JPS6389477A - Method of directly joining cu base member to ceramic substrate - Google Patents

Method of directly joining cu base member to ceramic substrate

Info

Publication number
JPS6389477A
JPS6389477A JP61235294A JP23529486A JPS6389477A JP S6389477 A JPS6389477 A JP S6389477A JP 61235294 A JP61235294 A JP 61235294A JP 23529486 A JP23529486 A JP 23529486A JP S6389477 A JPS6389477 A JP S6389477A
Authority
JP
Japan
Prior art keywords
ceramic substrate
bonding
heating
alloy
based member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61235294A
Other languages
Japanese (ja)
Inventor
浩一 新富
新五郎 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61235294A priority Critical patent/JPS6389477A/en
Publication of JPS6389477A publication Critical patent/JPS6389477A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子回路基板に用いられるセラミックス基体へ
のCu系部材の接合技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a technique for bonding a Cu-based member to a ceramic substrate used in an electronic circuit board.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

近年電子工業の発展にともない、電子回路基板等セラミ
ックス基体へ導電性金属を被覆する必要性が増加してい
る。しかし従来の接合方法は、例えばTi −Cu箔の
如きロー材を介してセラミックス基体へ導電性金属とし
ての銅を接合する等工程が複雑であり、しかも高い接合
強度を得るためには加圧が必要である等の欠点を有して
いた。
In recent years, with the development of the electronic industry, there has been an increasing need to coat ceramic substrates such as electronic circuit boards with conductive metals. However, conventional bonding methods require complicated steps, such as bonding copper as a conductive metal to a ceramic substrate via a brazing material such as Ti-Cu foil, and require pressure to obtain high bonding strength. It had disadvantages such as being necessary.

従って工程が簡便で、しかも高い接合強度が得られる接
合方法の開発が強く望まれており、この様な方法の一つ
として、ダイレクトボンド法即ちロー材等の接合剤を用
いないで、Cu箔等の金属をセラミックス基体へ直接接
合する方法が、例えば特開昭49−17381号発明が
提案されている。
Therefore, there is a strong desire to develop a bonding method that has a simple process and can provide high bonding strength. A method of directly bonding metals such as metals to ceramic substrates has been proposed, for example, in the invention of JP-A-49-17381.

即ち上記発明によれば、Cu箔をセラミックス基体とし
てのA1凸と接触させた後、両者を酸素0.03〜01
%を含む不活性ガス雰囲気中で、1065〜1083℃
の範囲内の温度で加熱することにより、両者間に良好な
接合状態を得ることが出来る。
That is, according to the above invention, after the Cu foil is brought into contact with the A1 protrusion as the ceramic substrate, both are exposed to oxygen of 0.03 to 0.1
1065-1083℃ in an inert gas atmosphere containing %
A good bonding state can be obtained between the two by heating at a temperature within the range of .

しかし上記ダイレクトボンド法は、加熱温度が1065
〜1083℃とわずか18℃の範囲しかなく、温度コン
トロールが非常に困難であるという問題点を有している
。即ち前記銅箔とセラミックス基体との接合体を工業的
に生産するためには、非常に温度分布が均一な高価な炉
を用いなければならず、工程が簡便であるという利点が
あまり活かされない。
However, in the above direct bonding method, the heating temperature is 1065
The temperature range is only 18°C, 1083°C, and has the problem that temperature control is extremely difficult. That is, in order to industrially produce the bonded body of the copper foil and the ceramic substrate, an expensive furnace with a very uniform temperature distribution must be used, and the advantage of a simple process is not fully utilized.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の点に鑑みなされたものであり、その目的
とするところは、Cu系部材を接合温度が1岑 比較的広い範囲でセラミックス基材に良好な接合強度を
もって直接接合させ得る方法を提供することである。
The present invention has been made in view of the above points, and its purpose is to provide a method for directly bonding a Cu-based member to a ceramic base material with good bonding strength over a relatively wide range of bonding temperatures. It is to provide.

即ち本発明によるCu系部材をセラミックス基体に直接
接合する方法は、該Cu系部材としてFe又はPbを0
.1〜ICI含有する一合金製部材を用い、セラミック
ス基体と接触させて配置し、酸素の存在下で加熱するこ
とを特徴とするものである。
That is, in the method of directly bonding a Cu-based member to a ceramic substrate according to the present invention, the Cu-based member contains no Fe or Pb.
.. The method is characterized in that a member made of an alloy containing 1 to ICI is used, is placed in contact with a ceramic substrate, and is heated in the presence of oxygen.

〔作 用〕[For production]

本発明においては、Cu系部材としてFe又はPbを含
有するCu合金製部材を用いるため、接合温度範囲が広
くなり容易に接合を行なうことが出来る。
In the present invention, since a Cu alloy member containing Fe or Pb is used as the Cu-based member, the joining temperature range is wide and joining can be easily performed.

即ち本発明においては、 Fa又はPbを含有するCu
4市 合金製部材をセラミックス基材と接触させて配置し、酸
素の存在下で加熱することにより、前記Cu合金製部材
とセラミックスとの界面にCu −Fe−0系又はCu
−Pb−0系の液相が生成し、この液相がセラミックス
を濡らすこ゛とによって良好な接合状態が得られるが、
前記液相が生成する温度範囲が従来のCu系材料として
純Cuを使用した場合(1065〜10g5℃でCu−
0系の液相が生成)にくらべて非常に広くなる。
That is, in the present invention, Cu containing Fa or Pb
By placing a 4-city alloy member in contact with a ceramic base material and heating it in the presence of oxygen, Cu-Fe-0 or Cu is added to the interface between the Cu alloy member and the ceramic.
- A Pb-0 system liquid phase is generated and a good bonding state is obtained by wetting the ceramics with this liquid phase.
The temperature range in which the liquid phase is generated is when pure Cu is used as the conventional Cu-based material (Cu-
0 system liquid phase is formed).

本発明における接合温度即ち酸素の存在下での加熱温度
は、Feを含有するCu合金製部材おいては1015−
1083℃、Pbを含有するCu合金製部材においては
812〜1083℃にする必要があるが、これは夫々の
下限未満の温度では銅系部材とセラミックスとの界面に
Cu −Fe −0系又はOu −pb−o系の液相が
生成せず、又1085℃を超えると包合金製部材自体が
溶融してしまうためである。
The bonding temperature in the present invention, that is, the heating temperature in the presence of oxygen is 1015-
For Cu alloy members containing Pb, the temperature needs to be 812 to 1083°C, but this means that at temperatures below the respective lower limits, Cu-Fe-0 or Ou This is because a -pb-o liquid phase is not generated, and if the temperature exceeds 1085°C, the encapsulated alloy member itself will melt.

又本発明において、Fe又はpbの含有量を夫々0゜1
〜10%の範囲内に限定したのは、0.1%未満では前
記液相が生成する温度範囲が純銅の場合にくらべてほと
んど広くならず、又10%を超えると材料の加工が困難
となり、また導電性が劣るためである。
In addition, in the present invention, the content of Fe or PB is set to 0°1, respectively.
The reason why it is limited to a range of ~10% is that if it is less than 0.1%, the temperature range in which the liquid phase is generated will hardly be wider than in the case of pure copper, and if it exceeds 10%, it will be difficult to process the material. This is also because the conductivity is poor.

本発明におけるFe又はPbを含むCu系部材を酸素の
存在下で加熱する方法としては、例えば該部材を窒素、
アルゴン等の不活性ガス中に酸素を微量含有する酸化性
ガス雰囲気中で加熱する方法、或いは該部材をあらかじ
め酸化させてその表面に200〜5000オングストロ
一ム程度の厚さの酸化物層を形成させた後、不活性ガス
雰囲気中で加熱する方法等をとることが出来る。而して
前記酸化性ガス雰囲気中で加熱する方法においては、不
活性ガス中の酸素量はα05〜α2v01%の範囲内に
する必要があるが、これは酸素量が0.05%未満では
Cu−Fe−0系又はCu −Pb −0系の液相が充
分に生成しなくて接合が起らなく、又0.2%を超える
とCu系部材表面の酸化が著しく、該Cu系部材の半田
付は性等が低下するためである。
In the present invention, a method of heating a Cu-based member containing Fe or Pb in the presence of oxygen includes, for example, heating the member with nitrogen,
A method of heating in an oxidizing gas atmosphere containing a small amount of oxygen in an inert gas such as argon, or oxidizing the member in advance to form an oxide layer with a thickness of about 200 to 5000 angstroms on the surface. After that, a method of heating in an inert gas atmosphere can be used. In the method of heating in an oxidizing gas atmosphere, the amount of oxygen in the inert gas must be within the range of α05 to α2v01%, but this means that if the oxygen amount is less than 0.05%, Cu -Fe-0 system or Cu-Pb-0 system liquid phase is not sufficiently generated and bonding does not occur, and if it exceeds 0.2%, oxidation of the surface of the Cu-based member is significant, and the surface of the Cu-based member is This is because soldering deteriorates the properties.

伺本発明に用いるセラミックスとしては、Altos、
BeO等の酸化物系セラミックスや、Sis N4 、
Sin。
Ceramics used in the present invention include Altos,
Oxide ceramics such as BeO, Sis N4,
Sin.

A!N等の非酸化物系セラミックスを用いることが出来
る。
A! Non-oxide ceramics such as N can be used.

更に本発明においては、基本的には加圧は必要でないが
、必要に応じて01〜IKg/−程度の加圧を行なって
も差貝支えなく、この場合には更に高い接着強度を得る
ことが出来る。
Furthermore, in the present invention, pressure is basically not required, but if necessary, pressure of about 01 to IKg/- can be applied without any difference in strength, and in this case, even higher adhesive strength can be obtained. I can do it.

〔実施例1〕 以下に実施例により本発明を更に具体的に説明する。[Example 1] The present invention will be explained in more detail below with reference to Examples.

厚さ100μmのCu箔及びFe又はPbを含有するC
u合金箔を厚さ0655閣のAi高基体上に乗せ、酸素
をα05〜0.1 vo1%含む窒素ガス中で、820
〜1070℃の温度範囲内で10分間加熱して、前記C
u又はCu合金箔をA1山基体に接合した。
Cu foil with a thickness of 100 μm and C containing Fe or Pb
A U alloy foil was placed on an Ai high substrate with a thickness of 0655 mm, and heated at 820 mm in nitrogen gas containing oxygen at α05 ~ 0.1 vol%.
Heating for 10 minutes within the temperature range of ~1070°C
U or Cu alloy foil was bonded to the A1 base.

而して得られた接合体について接合強度を測定した。銅
箔の材質、窒素ガス中の酸素濃度、加熱温度等の試験条
件並びに得られた接合体の接合強度(KLi/crn)
を第1表にまとめて示す。
The bonding strength of the thus obtained bonded body was measured. Test conditions such as copper foil material, oxygen concentration in nitrogen gas, heating temperature, and bonding strength of the resulting bonded body (KLi/crn)
are summarized in Table 1.

第1表から明らかな様に、Cu系部材中のFe、Pb量
が本発明の組成範囲内である本発明例随1.2のCu 
−Fe合金及びN13のCu −Pb合金は、夫々10
70〜1020℃、1070℃〜、g20℃の温度範囲
内において良好な接合強度が得られている。
As is clear from Table 1, the amount of Fe and Pb in the Cu-based member is within the composition range of the present invention.
-Fe alloy and N13 Cu-Pb alloy each have 10
Good bonding strength was obtained within the temperature ranges of 70 to 1020°C, 1070°C to g20°C.

一方Fe又はpb量が本発明の組成範囲よりも少ない比
較例Nα4.5のCu−Fe合金、Cu−Pb合金及び
従来例Nil 6のCuは1070℃に加熱した場合に
は良好な接合強度が得られるが、1060℃以下の温度
に加熱した場合は接合が起らない。
On the other hand, the Cu-Fe alloy of Comparative Example Nα4.5, Cu-Pb alloy, and the Cu of Conventional Example Nil 6, in which the amount of Fe or Pb is smaller than the composition range of the present invention, have good bonding strength when heated to 1070°C. However, when heated to a temperature of 1060° C. or lower, no bonding occurs.

〔実施例2〕 厚さ100μmのCu−2%Fe合金箔をあらかじめ大
気中で加熱して1000オングストロームの厚さの酸化
物層を形成させた後、これを該酸化物層を介して厚さO
,G 55 rrmのM、○導体上に乗せ、窒素ガス中
で1050℃で10分間加熱したところ、7.5に9/
αの良好な接着強度を有する接合体が得られた。
[Example 2] A Cu-2% Fe alloy foil with a thickness of 100 μm was heated in advance in the air to form an oxide layer with a thickness of 1000 angstroms. O
, G 55 rrm M, ○ When placed on a conductor and heated in nitrogen gas at 1050°C for 10 minutes, the result was 7.5 to 9/
A bonded body having a good adhesive strength of α was obtained.

〔実施例さ〕[Example]

厚さ100μmのCu−2%Fe合金箔を厚さα655
111IO隔03基体上に乗せ、α3Kf1/嘉彎加圧
した状態で、酸素を01%含む窒素ガス中で1050℃
で10分間加熱したところ、93に9/crnの良好な
接着強度を有する接合体が得られた。
100μm thick Cu-2%Fe alloy foil with thickness α655
Placed on a 111IO 03 substrate and pressurized to α3Kf1/Kaikai, heated at 1050°C in nitrogen gas containing 01% oxygen.
When heated for 10 minutes, a bonded body having a good adhesive strength of 93 to 9/crn was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、銅系部材をセラミックス基体へ直接接
合する際の温度範囲がかなり広くて、温度コントロール
が従来にくらべて非常に容易であり、しかも得られる接
合体の接合強度も良好である等工業上顕著な効果を奏す
るものである。
According to the present invention, the temperature range when directly bonding a copper-based member to a ceramic substrate is considerably wide, temperature control is much easier than in the past, and the bonding strength of the resulting bonded body is also good. It has remarkable industrial effects.

Claims (3)

【特許請求の範囲】[Claims] (1)Cu系部材をセラミックス基体に加熱により直接
接合するにあたり、該Cu系部材としてFe又はPbを
0.1〜10%含有するCu合金製部材を用い、セラミ
ックス基体と接触させて配置し、加熱することを特徴と
するCu系部材をセラミックス基体に直接接合する方法
(1) When directly joining a Cu-based member to a ceramic substrate by heating, a Cu alloy member containing 0.1 to 10% of Fe or Pb is used as the Cu-based member and placed in contact with the ceramic substrate, A method for directly bonding a Cu-based member to a ceramic substrate, which involves heating.
(2)Cu合金製部材をセラミックス基体と接触させて
配置し、酸化性ガス雰囲気中で加熱することを特徴とす
る特許請求の範囲第1項記載のCu系部材をセラミック
ス基体に直接接合する方法。
(2) A method for directly joining a Cu-based member to a ceramic substrate according to claim 1, which comprises placing the Cu-alloy member in contact with the ceramic substrate and heating it in an oxidizing gas atmosphere. .
(3)Cu合金製部材をあらかじめ酸化させた後セラミ
ックス基体と接触させて配置し、不活性ガス雰囲気中で
加熱することを特徴とする特許請求の範囲第1項記載の
Cu系部材をセラミックス基体に直接接合する方法。
(3) The Cu-based member according to claim 1 is placed in contact with a ceramic substrate after being oxidized in advance, and heated in an inert gas atmosphere. Method of joining directly to.
JP61235294A 1986-10-02 1986-10-02 Method of directly joining cu base member to ceramic substrate Pending JPS6389477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61235294A JPS6389477A (en) 1986-10-02 1986-10-02 Method of directly joining cu base member to ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61235294A JPS6389477A (en) 1986-10-02 1986-10-02 Method of directly joining cu base member to ceramic substrate

Publications (1)

Publication Number Publication Date
JPS6389477A true JPS6389477A (en) 1988-04-20

Family

ID=16983982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61235294A Pending JPS6389477A (en) 1986-10-02 1986-10-02 Method of directly joining cu base member to ceramic substrate

Country Status (1)

Country Link
JP (1) JPS6389477A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583317A (en) * 1994-01-14 1996-12-10 Brush Wellman Inc. Multilayer laminate heat sink assembly
US5777259A (en) * 1994-01-14 1998-07-07 Brush Wellman Inc. Heat exchanger assembly and method for making the same
US6022426A (en) * 1995-05-31 2000-02-08 Brush Wellman Inc. Multilayer laminate process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583317A (en) * 1994-01-14 1996-12-10 Brush Wellman Inc. Multilayer laminate heat sink assembly
US5686190A (en) * 1994-01-14 1997-11-11 Brush Wellman Inc. Multilayer laminate product and process
US5777259A (en) * 1994-01-14 1998-07-07 Brush Wellman Inc. Heat exchanger assembly and method for making the same
US6022426A (en) * 1995-05-31 2000-02-08 Brush Wellman Inc. Multilayer laminate process

Similar Documents

Publication Publication Date Title
US3994430A (en) Direct bonding of metals to ceramics and metals
US3993411A (en) Bonds between metal and a non-metallic substrate
US3766634A (en) Method of direct bonding metals to non-metallic substrates
KR910004923B1 (en) Ceramic-metal composite and its circuit board and fabrication method
Burgess et al. The Direct Bonding of Metals to Ceramics by the Gas‐Metal Eutectic Method
JPH0429390A (en) Manufacture of ceramic circuit board
GB1559590A (en) Bonding of metals to ceramics and metals
US4737416A (en) Formation of copper electrode on aluminum nitride
JPS6389477A (en) Method of directly joining cu base member to ceramic substrate
GB2059323A (en) Bonding metals to non-metallic substrates
JPH01257356A (en) Lead frame for semiconductor
JP3969987B2 (en) Ceramic / alloy joints
JP3387655B2 (en) Joining method of ceramics and silicon
JPS61247672A (en) Method of joining metal particle to substrate and adhesive composition
JP2730794B2 (en) Conductor paste for aluminum nitride substrate
JPH0259562B2 (en)
JP2503780B2 (en) Manufacturing method of substrate for semiconductor device
JP2001089257A (en) Brazing filler metal for aluminum circuit sheet and ceramic circuit board using the same
JP4286992B2 (en) Brazing material for Al circuit board and ceramic circuit board using the same
JPH01249669A (en) Ceramic circuit board
JPS6117475A (en) Method of directly bonding metal member to ceramic member
JPH0760882B2 (en) Brazing method
JPH01201085A (en) Production of copper-clad ceramic substrate for electronic part
JPS59162192A (en) Formation of electroconductive film on ceramic surface
JPH02100347A (en) Substrate for semiconductor device