JPS5916923A - Method for hardening surface of metal member by remelting - Google Patents

Method for hardening surface of metal member by remelting

Info

Publication number
JPS5916923A
JPS5916923A JP2788082A JP2788082A JPS5916923A JP S5916923 A JPS5916923 A JP S5916923A JP 2788082 A JP2788082 A JP 2788082A JP 2788082 A JP2788082 A JP 2788082A JP S5916923 A JPS5916923 A JP S5916923A
Authority
JP
Japan
Prior art keywords
metal member
remelting
uniformly
hardened
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2788082A
Other languages
Japanese (ja)
Other versions
JPH032923B2 (en
Inventor
Masakatsu Matsutani
松谷 正且
Tamio Shinosawa
民夫 篠沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2788082A priority Critical patent/JPS5916923A/en
Publication of JPS5916923A publication Critical patent/JPS5916923A/en
Publication of JPH032923B2 publication Critical patent/JPH032923B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation

Abstract

PURPOSE:To uniformly and rapidly harden the surface of a metal member over a wide range, by pulse oscillating energy to be inputted to said metal member from the source of high density energy. CONSTITUTION:The remelt case-hardening treatment with a TIG arc is applied, for instance, to the sliding surface 2 of a locker arm 1 to be incorporated in the diesel engine of an automobile which comes in sliding contact with a cam. Hereon, a DC pulse current having a peak value of 120-350A and a time of 0.05-0.4sec for the continuation of said peak value is pref. applied with voltage of 12-30V for about 0.5-3sec. Thus, the broad domain of the sliding surface 2 is rapidly and uniformly hardened.

Description

【発明の詳細な説明】 本発明は、丁JGアークやレーザの如き所謂高エネルギ
密度源による金属部材の再溶融表面硬化処理法に係り、
更に詳細には比較的熱容量の小さい金属部材に対し適用
されるに適した再溶融表面硬化処理法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for remelting and surface hardening a metal member using a so-called high energy density source such as a Ding JG arc or a laser.
More specifically, the present invention relates to a remelting surface hardening treatment method suitable for application to metal members having a relatively small heat capacity.

TIGアークの如き高エネルギ密度源を用いた再溶融表
面硬化処理法は金属部材の表面を局部的に硬化させる処
理法として、種々の技術分野に於て広く利用されている
。例えばTIGアークにより゛金属部材の表面をある範
囲に亙って硬化させることは、従来より一般に、溶接ト
ーチをウィービングさせたり、そのシングルビードを重
ねつつその金属部材の表面部を溶融させ、急冷すること
により行なわれている。
A remelting surface hardening treatment method using a high energy density source such as a TIG arc is widely used in various technical fields as a treatment method for locally hardening the surface of a metal member. For example, hardening the surface of a metal member over a certain range using a TIG arc has conventionally been done by weaving a welding torch, or by overlapping single beads to melt the surface of the metal member and rapidly cool it. This is done by

しかしこれらの方法による場合には、金属部材の既に再
溶融され硬化された部分がその近傍を通過するTIGア
ークにより再加熱されるのでその部位の硬度が低下し、
またと−ドの重ね合わせられた部位の組織が不均一とな
ることにより、その部位に於ける耐摩耗性が必ずしも充
分には向上しないという問題がある。また上述の如きウ
ィービング法などによる場合に於ては、そのビード端部
に於て充分な溶融を行なわせるタイミングが処理技術上
の問題となり、ビード端部に割れやブローホール等の欠
陥が生じ易いという問題がある。
However, when using these methods, the part of the metal member that has already been remelted and hardened is reheated by the TIG arc passing nearby, so the hardness of that part decreases.
Furthermore, there is a problem in that because the structure of the overlapping portion of the electrodes becomes non-uniform, the wear resistance in that portion is not necessarily sufficiently improved. In addition, when using the weaving method as described above, the timing to achieve sufficient melting at the bead end becomes a problem in processing technology, and defects such as cracks and blowholes are likely to occur at the bead end. There is a problem.

かかるウィービング法などによる表面硬化熱処理に於け
る不具合に鑑み、特に熱容量の小さい金属部材の再溶融
表面硬化処理法として、アークスポット溶接と同様の要
領にて、表面硬化処理されるべき金属部材に対し溶接ト
ーチを静止状態に維持し、その表面硬化処理されるべき
表面をスボン1〜状に溶融させる方法が考案されている
。しかしこの方法に於ては、金属部材の溶接トーチ直下
の部分が極端に深く溶融されその周囲の部分は充分には
溶融されないため、溶接トーチ直下の部分の周囲の表面
部をも溶融させ硬化させようとすれば、通電電流を高く
するか、又は金属部材の表面を幾つかの点に亙っで処理
しなければならない。この場合通電電流を高くすると、
金属部材への入熱が過大になり、生成されるチル層の結
晶が粗大化し、金属部材のその表面に於ける硬度や耐摩
耗性は充分には向上しない。また金属部材の表面を幾つ
かの点に厘って処理する場合には、処理能率が悪くなる
のみならず、上述のウィービング法の場合と同様の不具
合を生じる。
In view of the defects in surface hardening heat treatment by such weaving method, etc., as a re-melting surface hardening treatment method for metal parts with particularly small heat capacity, a method similar to arc spot welding is used for metal parts to be surface hardened. A method has been devised in which the welding torch is kept stationary and the surface to be hardened is melted into a ribbon shape. However, in this method, the part of the metal part directly under the welding torch is melted extremely deeply and the surrounding part is not sufficiently melted, so the surface area around the part directly under the welding torch is also melted and hardened. If this is to be done, the current must be increased or the surface of the metal member must be treated at several points. In this case, if the current is increased,
The heat input to the metal member becomes excessive, the crystals of the generated chill layer become coarse, and the hardness and wear resistance of the surface of the metal member are not sufficiently improved. Furthermore, when the surface of a metal member is processed at several points, not only the processing efficiency deteriorates, but also problems similar to those of the above-mentioned weaving method occur.

本願発明者等は上述の如き従来の再溶融表面硬化処理法
に於ける種々の不具合に鑑み、幾つかの実験的研究を行
なった結果、TIGアークの如き高エネルギ密度源によ
る金属部材への入熱をパルス゛発振させることが好まし
いことを見出した。
In view of the various defects in the conventional remelting surface hardening treatment method as described above, the inventors of the present application have conducted several experimental studies, and have found that the penetration of metal members by a high energy density source such as a TIG arc It has been found that it is preferable to pulse the heat.

本発明は、本願発明者等が行なった実験の結果に基き、
表面硬化処理されるべき金属部材の表面を比較的広い範
囲に亙って均一に且迅速に硬化させることのできる方法
を提供することを目的としている。
The present invention is based on the results of experiments conducted by the inventors of the present application,
It is an object of the present invention to provide a method that can uniformly and quickly harden the surface of a metal member to be surface hardened over a relatively wide range.

かかる目的は、本発明によれば、高エネルギ密度源によ
る金属部材の再溶a表面硬化処理法にして、前記高エネ
ルギ密度源による前記金属部材への入熱をパルス発振さ
せることを特徴とする金属部材の再溶融表面硬化処理法
によって達成される。
According to the present invention, this object is a remelting a surface hardening treatment method for a metal member using a high energy density source, characterized in that heat input to the metal member by the high energy density source is pulsed. This is achieved by remelting and surface hardening treatment of metal parts.

かかる本発明による再溶融表面硬化処理法によれば、高
エネルギ密度源の高電流側パルスにより金属部材表面に
溶融池が形成され、それがスクリーンとなって金属部材
に与えられた熱が、その熱を直接受けた部位の深さ方向
よりもむしろその表面に沿って周囲の部位へ伝達される
ため、溶接1−一ヂなどを金属部材の表面に沿って移動
させなくても、比較的広い範囲に亙って比較的一様な深
さに溶融させることができ、これにより表面硬化処理さ
れるべき金属部材の表面を比較的広い範囲に亙って一様
に且迅速に硬化させることができる。
According to the remelting surface hardening treatment method according to the present invention, a molten pool is formed on the surface of the metal member by the high current side pulse of the high energy density source, and this serves as a screen and the heat applied to the metal member is absorbed by the metal member. Because the heat is transmitted to the surrounding parts along the surface of the part directly received rather than in the depth direction, welding can be performed over a relatively wide area without having to move the weld 1-1 along the surface of the metal member. It is possible to melt to a relatively uniform depth over a relatively wide area, thereby making it possible to uniformly and quickly harden the surface of a metal member to be surface hardened over a relatively wide area. can.

また上)ホの(II]き従来の再溶融表面硬化処理法に
比して、表面硬化処理されるべき金属部材の表面の縁部
まで溶融する場合に於ても、その縁部に生じる肩ダレは
非常に小さく、その抑制制御も容易であり、また表面硬
化処理後に於ける形状修正等の後処理を簡便に行なうこ
とができる。
In addition, compared to the conventional remelting surface hardening treatment method described in (II) above, even when melting reaches the edge of the surface of the metal member to be surface hardened, shoulders that occur at the edge The sagging is very small, its suppression and control is easy, and post-processing such as shape modification after surface hardening can be easily performed.

尚、本発明による再溶融表面硬化処理法に於ける高エネ
ルギ密度源は、TIGアークやレーザなどであってよく
、特に高エネルギ密度源としてTIGアークが用いられ
る場合には、被処理材の材質や熱容量などによって異な
るが、電圧12〜3OV、ピーク電流120〜35 ’
OA 、ピーク電流時間0.01〜0.2秒、ベース電
流10〜50△、ベース電流時間0.05〜0.4秒の
直流ノ≦ルス電流が0.5〜3秒程度通電されることが
好ましい。
In addition, the high energy density source in the remelting surface hardening treatment method according to the present invention may be a TIG arc, a laser, etc. In particular, when a TIG arc is used as the high energy density source, the material of the material to be treated may be Voltage 12-3OV, peak current 120-35'
OA, peak current time 0.01 to 0.2 seconds, base current 10 to 50△, base current time 0.05 to 0.4 seconds, DC noll ≦ pulse current is applied for about 0.5 to 3 seconds. is preferred.

以下に添付の図を参照しつつ、本発明を実施例について
HHy細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to embodiments with reference to the accompanying drawings.

実施例 第1図に示されている如く、自動車用ディーゼルエンジ
ンに組込まれるロッカーアーム1のノノムシャフトのカ
ムとの摺動面2(11x12mm)を下記の表に示づ処
理条件にてTIGアークによる再溶融表面硬化処理(△
及びB)を行ない、400’0OC4サイクルデイーゼ
ルエンジンに組込み、それぞれの摩耗量を調べる摩耗試
験を行なった。
Example As shown in Fig. 1, the sliding surface 2 (11 x 12 mm) of the rocker arm 1 which is incorporated into an automobile diesel engine and the sliding surface 2 (11 x 12 mm) between the cam and the nom shaft was regenerated by TIG arc under the treatment conditions shown in the table below. Melt surface hardening treatment (△
and B) were carried out and incorporated into a 400'0OC 4-cycle diesel engine, and a wear test was conducted to examine the amount of wear.

また比較の目的で、従来のウィービング法による   
  −処理(C)及びアークスポットによる処理(1〕
)を行なわれたロッカーアームについても同様の摩耗試
験を行なった。
For comparison purposes, the conventional weaving method
- Treatment (C) and arc spot treatment (1)
) A similar wear test was also conducted on the rocker arm.

尚、被処理材としてのロッカーアームは球状黒鉛鋳鉄(
JIS規格F CD 7 ’O)よりなり、重量は8’
O(]であった。また各処理は図には示されていないT
 I G l−−チを摺動面2の中心3の上方に静止さ
せた状態にて行なわれた。
The rocker arm as the material to be treated is made of spheroidal graphite cast iron (
JIS standard F CD 7'O), weight is 8'
O(]. Also, each process is T
The test was carried out with the IG l-chi stationary above the center 3 of the sliding surface 2.

試験の結果、従来のウィービング法による処理(C)に
於ては、ロッカーアームの摺動面全体を処理するのに長
時間(6秒)を要し、またウィービングビードの重なり
部分の摩耗量が他の部位に比して大きく、従って処理後
の摺動面の硬度及び耐摩耗性が不均一であることが認め
られた。また従来のアークスポットによる処理([〕)
の場合には、TIGアーク直下の部分の溶は込みが極仝
E1に深く、その周囲の部分をも溶融させるのに比較的
長時間(4秒)を要し、その結果としてTIGアークを
直接受けた部分のチル層の組織が粗大化しており、また
その摩耗量も他の部位に比して著しく大きいことが認め
られた。
The test results showed that in the conventional weaving method (C), it took a long time (6 seconds) to treat the entire sliding surface of the rocker arm, and the amount of wear at the overlapping part of the weaving bead was small. It was found that the hardness and abrasion resistance of the sliding surface after treatment were non-uniform because it was larger than other parts. Also, conventional arc spot treatment ([])
In this case, the weld penetration in the area directly under the TIG arc is extremely deep to E1, and it takes a relatively long time (4 seconds) to melt the surrounding area, and as a result, the TIG arc cannot be directly applied. It was observed that the structure of the chill layer in the affected area was coarsened and the amount of wear was significantly greater than in other areas.

これに対し本発明に従って処理(Δ及びB)されたロッ
カーアームの摺動面は、上述の処理C及びDによるロッ
カーアームよりも硬度及び耐摩耗性が優れており、また
再溶融層の深さも一様であることが認められた。第2図
は特に処理Aを施されたロッカーアームのその長手方向
に垂直な方向の断面を6.2倍にて示す写真である。こ
の第2図からも解る如く、上述の処理Aによれば、短時
間にて摺動向の実質的に全ての領域が一様に再溶融され
、一様に硬化されることが解る。
On the other hand, the sliding surfaces of the rocker arms treated according to the present invention (Δ and B) have better hardness and wear resistance than the rocker arms treated with the above-mentioned treatments C and D, and the depth of the remelted layer is also lower. It was found that it was uniform. FIG. 2 is a photograph showing a cross section of a rocker arm subjected to treatment A in a direction perpendicular to its longitudinal direction at a magnification of 6.2 times. As can be seen from FIG. 2, according to the above-mentioned process A, substantially the entire area of the sliding movement is uniformly remelted and uniformly hardened in a short period of time.

実施例2 実施例1の場合と同様、自動車用ディーピルエンジンに
組込まれる排気バルブのバルブステムの頂面を再溶融し
硬化する処理を行なった。尚採用された処理条件は電圧
18V、ピーク電流1p=12’OA、ベース電流Ib
=2’OA、ピーク電流時間Tp=’Q、1秒、ベース
電流時間Tb=’0゜1秒、処理時間1秒であり、被処
理材としての排気バルブは耐熱鋼LIIS規格S tJ
 t−13>よりなる重量1 ’05 Illのもので
あった。
Example 2 As in Example 1, the top surface of the valve stem of an exhaust valve to be incorporated into an automobile deep-pil engine was remelted and hardened. The processing conditions adopted were: voltage 18V, peak current 1p = 12'OA, base current Ib.
= 2'OA, peak current time Tp = 'Q, 1 second, base current time Tb = '0°1 second, processing time 1 second, and the exhaust valve as the material to be treated is heat-resistant steel LIIS standard S tJ
It had a weight of 1'05 Ill and was made of t-13>.

処理後その断面の組織を観察したところ、バルブステム
の頂面の実質的に全体に亙っで非常に微細なマルテンサ
イ1〜組織が形成されてII′Xることlメ認められた
When the structure of the cross section was observed after the treatment, it was found that a very fine martensitic structure II'X was formed over substantially the entire top surface of the valve stem.

尚、上)ホの二つの実施例と同様の処理を、レーザトー
チを用いてその出力ビームをパルス発振させることによ
り行なったところ、出カ一定の定常的なビームによる場
合に比して被処理面の硬度が一様に向上していることが
認められた。
In addition, when the same processing as in the above two embodiments (e) was carried out by using a laser torch and pulsating its output beam, the surface to be processed was much smaller than when using a steady beam with a constant output. It was observed that the hardness was uniformly improved.

以上の説明より本発明による金属部材の再溶融表面硬化
処理法によれば、被処理材の比較的広い□ 領域を迅速且一様に硬化させることができることが理解
されよう。
From the above explanation, it will be understood that according to the remelting surface hardening treatment method for metal members according to the present invention, a relatively wide square area of the treated material can be hardened quickly and uniformly.

以上に於ては本発明を特定の実施例について詳細に説明
したが、本発明はこれらの実施例に限定されるものでは
なく、本発明の範囲内に−C種々の実施例が可能である
ことは当業者にとって明らかであろう。
Although the present invention has been described in detail with respect to specific embodiments above, the present invention is not limited to these embodiments, and various embodiments are possible within the scope of the present invention. This will be clear to those skilled in the art.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は上述の実施例1に於【ノる被処理材としてのロ
ッカーアームを示す斜視図、第2図は本発明による金属
部材の再溶融表面硬化処理法の好ましい実施例により処
理されたロッカーアームの摺動面の長手方向に垂直な断
面を6.248にて示す写真である。 1・・・ロッカーアーム、2・・・摺動面、3・・・摺
動面の中心
FIG. 1 is a perspective view showing a rocker arm as a material to be treated in Example 1, and FIG. 2 is a perspective view showing a rocker arm as a material to be treated in Example 1, and FIG. It is a photograph showing a cross section perpendicular to the longitudinal direction of the sliding surface of the rocker arm at 6.248. 1...Rocker arm, 2...Sliding surface, 3...Center of sliding surface

Claims (1)

【特許請求の範囲】[Claims] 高エネルギ密度源による金属部材の再溶融表面硬化処理
法にして、前記高エネルギ密度源による前記金属部材へ
の入熱をパルス発振させることを特徴とする金属部材の
再溶融表面硬化処理法。
A method for remelting and surface hardening a metal member using a high energy density source, the method comprising pulse oscillation of heat input to the metal member by the high energy density source.
JP2788082A 1982-02-22 1982-02-22 Method for hardening surface of metal member by remelting Granted JPS5916923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2788082A JPS5916923A (en) 1982-02-22 1982-02-22 Method for hardening surface of metal member by remelting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2788082A JPS5916923A (en) 1982-02-22 1982-02-22 Method for hardening surface of metal member by remelting

Publications (2)

Publication Number Publication Date
JPS5916923A true JPS5916923A (en) 1984-01-28
JPH032923B2 JPH032923B2 (en) 1991-01-17

Family

ID=12233201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2788082A Granted JPS5916923A (en) 1982-02-22 1982-02-22 Method for hardening surface of metal member by remelting

Country Status (1)

Country Link
JP (1) JPS5916923A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554290A (en) * 1978-10-12 1980-04-21 Nec Corp Surface treating device using pulse laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554290A (en) * 1978-10-12 1980-04-21 Nec Corp Surface treating device using pulse laser

Also Published As

Publication number Publication date
JPH032923B2 (en) 1991-01-17

Similar Documents

Publication Publication Date Title
JPS5916923A (en) Method for hardening surface of metal member by remelting
JPS63224890A (en) Laser build-up welding method
KR940004030B1 (en) Method of forming chilled layer
JPH0423144B2 (en)
JPS63194884A (en) Laser build-up welding method
JPH01218A (en) Metal surface remelting treatment method
JP2757565B2 (en) Method of strengthening valve spacing of cylinder head made of aluminum alloy casting
JPS59113122A (en) Radiation fusion treatment for internal combustion engine piston by electron beam
Díaz et al. Laser Powder Welding with a Co-based alloy for repairing steam circuit components in thermal power stations
JP3149619B2 (en) Metal surface remelting method
JPS61194166A (en) Treatment for remelting and hardening
JP3182245B2 (en) Manufacturing method of aluminum cylinder head
JP2520124B2 (en) Re-Melted Chilcum Shaft
JPS5848622A (en) Heat treatment for hardening surface of cast iron sliding member by remelting
WO1980002434A1 (en) Surface hardening of metals by electric arc discharge
JPH05340297A (en) Manufacture of aluminum cylinder head
JP3790195B2 (en) Remelting method for cylinder head
JPS63310976A (en) Alloying method using high-density energy
JPH0726321A (en) Production of sliding member excellent in wear resistance
JPS58100621A (en) Surface hardening method for metal
JPH0416528B2 (en)
JPS60204834A (en) Method for hardening cam part of cam shaft by remelting
JPH01127655A (en) Remelting treatment
JPS61207518A (en) Remelting and hardening treatment of cam sliding surface
JPS5945467B2 (en) Single electrode oscillating submerged mark welding method