JPS59174582A - Method of bonding ceramics to metal - Google Patents

Method of bonding ceramics to metal

Info

Publication number
JPS59174582A
JPS59174582A JP4595483A JP4595483A JPS59174582A JP S59174582 A JPS59174582 A JP S59174582A JP 4595483 A JP4595483 A JP 4595483A JP 4595483 A JP4595483 A JP 4595483A JP S59174582 A JPS59174582 A JP S59174582A
Authority
JP
Japan
Prior art keywords
metal
joining
ceramics
bonding
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4595483A
Other languages
Japanese (ja)
Inventor
瀬戸 佐智夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP4595483A priority Critical patent/JPS59174582A/en
Publication of JPS59174582A publication Critical patent/JPS59174582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は金属とセラミックスとの接合方法の改良に係
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for joining metals and ceramics.

近時、電子部品或いは真空機器にセラミックスが広く用
いられるようになって来ており、そのためセラミックス
と金属との接合技術について種々の研究が行われている
In recent years, ceramics have come to be widely used in electronic components and vacuum equipment, and therefore various studies are being conducted on bonding techniques between ceramics and metals.

その代表的な方法として例えばセラミックスの表面をM
 o −M n法で処理し、これに金属をろう付けする
方法がある。これを第1図について説明すると大きさ3
μm以下のMo粉に同じく3μm以下のMn粉を15〜
20%混合し、有機バインダを加えて練り合わせ、セラ
ミックス1の表面に塗布し、これを水蒸気を含む水素気
流中で1300〜1500℃で焼くとガラス質の中間層
2が形成される。次ぎにこの表面にNiめっき3を施し
、濡れ性を良くしてから適当なろ゛う材4を挟んで相手
金属5と水素気流中でろう付けする。
As a typical method, for example, the surface of ceramics is
There is a method of processing by o-Mn method and brazing metal to this. To explain this with reference to Figure 1, the size is 3.
Add Mn powder of 3 μm or less to Mo powder of 15 μm or less.
A glassy intermediate layer 2 is formed by mixing 20% of the mixture, adding an organic binder, kneading it, applying it to the surface of the ceramic 1, and baking it at 1300 to 1500°C in a hydrogen stream containing water vapor. Next, this surface is coated with Ni plating 3 to improve wettability, and then brazed to a mating metal 5 in a hydrogen stream with a suitable material 4 in between.

このようにセラミックスは一般にろうの濡れ性が悪いの
で直接金属をろう付けすることができず、中間層を設け
てろう付けするため手間がかかる上に、熟練を要する。
As described above, ceramics generally have poor wettability with metal, so they cannot be directly brazed to metals, and brazing requires an intermediate layer, which is time-consuming and requires skill.

また低融点のろうでろう付けした場合は使用中に温度が
上昇すると接合用のろうがとりて接合部が離れるとか、
ろうが揮発して真空度を悪くする等の問題がある。
Also, if you braze with a low melting point wax, if the temperature rises during use, the solder will come off and the joint will separate.
There are problems such as wax volatilization and poor vacuum quality.

本発明は上記の如き問題点を解決するセラミ・ノクスに
直接金属を接合させる方法を提供することを目的とし、
金属とセラミックスとを接合する方法において、金属と
セラミックスとを重ね、その間に該金属の酸化層をおい
て真空または不活性ガス雰囲気中で該金属の融点以下の
温度に加圧保持することを特徴とする金属とセラミック
スとの接合方法に係る。
The purpose of the present invention is to provide a method for directly bonding metal to ceramic nox, which solves the above-mentioned problems.
A method for joining metal and ceramics, characterized by stacking the metal and ceramics, placing an oxidized layer of the metal between them, and holding the metal under pressure at a temperature below the melting point of the metal in a vacuum or inert gas atmosphere. It relates to a method of joining metal and ceramics.

本発明者は金属の圧接について種々研究して来ているが
、その知識をセラミックスと金属の接合に応用すること
を試み、例えば銅とアルミナとを高真空中または高純度
アルゴンガス雰囲気中で加熱しながら加圧してみたが、
如何なる温度でも接合しなかった。しかしながら此の雰
囲気中に空気を混合して、その中で加熱したところ両者
はよく接合し、継手強度も大きいことを見出した。
The present inventor has conducted various studies on pressure welding of metals, and attempted to apply this knowledge to the joining of ceramics and metals. For example, by heating copper and alumina in a high vacuum or in a high purity argon gas atmosphere. I tried applying pressure while
It did not bond at any temperature. However, when air was mixed in this atmosphere and heated in the atmosphere, it was found that the two bonded well and the joint strength was high.

次に第2図に示す装置を使用して本発明を実施する態様
を銅とアルミナの接合を例として説明する。
Next, a mode of carrying out the present invention using the apparatus shown in FIG. 2 will be explained by taking as an example the bonding of copper and alumina.

試験材としてアルミナ11は純度99.0%のADS−
20の10丸×10龍長、銅12は無酸素銅(純度99
.98%)を使用し、加熱炉13は不活性ガス供給管1
4から一アルゴンガス(純度99.97%)吹き込んで
アルゴンガス雰囲気とし、その中で加熱して、第1表に
示す各指定温度に達したときに空気を炉内に導入し、銅
表面を酸化させ、同時に接合面にO,I kgf / 
mm 2の力を加え、10第1表 分間保持したのち、加圧を止め、炉内を再び高純度アル
ゴンガス雰囲気として炉冷した。
Alumina 11 was ADS-11 with a purity of 99.0% as a test material.
20 10 circles x 10 dragon length, copper 12 is oxygen-free copper (purity 99
.. 98%), and the heating furnace 13 is connected to the inert gas supply pipe 1.
4 to 1 argon gas (purity 99.97%) is blown in to create an argon gas atmosphere, heated in that atmosphere, and when each specified temperature shown in Table 1 is reached, air is introduced into the furnace and the copper surface is heated. Oxidize and simultaneously apply O, I kgf/
After applying a force of 2 mm 2 and holding it for 10 minutes, the pressurization was stopped, and the inside of the furnace was again made into a high-purity argon gas atmosphere and the furnace was cooled.

加熱温度が900℃以上では接合可能となり、接合部の
剪断強さは第1表に示すように加熱温度が高くなるにつ
れて大きくなることが判った。
It was found that bonding was possible at a heating temperature of 900° C. or higher, and the shear strength of the bonded portion increased as the heating temperature rose, as shown in Table 1.

加熱雰囲気の酸素濃度について述べれば、真空中または
アルゴンガス中の酸素を除去した高純度アルゴンガス雰
囲気中で加熱したのでは如何なる温度でも接合しなかっ
た。加圧の際アルゴンガス中に空気を混合して酸素濃度
を0〜21%の範囲に変え、1030℃、0.1kgf
/額2.10分間酸化しながら加圧した場合、酸素濃度
0の場合を除き継手の剪断強さは3〜8kgf 7m”
であった。酸素Oでは接合せず、0.2 ppm程度に
なると接合は可能になるが、継手強さはばらついていた
。酸素濃度を3%以上とすると完全に接合し、継手強度
にも大きな差が認められないことから見て、接 合に必
要な酸化銅の量は僅かで良いものと判断される。
Regarding the oxygen concentration in the heating atmosphere, no bonding occurred at any temperature when heating was performed in a vacuum or in a high purity argon gas atmosphere from which oxygen in the argon gas had been removed. During pressurization, air was mixed with argon gas to change the oxygen concentration to a range of 0 to 21%, and the temperature was 1030℃ and 0.1kgf.
/ Forehead 2. When pressurized while oxidizing for 10 minutes, the shear strength of the joint is 3 to 8 kgf 7m, except when the oxygen concentration is 0.
Met. Bonding did not occur with oxygen O, and bonding was possible at about 0.2 ppm, but the joint strength varied. When the oxygen concentration is set to 3% or more, complete bonding occurs and there is no significant difference in joint strength, so it is judged that only a small amount of copper oxide is required for bonding.

X線マイクロアナライザによる接合面近くの元素の線分
析によれば原子の数ミクロンの移動が認められたが、接
合のメカニズムについては明らかではない。
Line analysis of elements near the bonding surface using an X-ray microanalyzer revealed that the atoms had moved several microns, but the bonding mechanism is not clear.

銅の表面の酸化物としてはCu203 、CuOが認め
られた。
Cu203 and CuO were observed as oxides on the surface of copper.

接合部の顕微鏡組織の例は第2図に示すとおりであって
、此の場合銅表面の酸化層の厚さは約30μmであった
An example of the microscopic structure of the joint is shown in FIG. 2, and in this case, the thickness of the oxide layer on the copper surface was about 30 μm.

加圧の影響についていえば、アルゴンガス雰囲気中で1
030°Cに10分間酸化させて接合させた場合、加圧
力Oでは接合せず、加圧すると接合、することが確めら
れた。加圧力を大きくしても銅の変形が大きくなるだけ
で、継手強度には殆ど変化はない。1000℃では0.
2 kgf / tm ”で充分であって、金属とセラ
ミックスとの接着面を密着させるに必要な大きさであれ
ばよい。
Regarding the effect of pressurization, 1 in an argon gas atmosphere.
When bonding was performed by oxidizing at 030° C. for 10 minutes, it was confirmed that bonding did not occur under pressure O, but bonding occurred when pressure was applied. Even if the pressing force is increased, the deformation of the copper only increases, and there is almost no change in the strength of the joint. 0 at 1000℃.
2 kgf/tm" is sufficient and the size is sufficient as long as it is necessary to bring the bonding surfaces of metal and ceramic into close contact.

予備酸化について述べれば、本発明においては加圧に際
して接着させる金属の表面が酸化しており、該酸化金属
層を金属とセラミックスとの間に介在させて加圧するこ
とが要件である。酸化金属層は上記の実験のように所定
温度で加圧の際に形成させてもよいし、加圧前に形成さ
せておいてもよい。或いは金属を別の炉を用いて表面を
予め酸化させたものを用いてもよい。
Regarding preliminary oxidation, in the present invention, the surface of the metal to be bonded is oxidized during pressurization, and it is necessary to pressurize with the oxidized metal layer interposed between the metal and the ceramic. The metal oxide layer may be formed during pressurization at a predetermined temperature as in the above experiment, or may be formed before pressurization. Alternatively, a metal whose surface has been oxidized in advance using a separate furnace may be used.

加圧前の酸化金属層の形成手段としては例えば當温から
加熱する場合加熱途中の成る温度までは空気中で加熱し
て金属表面を酸化させ、それから上の温度はアルゴンガ
ス雰囲気中で加熱して酸化物の形成を止めて加圧温度で
加圧してもよい。
As a means of forming the metal oxide layer before pressurization, for example, when heating from a temperature of about 100 to 100, the metal surface is oxidized by heating in air up to a temperature in the middle of heating, and then heating in an argon gas atmosphere at higher temperatures. Pressure may be applied at a pressurizing temperature to stop the formation of oxides.

その−例を示せば、當温から485°Cまで空気中加熱
で銅表面を酸化させ、次いで炉内雰囲気をアルゴンガス
で置換し、1060°C,0,1kgf /f12、 
10分間保持で接合した場合剪断強さは14.4kgf
/顛2であった。
An example of this is to oxidize the copper surface by heating in air from a temperature of 485°C, then replace the atmosphere in the furnace with argon gas, and heat it at 1060°C, 0.1kgf/f12,
The shear strength is 14.4 kgf when bonded for 10 minutes.
/It was part 2.

上記は銅とアルミナとの接合を例にして説明したが、銅
合金(市販のクロム銅合金)とムライト(酸化珪素52
%、アルミナ42%)とを600℃までは空気中で加熱
し、600°C以上で炉内雰囲気をアルゴンガスに置換
して加熱を続け、1060°Cで0.2 kg f /
 vm 2の力を20分間加えたのち冷却し、充分な剪
断強さを有する継手を得ることが出来たように、一般の
金属とセラミックスの接合、例えば銅やアルミナのほか
に、金属としてアルミニウムとその合金や鉄とその合金
等とセラミックスとしてムライト、シリコンカーバイト
、シリコンナイトライド等との組合わせの接合にも本方
法を適用することが出来る。
The above was explained using the example of joining copper and alumina, but copper alloy (commercially available chromium-copper alloy) and mullite (silicon oxide 52
%, alumina 42%) in air up to 600°C, and above 600°C, the atmosphere in the furnace was replaced with argon gas and heating continued, and at 1060°C, 0.2 kg f /
As we were able to obtain a joint with sufficient shear strength by applying a force of vm 2 for 20 minutes and then cooling it, in addition to the joining of general metals and ceramics, for example, copper and alumina, we also applied aluminum as a metal. This method can also be applied to the joining of such alloys, iron and its alloys, etc., and ceramics such as mullite, silicon carbide, silicon nitride, etc.

或いはアルミナ同士を接合する場合中間に銅を挟み、本
発明の方法で銅の表面に酸化銅の薄層を形成させて、加
圧接合させればアルミナ同士を容易に接合できるように
、セラミックス同士を適当な金属薄層を挟んで接合出来
るなどその適用範囲は広い。
Alternatively, when joining alumina to each other, a thin layer of copper oxide is formed on the surface of the copper using the method of the present invention, and alumina can be easily joined to each other by sandwiching copper between them. Its range of applications is wide, as it can be used to bond metals with appropriate thin metal layers in between.

以」二述べたように本発明の方法によれば金属とセラミ
ックスとを接合するのに従来方法と異なって酸化金属の
薄層を介在させて簡単な操作で一度の加熱で直接に接合
させることができる。そして直接接合であるから高価な
ろうを必要とせず、接合部の強度も大きい。また、ろう
を使用しないのでろうが融りて接合部が剥がれるおそれ
がない上に、低融点ろう材の揮発もないので高真空機器
部品に適用して効果が大きい。
As described above, the method of the present invention differs from conventional methods in joining metals and ceramics by interposing a thin layer of metal oxide and directly joining them with a single heating operation with a simple operation. I can do it. Since it is a direct bond, there is no need for expensive solder, and the strength of the joint is high. Furthermore, since no solder is used, there is no risk of the solder melting and the bonded parts coming off, and there is no volatilization of the low melting point brazing material, so it is highly effective when applied to high vacuum equipment parts.

また、接合方法は一度接合条件が決まれば一定の加熱方
法で接合できるので特別の熟練を要しないなど、その実
用上の効果は極めて大きい。
In addition, once the bonding conditions are determined, the bonding method can be bonded using a certain heating method, so no special skill is required, and its practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の接合方法の一例を示す断面図、第2図は
本発明の方法の実施に適当な装置の一例を図解的に示す
立面図、第3図は本発明の方法による銅とアルミナとの
接合面近傍の顕微鏡組織を示す写真(X100)である
。 11・・・アルミナ、12・−・銅、13・・・加熱炉
、17・・・酸化銅薄層
FIG. 1 is a sectional view showing an example of a conventional bonding method, FIG. 2 is an elevational view schematically showing an example of an apparatus suitable for carrying out the method of the present invention, and FIG. 3 is a cross-sectional view showing an example of a conventional joining method. It is a photograph (X100) showing the microscopic structure near the bonding surface between aluminum and alumina. 11... Alumina, 12... Copper, 13... Heating furnace, 17... Copper oxide thin layer

Claims (1)

【特許請求の範囲】 J、金属とセラミックスとを接合する方法において、金
属とセラミックスとを重ね、その間に該金属の酸化層を
おいて真空または不活性ガス雰囲気中で該金属の融点以
下の温度に加圧保持することを特徴とする金属とセラミ
ックスとの接合方法2、金属の酸化層が加圧温度に加熱
昇温する過程で金属表面に形成された酸化物の薄層であ
る特許請求の範囲第1項記載の金属とセラミックスとの
接合方法 3、金属の酸化層が加圧温度において空気または酸素を
含むガス雰囲気中に保持された金属に形成された酸化物
の薄層である特許請求の範囲第1項記載の金属とセラミ
ックスとの接合方法
[Claims] J. A method for joining a metal and a ceramic, in which the metal and the ceramic are stacked, an oxide layer of the metal is placed between them, and the temperature is below the melting point of the metal in a vacuum or an inert gas atmosphere. 2. A method of joining metal and ceramics characterized by holding the metal under pressure at a temperature of Method 3 for joining metal and ceramics according to scope 1, a patent claim in which the oxidized layer of the metal is a thin layer of oxide formed on the metal held in an air or oxygen-containing gas atmosphere at a pressurized temperature. A method for joining metals and ceramics as described in item 1 of the scope of
JP4595483A 1983-03-22 1983-03-22 Method of bonding ceramics to metal Pending JPS59174582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4595483A JPS59174582A (en) 1983-03-22 1983-03-22 Method of bonding ceramics to metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4595483A JPS59174582A (en) 1983-03-22 1983-03-22 Method of bonding ceramics to metal

Publications (1)

Publication Number Publication Date
JPS59174582A true JPS59174582A (en) 1984-10-03

Family

ID=12733665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4595483A Pending JPS59174582A (en) 1983-03-22 1983-03-22 Method of bonding ceramics to metal

Country Status (1)

Country Link
JP (1) JPS59174582A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497966A (en) * 1990-08-09 1992-03-30 Ngk Spark Plug Co Ltd Production of ceramic sliding parts
WO1996009266A1 (en) * 1994-09-22 1996-03-28 Sumitomo Electric Industries, Ltd. Bonded body of aluminum and silicon nitride and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497966A (en) * 1990-08-09 1992-03-30 Ngk Spark Plug Co Ltd Production of ceramic sliding parts
WO1996009266A1 (en) * 1994-09-22 1996-03-28 Sumitomo Electric Industries, Ltd. Bonded body of aluminum and silicon nitride and production method thereof
US5904993A (en) * 1994-09-22 1999-05-18 Sumitomo Electric Industries, Ltd. Joint body of aluminum and silicon nitride and method of preparing the same

Similar Documents

Publication Publication Date Title
US3993411A (en) Bonds between metal and a non-metallic substrate
JP3011433B2 (en) Manufacturing method of ceramic circuit board
JP3057932B2 (en) Joining method of ceramic sintered body
US4471026A (en) Ternary alloys in brazing ceramics
JPS60131874A (en) Method of bonding ceramic and metal
JPS5997580A (en) Solder for bonding silicon carbide material
JPS59174582A (en) Method of bonding ceramics to metal
JPS593077A (en) Method of bonding ceramic member and metal
JPS59174581A (en) Method of bonding aluminum to alumina
JPS60191679A (en) Liquid phase diffusion joining method of heat resistant superalloy
JPS61273253A (en) Heat transmission part for heat exchanger and production
JPS62199288A (en) Brazing filler metal
SU1742269A1 (en) Method of bonding ceramic material with metals and non-metals
JPH0255695A (en) Cu-zr-solder foil
JPS6117475A (en) Method of directly bonding metal member to ceramic member
JPS5939779A (en) Ceramics and metal bonding method and composite material therefor
JPS6228067A (en) Joining method for ceramics
JPS6177676A (en) Silicon nitride bonded body and bonding method
JPS6334963A (en) Method of manufacturing ceramic substrate for semiconductor device and clad material therefor
JP3119759B2 (en) Ceramics-ceramic joints
JPS6389477A (en) Method of directly joining cu base member to ceramic substrate
JPH01249669A (en) Ceramic circuit board
JPH01111783A (en) Joined structure of carbon and ceramics, carbon or metal
JPS60200871A (en) Metal and ceramic bonding method
JPS6140878A (en) Bonded body of silicon nitride sintered body and metal and manufacture