャル層が選択的に成長せしめられる素子間分離
構造に於ける、半導体エピタキシャル層と絶縁膜との界
面の電流リークを防止する構造及びその形成方法を提供
す−るものであシ、その目的とするところは、高密度高
集積化された半導体ICの製造歩留まりを向上せしめる
にある。
(d) Purpose of the Invention The present invention is directed to the current flow at the interface between a semiconductor epitaxial layer and an insulating film in an element isolation structure in which a semiconductor epitaxial layer serving as an element formation region is selectively grown in an opening in an insulating film. The present invention provides a structure that prevents leakage and a method for forming the same, and its purpose is to improve the manufacturing yield of high-density and highly integrated semiconductor ICs.

(e)  発明の構成 即ち本発明は、−導電型の半導体基板上に形成され、か
つ開孔を有する絶縁膜と、該開孔内に形成された一導電
型の素子領域用の半導体エピタキシャル層と、該半導体
゛エピタキシャル層と該絶縁膜との間にあって該半導体
エピタキシャル層よシも不純物濃度の高い一導電型の半
導体層を有することを特徴とする半導体装置、及び−導
電型を有する半導体基板上に形成された絶縁膜に該半導
体基板面を表出する開孔を形成し、該基板上に少なくと
も前記開孔を覆う一導電型の不純物拡散源層を形成し、
該不純物拡散源層を前記開孔の側面にのみ残して選択的
に除去し、該開孔内に表出する該半導体基板面上に一導
電型で該半導体基板よシ低不純物#度の素子領域用の一
導電型半導体エビタキシャル層を成長させ、且つ前記開
孔側面の不純物拡散源層から該半導体エピタキシャル層
内に不純物を拡散させる工程を布することを特徴とする
上記半導体装置の製造方法に関するものである。
(e) Structure of the invention, that is, the present invention comprises an insulating film formed on a - conductivity type semiconductor substrate and having an opening, and a semiconductor epitaxial layer for an element region of one conductivity type formed in the opening. , a semiconductor device comprising a semiconductor layer of one conductivity type located between the semiconductor epitaxial layer and the insulating film and having a higher impurity concentration than the semiconductor epitaxial layer, and a semiconductor substrate having a -conductivity type. forming an opening exposing the surface of the semiconductor substrate in an insulating film formed thereon, forming an impurity diffusion source layer of one conductivity type on the substrate covering at least the opening;
The impurity diffusion source layer is selectively removed leaving only on the side surfaces of the opening, and an element of one conductivity type and having a low impurity level compared to the semiconductor substrate is formed on the surface of the semiconductor substrate exposed in the opening. A method for manufacturing a semiconductor device as described above, comprising growing a semiconductor epitaxial layer of one conductivity type for a region and diffusing impurities into the semiconductor epitaxial layer from an impurity diffusion source layer on the side surface of the opening. It is related to.

(f)  発明の実施例 以下本発明を、第3図に示す本発明の構造に於ける一実
施例の要部平面図(イ)及びそのA−A’矢視断面図(
ロ)と、第4図(イ)乃至に)に示す本発明の方法に於
ける一実施例の工程断面図を用いて詳細に説明する。
(f) Embodiment of the Invention The present invention will be described below with reference to a plan view (a) of the main part of an embodiment of the structure of the present invention shown in FIG.
This will be explained in detail using process cross-sectional views of one embodiment of the method of the present invention shown in (b) and (a) to (a) of FIG. 4.

本発明の絶縁膜分離方式のMO8型半導体装置は、第3
図(イ)及び(ロ)に示すよりに、例えば比抵抗0.1
〔Ω−釧〕程度のp型シリコン(Sl)基板11上に形
成された例えば厚さ0.6〜0.8〔μm〕程度のフィ
ールド酸化膜12に配設された基板11面を表出する開
孔13内に選択的に成長せしめられ、側面に例えば表面
濃度10′6〜10 ′7[:atm/d:]程度のp
+型領領域14有する例えば10 ” (a tm/c
J)程度の不純物l#度のp型Siエビタキンヤル層1
5からなる素子形成領域を有している。71XfflJ
14處fl’4J’$ XlyrM?pそして該素子形
成領域の上面に通常通りn 型ソース領域S、nWドレ
イン領域り、ゲート酸化膜OX o +多結晶Siゲー
ト電極GよシなるMO8I−ランジスタが形成されてい
る。なお図中16はエピタキシャル層15の側面Kp 
 型領域工4を形成するのに機能した高濃度にアクセプ
タ不純物を含む多結晶Si層成るいは珪酸ガラス層よシ
なるp型不純物拡散源層である。
The MO8 type semiconductor device using the insulating film separation method of the present invention has a third
For example, the specific resistance is 0.1 as shown in Figures (a) and (b).
Expose the surface of the substrate 11 disposed on the field oxide film 12 with a thickness of, for example, about 0.6 to 0.8 [μm] formed on a p-type silicon (Sl) substrate 11 of about [Ω-Kushi]. p at a surface concentration of 10'6 to 10'7 [:atm/d:].
+ type area 14, for example 10'' (atm/c
J) p-type Si Evita Kinyal layer 1 with impurities of degree 1
It has an element formation region consisting of 5 elements. 71XfflJ
14fl'4J'$ XlyrM? On the upper surface of the element formation region, a MO8I-transistor consisting of an n-type source region S, an nW drain region, a gate oxide film OX o + a polycrystalline Si gate electrode G is formed as usual. Note that 16 in the figure is the side surface Kp of the epitaxial layer 15.
The p-type impurity diffusion source layer is a polycrystalline Si layer containing acceptor impurities at a high concentration or a silicate glass layer which functions to form the mold region 4.

そして上記構造に於てMOS)ランジスタが配設されて
いるp凰siエピタキシャル層15の側面に設けられた
p+型領領域14チャネル・ストッパとして機能するの
で、ゲート電極G下部のエピタキシャル層側面■を介し
てのソースS、ドレインD間の電流リークは防止される
In the above structure, since the p+ type region 14 provided on the side surface of the p-Si epitaxial layer 15 in which the MOS transistor is disposed functions as a channel stopper, the side surface of the epitaxial layer below the gate electrode G is Current leakage between the source S and drain D via the capacitor is prevented.

次に上記実施例に示した絶縁膜分離構造を形成する方法
を第4図(イ)乃至に)を参照して説明する。
Next, a method for forming the insulating film isolation structure shown in the above embodiment will be explained with reference to FIGS.

即ち先ず例えば0.1〔Ω−の〕程度の比抵抗を有する
p++S1基板11面に通常の熱酸化法により例えば厚
さ0.6・−〇、8〔μm〕程度のフィールド酸化膜1
2を旅成し、異方性エツチング手段例えば3ふつ化メタ
ン(CHFs)によるリアクティブ・イオンエツチング
(RI E)法をエツチング手段として用いるフォト・
リングラフィ技術によシ該フィールド酸化膜1セにSl
基板面を表出する所定形状のほぼ垂直な側面を有する開
孔13を形成する。
That is, first, a field oxide film 1 having a thickness of, for example, about 0.6·-〇, 8 [μm] is formed on the surface of the p++ S1 substrate 11 having a specific resistance of, for example, about 0.1 [Ω-] by a normal thermal oxidation method.
2 and using anisotropic etching means such as reactive ion etching (RIE) using trifluoromethane (CHFs) as an etching means.
Sl is applied to the first field oxide film using phosphorography technology.
An opening 13 having a predetermined shape and substantially vertical side surfaces is formed to expose the substrate surface.

(第4図(イ)参照) 次いで通常のCVD法を用い、該基板面K例えば不純物
濃度101s〜10” 〔atm/cn〕程度の不純物
拡散源となるp++多結晶s1層16を1ooo〜2o
o。
(See FIG. 4(a)) Next, using a normal CVD method, a p++ polycrystalline S1 layer 16, which will serve as an impurity diffusion source, with an impurity concentration of about 101s to 10" [atm/cn], for example, is formed on the substrate surface K to a thickness of 101s to 20".
o.

〔^〕程度の厚さに形成する。εの際前記開孔13内に
もその内面を榎う前記とほぼ等しい厚さの多結晶Si層
16が形成される。(第4図(ロ)参照)次いで基板面
に対して直角な方向性を有する異方性エツチング手段例
えば四塩化炭素(CC44)等を用いるリアクティブ・
イオンエツチング方法によ多前記多結晶Si層16をフ
ィールド酸化膜12の上面が完全に表出するまでエツチ
ングする。このエツチングを完了した時点で基板面に対
して直角方向の厚さが厚かった開孔13の側面のみにp
+型多結晶St層16が残留する。(第4図(ハ)参照
)次いで一般に用いられている減圧系によるStの選択
エピタキシャル成長技術を用い、前記開孔13内に表出
しているp++S1基板11面に選択的にフィールド絶
縁膜工2とほぼ等しい厚さに例えば10 ” (a t
rrLAri)程度の不Mllcf有するp型Stエピ
タキシャル層15を成長させる。なお該選択エピタキシ
ャル成長に於いては、例えば成長ガスにジクロール・シ
ラン(81HC4t) ’塩酸(HCt):水素(Hz
)=3 : 10 :数10の混合ガスに所定比率のジ
ボラン(BzHa、)e添加したものを用い、0.1〜
1 (Torr)程度の前記成長ガス中に於て900〜
1000(10)程度の温度で成長がなされる。従って
該成長過程に於て不純物拡散源として開孔13の側面に
形成したp+型多結晶St層16からこれに接するpm
stエピタキシャル層15面にp型不純物の拡散がなさ
れ、該p型Siエピタキシャル層15の側面に浅いp+
型領領域14形成される。なお該p+型領領域4の表面
不純物濃度はチャネル・ストッパの効果を充分に現わす
ために1016〜l O” [: @ tri10/7
〕程度が望ましく、該エピタキシャル成長工程でこの濃
度に達しない場合は素子形成等で行われる以後の熱処理
工程によって調節する。(第4図に)参照) (g)  発明の詳細 な説明したように本発明によれば選択エピタキシャル成
長技術を用いて形成される絶縁膜分離構造の半導体装置
に於て、半導体素子が形成される島状に分離されたエピ
タキシャル層の側面にチャネル・カッに411域が形成
されるので、該エビタキシャル層に形成された半導体素
子に於て、該エピタキシャル層の側面を介して生ずる機
能領域間の電流リークが防止される。
Form it to a thickness of about [^]. At the time of ε, a polycrystalline Si layer 16 having approximately the same thickness as that described above is formed also inside the opening 13 and covering the inner surface thereof. (See Figure 4(B)) Next, reactive etching using an anisotropic etching means such as carbon tetrachloride (CC44) having a directionality perpendicular to the substrate surface.
The polycrystalline Si layer 16 is etched using an ion etching method until the upper surface of the field oxide film 12 is completely exposed. When this etching was completed, p was applied only to the side surfaces of the openings 13, which were thick in the direction perpendicular to the substrate surface.
The + type polycrystalline St layer 16 remains. (See FIG. 4(c)) Next, using a commonly used selective epitaxial growth technique of St using a reduced pressure system, a field insulating film 2 is selectively formed on the surface of the p++S1 substrate 11 exposed in the opening 13. For example, 10" (a t
A p-type St epitaxial layer 15 having a non-Mllcf of about rrLAri) is grown. In the selective epitaxial growth, for example, dichlorosilane (81HC4t), hydrochloric acid (HCt):hydrogen (Hz) is used as the growth gas.
) = 3: 10: Using a mixture of several tens of gases with diborane (BzHa,)e added at a predetermined ratio, 0.1 to 10:
900~ in the growth gas of about 1 (Torr)
Growth takes place at a temperature of the order of 1000 (10) degrees centigrade. Therefore, in the growth process, from the p+ type polycrystalline St layer 16 formed on the side surface of the opening 13 as an impurity diffusion source to the p+ type polycrystalline St layer 16 in contact with this
A p-type impurity is diffused on the surface of the st epitaxial layer 15, and a shallow p+ layer is formed on the side surface of the p-type Si epitaxial layer 15.
A mold region 14 is formed. In addition, the surface impurity concentration of the p+ type region 4 is set to 1016 to 1016 to 10/7 in order to sufficiently exhibit the effect of the channel stopper.
], and if this concentration is not reached in the epitaxial growth process, it is adjusted by a subsequent heat treatment process performed during element formation, etc. (See FIG. 4)) (g) As described in detail, according to the present invention, a semiconductor element is formed in a semiconductor device with an insulating film separation structure formed using selective epitaxial growth technology. Since a channel region 411 is formed on the side surface of the epitaxial layer separated into islands, in the semiconductor element formed on the epitaxial layer, the area between the functional regions generated via the side surface of the epitaxial layer is Current leakage is prevented.

従って本発明によれば絶縁膜分離構造の半導体ICの製
造歩留まシ及び信頼性を向上せしめることができる。
Therefore, according to the present invention, it is possible to improve the manufacturing yield and reliability of a semiconductor IC having an insulating film separation structure.

なお本発明はMISICに限らずアイソブレーナ型等の
バイポーラICにも有効であり、更に逆導電型にも適用
できる。
Note that the present invention is effective not only for MISICs but also for bipolar ICs such as isobrainer type ICs, and can also be applied to reverse conductivity type ICs.

又不純物拡散源にBSG、PSG等の珪酸ガラスを使用
しても良い。
Furthermore, silicate glass such as BSG or PSG may be used as an impurity diffusion source.

そして又、基板の不純物濃度が低い場合には、エピタキ
シャル層が配設される基板面にイオン注入等により同種
導電型の不純物を高濃度に導入しておく方が効果は大き
い。
Furthermore, when the impurity concentration of the substrate is low, it is more effective to introduce impurities of the same conductivity type at a high concentration into the substrate surface on which the epitaxial layer is provided by ion implantation or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)乃至(ロ)は選択エピタキシャル技術を用
いて形成する従来の絶縁膜分離構造基板製造方法の工程
断面図、第2図(イ)及び(ロ)は従来構造の問題点説
明図、第3図は本発明の構造に於ける一実施例の要部平
面図(イ)及びA−A’矢視断面図(ロ)で、第4図(
イ)乃至に)は本発明の方法に於ける一実施例の工程断
面図である。 図に於て、11はp++シリコン基板、12はフィール
ド酸化膜、13は開孔、14はp+型領領域15ハp 
mシリコン自エピタキシャル層、  16はp 型多結
晶シリコン層、■はエピタキシャル層の側面を示す。 単 1  口 隼 2 口 :3  4 第 3 口 (イジ (′O)
Figures 1 (a) to (b) are process cross-sectional views of a conventional insulating film isolation structure substrate manufacturing method formed using selective epitaxial technology, and Figures 2 (a) and (b) are explanations of problems in the conventional structure. Figures 3 and 3 are a plan view (a) of essential parts and a sectional view taken along the line A-A' (b) of an embodiment of the structure of the present invention, and Figure 4 (
A) to A) are process cross-sectional views of an embodiment of the method of the present invention. In the figure, 11 is a p++ silicon substrate, 12 is a field oxide film, 13 is an opening, and 14 is a p+ type region 15.
16 is a p-type polycrystalline silicon layer, and ■ is a side surface of the epitaxial layer. Single 1 mouth falcon 2 mouth: 3 4 3rd mouth (Iji ('O)

Claims (1)

【特許請求の範囲】 1、−導電型の半導体基板上に形成され、かつ開孔を有
する絶縁膜と、該開孔内に形成された一導電型の素子領
域用の半導体エピタキシャル層と、該半導体エピタキシ
ャル層と該絶縁膜との間にあって該半導体エピタキシャ
ル層よシも不純物濃度の高い一導電型の半導体層を有す
ることを特徴とする半導体装置。 2、−導電型の半導体基板上に形成された絶縁膜に該半
導体基板面を表出する開孔を形成し、該基板上に少なく
とも前記開孔を覆う一導電型の不純物拡散源層を形成し
、該不純物拡散源層を前記開孔の側面にのみ残して選択
的に除去し、該開孔内に表出する該半導体基板面上に一
導電型で該半導体基板より低不純物濃度の素子領域用の
一導電型半導体エビタキシャル層を成長させ、且つ前記
開孔側面の不純物拡散源層から該半導体エピタキシャル
層内に不純物を拡散させる工程を有することを特徴とす
る半導体装置の製造方法。
[Claims] 1. - An insulating film formed on a semiconductor substrate of a conductivity type and having an opening, a semiconductor epitaxial layer for an element region of one conductivity type formed in the opening; A semiconductor device comprising a semiconductor layer of one conductivity type which is located between a semiconductor epitaxial layer and the insulating film and has a higher impurity concentration than the semiconductor epitaxial layer. 2. - Forming an opening exposing the surface of the semiconductor substrate in an insulating film formed on a semiconductor substrate of a conductivity type, and forming an impurity diffusion source layer of one conductivity type covering at least the opening on the substrate. Then, the impurity diffusion source layer is selectively removed leaving only on the side surfaces of the opening, and an element of one conductivity type and having an impurity concentration lower than that of the semiconductor substrate is formed on the surface of the semiconductor substrate exposed in the opening. A method for manufacturing a semiconductor device, comprising the steps of growing a semiconductor epitaxial layer of one conductivity type for a region, and diffusing impurities into the semiconductor epitaxial layer from an impurity diffusion source layer on the side surface of the opening.
JP4981183A 1983-03-25 1983-03-25 Semiconductor device and manufacture thereof Pending JPS59175744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4981183A JPS59175744A (en) 1983-03-25 1983-03-25 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4981183A JPS59175744A (en) 1983-03-25 1983-03-25 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59175744A true JPS59175744A (en) 1984-10-04

Family

ID=12841502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4981183A Pending JPS59175744A (en) 1983-03-25 1983-03-25 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59175744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219943A (en) * 1986-03-17 1987-09-28 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Formation of insulated isolation region
US5213989A (en) * 1992-06-24 1993-05-25 Motorola, Inc. Method for forming a grown bipolar electrode contact using a sidewall seed

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128943A (en) * 1981-02-02 1982-08-10 Jido Keisoku Gijutsu Kenkiyuukumiai Insulation isolated semiconductor integrated device and manufacture thereof
JPS57184229A (en) * 1981-05-08 1982-11-12 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128943A (en) * 1981-02-02 1982-08-10 Jido Keisoku Gijutsu Kenkiyuukumiai Insulation isolated semiconductor integrated device and manufacture thereof
JPS57184229A (en) * 1981-05-08 1982-11-12 Fujitsu Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219943A (en) * 1986-03-17 1987-09-28 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Formation of insulated isolation region
US5213989A (en) * 1992-06-24 1993-05-25 Motorola, Inc. Method for forming a grown bipolar electrode contact using a sidewall seed

Similar Documents

Publication Publication Date Title
JPS63314844A (en) Manufacture of semiconductor device
US4900689A (en) Method of fabrication of isolated islands for complementary bipolar devices
JPS61191043A (en) Semiconductor device
JPS59175744A (en) Semiconductor device and manufacture thereof
JPH0897225A (en) Semiconductor device and its manufacture
JPS5984435A (en) Semiconductor integrated circuit and manufacture thereof
JPH0536712A (en) Semiconductor integrated circuit device and manufacture thereof
JPS5893252A (en) Semiconductor device and manufacture thereof
JPH0794721A (en) Semiconductor device and manufacture thereof
JPH0226061A (en) Manufacture of semiconductor integrated circuit
JPS59177941A (en) Manufacture of element isolation region
JPS60244036A (en) Semiconductor device and manufacture thereof
JPS59215741A (en) Manufacture of semiconductor integrated circuit device
JPS58200553A (en) Semiconductor device
JPH0234930A (en) Manufacture of semiconductor device
JPH0287527A (en) Manufacture of semiconductor integrated circuit device
JPS59105367A (en) Manufacture of metal oxide semiconductor type transistor
JPS6352466B2 (en)
JPH0653310A (en) Semiconductor device and its manufacture method
JPS60235460A (en) Semiconductor device
JPS5810857A (en) Complementary type mos semiconductor device
JPS5984543A (en) Bipolar integrated circuit device and its manufacture
JPS60171761A (en) Semiconductor integrated circuit device and manufacture thereof
JPS6114663B2 (en)
JPH0376023B2 (en)