JPS60200871A - Metal and ceramic bonding method - Google Patents

Metal and ceramic bonding method

Info

Publication number
JPS60200871A
JPS60200871A JP5914184A JP5914184A JPS60200871A JP S60200871 A JPS60200871 A JP S60200871A JP 5914184 A JP5914184 A JP 5914184A JP 5914184 A JP5914184 A JP 5914184A JP S60200871 A JPS60200871 A JP S60200871A
Authority
JP
Japan
Prior art keywords
metal
ceramics
tin
bonding
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5914184A
Other languages
Japanese (ja)
Inventor
錦田 俊一
小泉 光恵
昌彦 島田
松野 二三朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5914184A priority Critical patent/JPS60200871A/en
Publication of JPS60200871A publication Critical patent/JPS60200871A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、金属とセラミックスを熱間静水圧加圧装置
を用いて固相接合する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for solid-phase bonding metals and ceramics using a hot isostatic press device.

〈産業上の利用分野〉 近年、各種高温装置の高能率化や大型化傾向力S目立っ
てきており、これらに対処するために要求される高性能
高温材料の開発上、金属材料とセラミックスとの接合技
術が極めて重要な位置を占めるようになってきた。
<Industrial Application Fields> In recent years, there has been a noticeable trend toward higher efficiency and larger sizes of various high-temperature equipment, and in order to develop high-performance high-temperature materials required to cope with these trends, the combination of metal materials and ceramics has become more prominent. Bonding technology has come to occupy an extremely important position.

〈従来技術〉 従来、金属とセラミックスとを接合する方法としては、 ■ 接着剤による接合、 ■ ソルダリング又はプレーソング等のろう付けによる
接合、 ■ 焼はめや冷しばめ等の機械的手段による接合、 等が知られており、実用に供されてきだが、これらの方
法ではいずれも接合強度が弱く、高温に加熱された場合
に剥離を生じやすいと言った問題を有している上、特に
機械的手段による場合には、接合する金属部材やセラミ
ックスの形状がどうしても制約されてしまうと言う不都
合を避けることができなかつだのである。
<Prior art> Conventionally, methods for joining metals and ceramics include: ■ Joining with adhesives, ■ Joining by brazing such as soldering or play song, and ■ Mechanical means such as shrink fitting and cold tight fitting. Bonding, etc. are known and have been put into practical use, but all of these methods have problems such as weak bonding strength and a tendency to peel when heated to high temperatures. When using mechanical means, it is impossible to avoid the disadvantage that the shapes of the metal members or ceramics to be joined are inevitably restricted.

このようなことから、近年、熱間静水圧加圧装置を用い
て、セラミックスと金属に高圧をかけながら高温で直接
接合を行わせる固相接合法が注目を浴びるようになって
きた。
For this reason, in recent years, solid-phase bonding methods have been attracting attention, in which ceramics and metals are directly bonded at high temperature while applying high pressure using a hot isostatic press device.

しかしながら、Nb系金属とM2O3系セラミックスと
の接合のような特定のものの場合を除いては、金属とセ
ラミックスとを固相接合法にて直接的に圧接しようとし
ても十分な接合がなされないということが、幾多の研究
結果から明らかとなっている。そして、その理由として
次のa)及びb)に示す事−柄が指摘されている。即ち
、 a)セラミックスの構成元素であるSi、C,B等が、
高温で金属中に拡散し、界面の金属側に脆い層を形成し
たり、セラミックスの劣化を来だしたりして、その部分
で剥離を生じ易くなること。
However, with the exception of specific cases such as bonding between Nb-based metals and M2O3-based ceramics, sufficient bonding cannot be achieved even if the metal and ceramics are directly pressure-welded using solid phase bonding. This is clear from numerous research results. The following reasons a) and b) have been pointed out as reasons for this. That is, a) Si, C, B, etc., which are the constituent elements of ceramics,
It diffuses into the metal at high temperatures, forming a brittle layer on the metal side of the interface or causing deterioration of the ceramic, making it easier to peel in that area.

例えば、鉄系金属とセラミックス焼結体(TiN。For example, a sintered body of iron-based metal and ceramics (TiN).

T IC+ T I B 2 + AQ 203 + 
Z r O2r Al! N + S I C、S l
 3N 4等)とを、直接、熱間静水圧加圧装置を用い
て接合させようとしても、全く接合しなかったシ、反応
が激しくて中間に脆い層が形成されたりして所望の接合
体を得ることができないのである。
T IC+ T I B 2 + AQ 203 +
Z r O2r Al! N + SIC, SI
3N, 4, etc.) directly using a hot isostatic press machine, it may not be bonded at all, or the reaction may be intense and a brittle layer may be formed in the middle, making it difficult to form the desired bonded product. It is not possible to obtain.

b)金属とセラミックスの熱膨張係数が異るため、圧接
後の冷却の際、接合界面に応力が集中して剥離を生ずる
こと。
b) Because the thermal expansion coefficients of metals and ceramics are different, stress concentrates on the bonding interface during cooling after pressure welding, resulting in peeling.

ただ、上述したような、Nb系金属とAll! 203
系セラミツクスの場合では、両者に熱膨張の差がほとん
どなく、また脆化を生ずることのない適当な反応層(N
bOx )が形成されるので、例外的に良好な接合体が
得られるのである。
However, as mentioned above, Nb-based metals and All! 203
In the case of ceramics, there is almost no difference in thermal expansion between the two, and an appropriate reaction layer (N
bOx ) is formed, resulting in an exceptionally good bond.

そこで、このような不都合を回避するため、最近、Ae
203セラミックスとFeとの同相接合の際に、両者の
熱膨張差を緩和するためのrFeとAC203の混合粉
から成る中間層」を間にはさんでから接合する方法も提
案されている(社団法人窯業協会の「昭和58年 年金
公演」、昭和58年5月16〜18日開催)。
Therefore, in order to avoid such inconvenience, recently Ae
A method has also been proposed in which an "intermediate layer made of a mixed powder of rFe and AC203 is sandwiched between the two to alleviate the thermal expansion difference between the two when in-phase bonding of 203 ceramics and Fe is carried out." Ceramics Association's ``1981 Pension Performance'' held from May 16th to 18th, 1988).

また、窒化物系セラミックスとMOとの固相接合の際に
、rMoと接合しようとするセラミックスの粉末の混合
粉からなる中間層」を間にはさんでから接合する方法も
提案されている( JournatofAmerica
n Ceramic 5ociek’7号Cll’l’
頁)。
In addition, a method has been proposed in which nitride-based ceramics and MO are bonded together after sandwiching an "intermediate layer made of a mixed powder of rMo and the ceramic powder to be bonded" ( Journal of America
n Ceramic 5ociek'7 Cll'l'
page).

ところが、この方法によれば、確かにAg2O3とFe
や、Moと窒化物系セラミックスとの良好な接合体を得
ることができるものではあったけれども、対象がrAQ
203セラミックスとFeの接合」や「窒化物系セラミ
ックスとMoの接合」に限られるものである上、接合に
先立って中間層の混合が必須である等の不利な問題をも
有していたのである。
However, according to this method, it is true that Ag2O3 and Fe
Although it was possible to obtain a good bonded body of Mo and nitride ceramics, the target was rAQ.
In addition to being limited to ``bonding of 203 ceramics and Fe'' and ``bonding of nitride ceramics and Mo,'' it also had disadvantageous problems such as the necessity of mixing an intermediate layer prior to bonding. be.

〈発明の目的〉 本発明者等は、上述のような問題点をふまえた上で、 [金属とセラミックスとの固相接合の際、両者の熱膨張
差を緩和するとともにそれらの間の反応を適当に制御し
、強固な接合体を実現するだめの最も有望な手段は、や
はシ両者間に適当な中間層を介在させることである」 との観点に立ち、接合対象材の種類に影響されることな
く、しかも中間層を混ぜ合わせる工程等の繁雑な補助的
作業を必要とせずに、金属部材とセラミックス焼結部材
とを十分な接合強度で接合する方法を見出すべく研究を
重ねだ結果、以下(a)〜(e)に示される如き知見を
得るに至ったのである。
<Purpose of the Invention> In view of the above-mentioned problems, the inventors of the present invention have developed a method to reduce the thermal expansion difference between metal and ceramics and to reduce the reaction between them during solid-phase bonding. The most promising means of achieving a strong joint with appropriate control is to interpose an appropriate intermediate layer between the two materials. The result of repeated research was to find a method for bonding metal components and sintered ceramic components with sufficient bonding strength without the need for complicated auxiliary work such as the process of mixing intermediate layers. , we have come to the following findings as shown in (a) to (e) below.

〈知見事項〉 (a) 高温においても比較的安定な化合物として知ら
れているTiNは、高温度域に加熱されても、Fe(普
通鋼はもちろん、ステンレス鋼や高cr鋼をも含む) 
、 Co 、Ni 、 Nb 、Mo 、 Cr等はと
んどの金属と反応を生ずることがないが、例えばTiC
等のセラミックスとは高温域でTi(C,N)という固
溶体を形成すること。
<Knowledge> (a) TiN, which is known as a relatively stable compound even at high temperatures, is a compound that is highly stable even at high temperatures.
, Co, Ni, Nb, Mo, Cr, etc. do not react with most metals, but for example, TiC
Ceramics such as Ti (C, N) form a solid solution at high temperatures.

(b) 従って、金属部材とセラミックス焼結部材との
間にTiN粉末の層を介在させてから、これらを高温に
加熱し、両部材を高圧で押し付けると、金属部材側から
それを構成する金属がTiN粉末層へ拡散することとな
り、 TiN粉と反応することなく該TiN粉同士を結
合するようになること。
(b) Therefore, if a layer of TiN powder is interposed between a metal member and a ceramic sintered member, and then these are heated to a high temperature and both members are pressed together under high pressure, the constituent parts of the metal member are will be diffused into the TiN powder layer, and the TiN powder will be bonded to each other without reacting with the TiN powder.

つまり、前記TiN粉末中間層は、TiN粉の粒子同士
が金属をバインダーとして結合されたサーメット状の層
に変わり、金属部材側に脆い拡散層を形成することなく
、それと強固に結合してしまうこと。
In other words, the TiN powder intermediate layer turns into a cermet-like layer in which TiN powder particles are bonded to each other using metal as a binder, and is firmly bonded to the metal member without forming a brittle diffusion layer on the metal member side. .

更に、TiN粉の中間層は、セラミックス部材と直接的
に、或いは一部拡散金属を介して強固に結合するので、
結果的には金属部材とセラミックス焼結部材との強固な
接合体が得られること。
Furthermore, since the intermediate layer of TiN powder is strongly bonded to the ceramic member directly or partially through the diffusion metal,
As a result, a strong joined body of the metal member and the ceramic sintered member can be obtained.

(C)シかも、金属素地中にTiN粒子が分散した状態
の前記サーメット状の中間層は、金属とセラミックスの
中間の熱膨張であるために、高温で接合された金属部材
とセラミックス焼結部拐は、その後の冷却によっても剥
離を生じないこと。
(C) Possibly, the cermet-like intermediate layer in which TiN particles are dispersed in the metal base has a thermal expansion between that of metal and ceramics, so the metal member and ceramic sintered part are joined at high temperature. The coating shall not peel off even after cooling.

(d) 即ち、金属部材とセラミックス焼結部材との固
相接合に際して、両者間にT i N粉末の中間層をは
さんで接合作業を実施すると、HI P処理中(熱間静
水圧加圧処理中)にTiN粉末層かサーメット状のF金
属とTiNの混合層」となって金属部材と強固に接合す
る上、この層か金属とセラミックスの熱膨張率の差を緩
和することとなり、更に、金属とセラミックスの反応が
適度に抑制されつつTiNとセラミックスとが良好に接
合するので、接合強度の優れた金属とセラミックスとの
複合部材が得られること。
(d) In other words, when solid-phase joining a metal member and a sintered ceramic member, if the joining operation is performed with an intermediate layer of TiN powder sandwiched between the two, during the HIP process (hot isostatic pressing) During the treatment, a TiN powder layer or a cermet-like mixed layer of F metal and TiN forms, which not only forms a strong bond with the metal component, but also alleviates the difference in thermal expansion coefficient between the metal and the ceramic. 2. Since TiN and ceramics are bonded well while the reaction between the metal and ceramics is moderately suppressed, a composite member of metal and ceramics with excellent bonding strength can be obtained.

(e) 接合作業に先立って金属部材とセラミックス部
材間に介在させる中間層として、 TiN粉に前記金属
部材と同−又はそれに悪影響を与えない金属の粉末を混
入した混合粉末層を適用すると、比較的低い温度での接
合が可能となること、〈発明の構成〉 この発明は、上記知見に基づいてなされたものであり、 金属材料とセラミックス焼結体を熱間静水圧加圧装置を
用いて高温高圧下で接合するに当り、接合中間層として
、TiN粉末層、或いはT i N粉と金属粉との混合
粉末層を介在させることにより、熱サイクル付加条件下
においても剥離を生ずることのない優れた接合性を有す
る複合部材を5コスト安く製造し得るようにした点、 に特徴を有するものである。
(e) If a mixed powder layer containing TiN powder mixed with powder of a metal that is the same as that of the metal member or does not have an adverse effect on the metal member is applied as an intermediate layer between the metal member and the ceramic member prior to the bonding operation, a comparison result will be obtained. <Structure of the Invention> This invention was made based on the above knowledge, and it is possible to bond a metal material and a ceramic sintered body using a hot isostatic pressing device. When joining under high temperature and high pressure, by interposing a TiN powder layer or a mixed powder layer of TiN powder and metal powder as the joining intermediate layer, peeling does not occur even under heat cycle conditions. The present invention is characterized in that a composite member having excellent bonding properties can be manufactured at a low cost.

なお、前記「金属材料コは特定の種類に制限されるもの
ではないが、特にTiNと反応し難いFe。
The above-mentioned "metal material" is not limited to a specific type, but Fe is particularly difficult to react with TiN.

Co、Ni、Nb 、Mo 、 Cr、或いはそれらの
合金であることが望ましい。まだ、前記「セラミックス
」も特定の種類に制限されるものではなく、TiC。
Co, Ni, Nb, Mo, Cr, or an alloy thereof is preferable. However, the above-mentioned "ceramics" are not limited to a specific type, and include TiC.

T iN、 TiB2 、 ZrO2,或いはAc2o
3等の焼結体ノイずれもが対象となるものである。
TiN, TiB2, ZrO2, or Ac2o
This also applies to sintered compacts such as No. 3.

そして、接合の際の加熱温度は、使用する金属が溶融せ
ず、かつTiNとの反応が大きくならない範囲で、しか
も十分な拡散が起る温度を選べば良い。なお、普通鋼や
ステンレス鋼の場合には、加熱温度を1100〜140
0’C程度にするのか良い。
The heating temperature during bonding may be selected within a range where the metal used does not melt and the reaction with TiN does not become large, and at which sufficient diffusion occurs. In addition, in the case of ordinary steel or stainless steel, the heating temperature should be set to 1100 to 140.
It is best to keep it at around 0'C.

接合の際の加圧力も、接合部材の密着度、変形、設備の
容量等を考慮して適宜の値を選べは良く、500−15
00kg/ffl程度の広い範囲を選択することができ
る。
The pressing force during joining should be selected appropriately considering the degree of adhesion, deformation, capacity of the equipment, etc. of the joining members, and is 500-15.
A wide range of about 00 kg/ffl can be selected.

更に、中間層として使用するTiN粉や金属粉は、粒度
が−300メツシユ程度のものを使用するのが好ましく
、直径が2〜6μm程度の微小粒の使用も可能である。
Further, the TiN powder or metal powder used as the intermediate layer preferably has a particle size of about -300 mesh, and it is also possible to use fine particles with a diameter of about 2 to 6 μm.

また、粉末から成る中間層の厚さとして100μm〜1
 vatt程度を選ぶことができるが、特K T i 
N粉末のみの場合には中間層自体の脆さが問題になるの
で薄い方が良く、200〜4C)Oμm程度にするのが
好ましい。
In addition, the thickness of the intermediate layer made of powder is 100 μm to 1 μm.
You can choose about vatt level, but special K T i
If only N powder is used, the brittleness of the intermediate layer itself becomes a problem, so the thinner the layer, the better, and the thickness is preferably about 200 to 4C) Om.

さて、第1図は、金属部材1とセラミックス焼結体2と
を本発明の方法によって接合しようとする際の、接合部
材の組立て方法を模式図化したものであり、金属部材l
とセラミックス焼結体2との間に、TiN粉末層3を介
在させた状態を示している。
Now, FIG. 1 is a schematic illustration of a method of assembling a joining member when a metal member 1 and a ceramic sintered body 2 are to be joined by the method of the present invention.
A TiN powder layer 3 is interposed between the ceramic sintered body 2 and the ceramic sintered body 2.

いま、この組立て体を、熱間静水圧加圧装置を用いて高
温・高圧で処理すると、第2図に示すように、金属部材
1を構成する金属の一部はTiN粉末層中に拡散・侵入
してセラミックス焼結体2面にまで達し、TiN粉末層
を、金属中にTiN粒子4が分散したサーメット状のも
のにしてしまって、金属部材lとTiN粉末層を強固に
結合することとなる。
Now, when this assembly is treated at high temperature and high pressure using a hot isostatic pressing device, a part of the metal constituting the metal member 1 will be diffused into the TiN powder layer as shown in FIG. It penetrates and reaches the 2nd surface of the ceramic sintered body, turning the TiN powder layer into a cermet-like one in which TiN particles 4 are dispersed in the metal, thereby firmly bonding the metal member 1 and the TiN powder layer. Become.

一方、セラミックス焼結体2とTiN粒子4とは、高温
によって各々の構成成分が固溶体を作ったり、或いは拡
散金属が仲立ちになったりして強固に接合するようにな
る。
On the other hand, the ceramic sintered body 2 and the TiN particles 4 are firmly bonded to each other due to the formation of a solid solution by each component due to the high temperature, or by the diffusion metal acting as an intermediary.

その上、金属の拡散によって形成されるサーメット状の
中間層は、金属部材lとセラミックス焼結体2の中間の
熱膨張を有するので両者の熱膨張差を緩和する作用を持
っており、高温の接合作業の後そのまま冷却しても、金
属部材1とセラミックス焼結体2とが剥離を起すことが
ないのである。
Furthermore, the cermet-like intermediate layer formed by metal diffusion has a thermal expansion intermediate between that of the metal member 1 and the ceramic sintered body 2, so it has the effect of alleviating the difference in thermal expansion between the two. Even if the metal member 1 and the ceramic sintered body 2 are cooled after the bonding operation, the metal member 1 and the ceramic sintered body 2 will not separate.

次に、この発明を実施例並びに比較例によって具体的に
説明する。
Next, the present invention will be specifically explained using Examples and Comparative Examples.

〈実施例〉 比較例 1 静水圧加圧装置を用いて1000気圧加圧下、1700
℃に2時間保持という条件で焼結したTiN焼結体(寸
法、7φX1.5t、相対密度゛98%)と、鉄(寸法
 7φxz5t、)を用意し、両者とも表面を600番
エメリー紙で研磨した。
<Example> Comparative Example 1 Under pressure of 1000 atm using a hydrostatic pressure device, 1700
A TiN sintered body (dimensions: 7φ x 1.5t, relative density: 98%), which was sintered under the conditions of holding at ℃ for 2 hours, and iron (dimensions: 7φ x 5t,) were prepared, and the surfaces of both were polished with No. 600 emery paper. did.

これらの試料を重ね、ガラスカプセル法にて、熱間静水
圧加圧装置で1000気圧加圧下、 1300℃に1時
間保持なる処理を施し、300℃/hrの冷却速度で室
温まで冷却して装置から試料を取り出した。
These samples were piled up and treated using the glass capsule method by holding at 1300°C for 1 hour under a pressure of 1000 atm in a hot isostatic pressurizer, and then cooled to room temperature at a cooling rate of 300°C/hr. A sample was taken from.

試料を調べてみると、TiN焼結体と鉄とは全く接合し
ておらず、両者の界面で離れていることが確認された。
When the sample was examined, it was confirmed that the TiN sintered body and the iron were not bonded to each other at all, and were separated at the interface between the two.

なお、同様にして、TiC焼結体と鉄、AQzOs焼結
体と鉄、及びZrCh焼結体と鉄の糾合せて試験を行っ
たが、いずれもセラミックスと鉄の界面で剥離し、接合
されないことがわかった。
In addition, tests were similarly conducted on TiC sintered bodies and iron, AQzOs sintered bodies and iron, and ZrCh sintered bodies and iron, but all of them peeled off at the interface between the ceramic and iron and were not bonded. I understand.

比較例 2 比較例1と全く同じ手法でTiBzの焼結体を作り、同
じく比較例1と同様手段で鉄との接合を試みた。
Comparative Example 2 A TiBz sintered body was made using the same method as in Comparative Example 1, and an attempt was made to bond it to iron using the same method as in Comparative Example 1.

しかし、この場合には、処理中にTiB2と鉄とか激し
く反応し、鉄とTi82間の鉄側に脆弱な反応層が形成
されただめに、冷却の途中で両者が剥離してしまった。
However, in this case, TiB2 and iron reacted violently during the treatment, and a weak reaction layer was formed on the iron side between iron and Ti82, so that both of them peeled off during cooling.

実施例 l 比較例1と同じ方法で作製したTiN、TiC。Example l TiN and TiC produced by the same method as Comparative Example 1.

TiB2. AQ203及びZrO2からそれぞれ成る
焼結体を用意した。
TiB2. Sintered bodies made of AQ203 and ZrO2 were prepared.

一方、同じく比較例1に示したと同様の鉄材をも準備し
た。
On the other hand, an iron material similar to that shown in Comparative Example 1 was also prepared.

次に、焼結体と鉄との間にTiN粉末(300メツシユ
以下)を第1図に示されるように介在させて、両者を重
ね合わせた。このときの’I’ i N粉末層の厚さは
100〜500μmであった。
Next, TiN powder (300 mesh or less) was interposed between the sintered body and the iron as shown in FIG. 1, and the two were overlapped. The thickness of the 'I' i N powder layer at this time was 100 to 500 μm.

この重ね合わせ体を、熱間静水圧加圧装置を用い、ガラ
スカプセル法で1000気圧の加圧下、1300℃に1
時保持なる処理を施し、300℃/hrの冷却速度で室
温まで冷却して装置から試料を取り出した。
This stacked body was heated to 1300°C under a pressure of 1000 atm using a hot isostatic pressurizing device using a glass capsule method.
The sample was then subjected to a holding process, cooled to room temperature at a cooling rate of 300°C/hr, and then taken out from the apparatus.

試料を調べてみると、いずれも、鉄とセラミックス焼結
体とが良好に接合していることが確認された。
When the samples were examined, it was confirmed that the iron and ceramic sintered bodies were well bonded in all cases.

そして、これらの試料を接合界面に乎直に切断し、顕微
鏡で歓談したが、試料にはクラックの発生が全く認めら
れなかった。なお、第3図はA+!203焼結体と鉄と
の接合体に関しての接合部顕微鏡写真図である。
These samples were then cut directly at the joint interface and examined under a microscope, but no cracks were observed in the samples. In addition, Figure 3 is A+! FIG. 2 is a micrograph of a bonded part of a bonded body of 203 sintered body and iron.

実施例 2 実施例1におけると同様のセラミックス焼結体と5US
304ステンレス鋼を用意し、実施例1と同様の手法に
て両者を接合した。
Example 2 Ceramic sintered body and 5US similar to those in Example 1
304 stainless steel was prepared, and the two were joined using the same method as in Example 1.

その結果、5US304ステンレス鋼は、鉄に比べて熱
膨張係数がかなり大きいにもかかわらず、TiNが分散
しだ5US304ステンレス鋼中間層の、形成のだめに
、いずれのセラミックス焼結体とも良好な接合を生じて
いることが確認された。
As a result, despite the fact that 5US304 stainless steel has a considerably larger coefficient of thermal expansion than iron, it was found that the 5US304 stainless steel intermediate layer in which TiN was dispersed formed a good bond with any ceramic sintered body. It was confirmed that this was occurring.

実施例 3 SUS304ステンレス鋼に代えてSUS 410ステ
ンレス鋼を用いたほかは、実施例2と全く同じ試験を行
ったが、この場合も、鉄やSUS 304ステンレス鋼
を使用した場合と同様に良好な接合が得られることを確
認した。
Example 3 The same test as in Example 2 was conducted except that SUS 410 stainless steel was used instead of SUS 304 stainless steel, but in this case as well, the test results were as good as when iron or SUS 304 stainless steel was used. It was confirmed that a bond could be obtained.

実施例 4 実施例1におけると同様のセラミックス焼結体と鉄材と
を用意し、加圧力を500気圧としたほかは実施例1と
全く同じ条件でそれぞれの接合試験を実施したところ、
いずれも実施例1で得られたと同様に良好な接合を得る
。ことができた。
Example 4 A ceramic sintered body and an iron material similar to those in Example 1 were prepared, and a bonding test was conducted on each under the same conditions as in Example 1, except that the pressing force was 500 atm.
In both cases, good bonding similar to that obtained in Example 1 was obtained. I was able to do that.

実施例 5 実施例1におけると同様のセラミックス焼結体と鉄材と
を用意した。中間層としてTiN粉末(300メツシユ
以下)SO重量裂と1?e粉末(平均粒径8μm、)z
o重量%の混合物を用いた。中間層の厚さを約300μ
mとして実施例1と同様に試料を組立て、ガラスカプセ
ル法にてi(I P処理を行った。処理条件は1100
℃、11情間。
Example 5 A ceramic sintered body and iron material similar to those in Example 1 were prepared. As the intermediate layer, TiN powder (300 mesh or less) is used with SO weight cracking and 1? e Powder (average particle size 8 μm,)z
o% by weight of the mixture was used. The thickness of the intermediate layer is approximately 300μ
A sample was assembled in the same manner as in Example 1 as m, and subjected to i (IP treatment) using the glass capsule method.The processing conditions were 1100
°C, 11 hours.

1000気圧で行った。この場合にもT i N粉末の
みを用いた場合と同様良好な接合が得られることを確認
した。
The test was carried out at 1000 atm. It was confirmed that good bonding could be obtained in this case as well, as in the case where only T i N powder was used.

〈総括的な効果〉 上述のように、この発明によれは、これ丑でほとんど不
可能であった金属材料とセラミックス焼結体との固相接
合を、安定・確実に、そして比較的簡単に実施すること
ができ、接合強度良好な金属・セラミックス複合材料を
安価に提供できるなど、産業上有用な効果がもたらされ
るのである。
<Overall Effects> As mentioned above, this invention makes it possible to stably, reliably, and relatively easily perform solid-phase bonding between metal materials and ceramic sintered bodies, which was almost impossible. It is possible to implement this method, and it brings about industrially useful effects such as being able to provide a metal-ceramic composite material with good bonding strength at a low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法によって金属とセラミックスを接合
する際の部材組立て方法の例を示す模式図、第2図は接
合完了後の接合部の状態を示す概略模式図、第3図は本
発明方法によって得られだFe−AA203焼結体複合
部材の接合部の顕微鏡写真図である。 図面において、 1 ・金属部材、 2・・・セラミックス焼結体、 3・・TiN粉末層、 4・・・TiN粒子。 出願人 住友金属工業株式会社 ほか1名代理人 富 
1) 和 夫 ほか1名 第1図 濃2図 100μ 昭和59年7月5日 特許庁長官 忘 賀 学 殿 1、事件の表示 特願昭59〜59141 号 2 発明の名称 金属とセラミックスの接合方法 3、補正をする者 4代 理 人 昭和59年6月6日(発送日 昭和59年6月26日〕
補正の内容 明細書、第16頁、第6〜7行に 「顕微鏡写真図」 とあるを、 「顕微鏡組織写真図」 と訂正する。 以上
FIG. 1 is a schematic diagram showing an example of a member assembly method when joining metal and ceramics by the method of the present invention, FIG. 2 is a schematic diagram showing the state of the joint after the joining is completed, and FIG. FIG. 3 is a microscopic photograph of a joint of a Fe-AA203 sintered composite member obtained by the method. In the drawings, 1. Metal member, 2. Ceramic sintered body, 3. TiN powder layer, 4. TiN particles. Applicant: Sumitomo Metal Industries, Ltd. and one other agent: Tomi
1) Kazuo and 1 other person Figure 1 Darkness 2 Figure 100μ July 5, 1980 Director General of the Patent Office Manabu Hoga 1 Indication of the case Patent application No. 1983-59141 2 Name of the invention Method for joining metals and ceramics 3. The 4th person making the amendment, Mr. Ri, June 6, 1980 (Shipping date: June 26, 1982)
In the Statement of Contents of the Amendment, page 16, lines 6 to 7, the words "microscopic photograph" are corrected to "microscopic tissue photograph."that's all

Claims (2)

【特許請求の範囲】[Claims] (1) 金属材料とセラミックス焼結体を熱間静水圧加
圧装置を用いて高温高圧下で接合するに当シ、接合中間
層としてTiN粉末層を介在さぜることを特徴とする、
金属とセラミックスの接合方法。
(1) When a metal material and a ceramic sintered body are bonded under high temperature and high pressure using a hot isostatic pressing device, a TiN powder layer is interposed as a bonding intermediate layer.
A method for joining metals and ceramics.
(2)金属材料と゛セラミックス焼結体を熱間静水圧加
圧装置を用いて高温高圧下で接合するに当り、接合中間
層としてTiN粉と金属粉との混合粉末層を介在させる
ことを特徴とする、金属とセラミックスの接合方法。
(2) When joining a metal material and a ceramic sintered body under high temperature and high pressure using a hot isostatic pressing device, a mixed powder layer of TiN powder and metal powder is interposed as a joining intermediate layer. A method for joining metals and ceramics.
JP5914184A 1984-03-27 1984-03-27 Metal and ceramic bonding method Pending JPS60200871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5914184A JPS60200871A (en) 1984-03-27 1984-03-27 Metal and ceramic bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5914184A JPS60200871A (en) 1984-03-27 1984-03-27 Metal and ceramic bonding method

Publications (1)

Publication Number Publication Date
JPS60200871A true JPS60200871A (en) 1985-10-11

Family

ID=13104742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5914184A Pending JPS60200871A (en) 1984-03-27 1984-03-27 Metal and ceramic bonding method

Country Status (1)

Country Link
JP (1) JPS60200871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729504A (en) * 1985-06-01 1988-03-08 Mizuo Edamura Method of bonding ceramics and metal, or bonding similar ceramics among themselves; or bonding dissimilar ceramics
US5164246A (en) * 1985-09-13 1992-11-17 Kabushiki Kaisha Toshiba Highly thermoconductive ceramic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729504A (en) * 1985-06-01 1988-03-08 Mizuo Edamura Method of bonding ceramics and metal, or bonding similar ceramics among themselves; or bonding dissimilar ceramics
US5164246A (en) * 1985-09-13 1992-11-17 Kabushiki Kaisha Toshiba Highly thermoconductive ceramic

Similar Documents

Publication Publication Date Title
US6089444A (en) Process of bonding copper and tungsten
JPS61501691A (en) Liquid phase bonded amorphous material and its preparation method
JPS60127271A (en) Method of bonding non-oxide ceramics and metal
JPS60131874A (en) Method of bonding ceramic and metal
JPS60177992A (en) Method for joining porous member and its product
JPS60200871A (en) Metal and ceramic bonding method
JPH0729859B2 (en) Ceramics-Metal bonding material
JPS60200872A (en) Metal and ceramic bonding method
CN113084176B (en) Self-supporting diamond film/Cu composite heat sink material and preparation method thereof
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JPS60204677A (en) Method of bonding metal to ceramic
JPS61136605A (en) Joining method of sintered hard material and metallic material
JPS61183178A (en) Method of joining silicon nitride ceramic to metal
JPS6140871A (en) Solderable si3n4 ceramic composite composition and manufacture
JPS6221768A (en) Graphite joining method
JPH0569159A (en) Method for joining composite material composed of, at least, one part of intermetallic compound
JP3505212B2 (en) Joint and method of manufacturing joint
JPS59184778A (en) Pressure welding of ceramic member to metal member
JPS59141393A (en) Brazing filler material
JPH01111783A (en) Joined structure of carbon and ceramics, carbon or metal
JPH0378193B2 (en)
JPH04158994A (en) Cold joining method by superfine particles
JPS59174582A (en) Method of bonding ceramics to metal
JPS61209965A (en) Method of bonding silicon nitride ceramic to aluminum
JPH0716764A (en) Joining member and joined body using them