JPS59113122A - Radiation fusion treatment for internal combustion engine piston by electron beam - Google Patents

Radiation fusion treatment for internal combustion engine piston by electron beam

Info

Publication number
JPS59113122A
JPS59113122A JP58230693A JP23069383A JPS59113122A JP S59113122 A JPS59113122 A JP S59113122A JP 58230693 A JP58230693 A JP 58230693A JP 23069383 A JP23069383 A JP 23069383A JP S59113122 A JPS59113122 A JP S59113122A
Authority
JP
Japan
Prior art keywords
groove
melting
electron beam
longitudinal direction
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58230693A
Other languages
Japanese (ja)
Inventor
ゲツツ・ソビシユ
ジ−クフリ−ト・パンツエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUENTORARU INST FUYUURU SHIYU
TSUENTORARU INST FUYUURU SHIYUUAISUTEHINITSUKU DERU DOITSUCHIEN DEMOKURATEITSUSHIEN REPUBURITSUKU
Original Assignee
TSUENTORARU INST FUYUURU SHIYU
TSUENTORARU INST FUYUURU SHIYUUAISUTEHINITSUKU DERU DOITSUCHIEN DEMOKURATEITSUSHIEN REPUBURITSUKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUENTORARU INST FUYUURU SHIYU, TSUENTORARU INST FUYUURU SHIYUUAISUTEHINITSUKU DERU DOITSUCHIEN DEMOKURATEITSUSHIEN REPUBURITSUKU filed Critical TSUENTORARU INST FUYUURU SHIYU
Publication of JPS59113122A publication Critical patent/JPS59113122A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P25/00Auxiliary treatment of workpieces, before or during machining operations, to facilitate the action of the tool or the attainment of a desired final condition of the work, e.g. relief of internal stress
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/003Pistons

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、転移ビーム方法の電子ビームを用いて照射溶
融処理の後えぐり取られる溝、なるへく内燃機関用ピス
トンの環状溝のフランクの範囲を局部的に照射溶融処理
する方法に係り、場合によっては比較的少ない負荷の範
囲がつくるべき摩耗負荷面にすぐ隣接しており、あるい
は負荷面が照射溶融処理後に続けられる機械的加工方法
によって材料からつくり出される場合、摩耗を決定する
材料特性を改良する方法にも関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses an electron beam of a transferred beam method to locally irradiate and melt a groove that is gouged out after irradiation and melting, a flank area of an annular groove of a piston for an internal combustion engine. Depending on the method of processing, if the area of relatively low loading is immediately adjacent to the wear-loading surface to be created, or the loading surface is created from the material by a mechanical processing method followed after the irradiation-melting treatment, It also relates to methods of improving material properties that determine wear.

適当な材料の際に、たとえば、レーザビーム(2) あるいは電子ビームで局部的に限定して加工品を照射溶
融して摩耗を決定する材料特性、すなわち、硬度、繰返
し曲げ耐性あるいは他の材料特性を改良することが公知
である。その際溶融処理は、事後に加工される特定負荷
面が照射溶融される材料範囲にあるように行なわれる。
In the case of suitable materials, the material properties determining wear, e.g. hardness, cyclic bending resistance or other material properties, can be determined by locally irradiating and melting the workpiece with a laser beam (2) or an electron beam. It is known to improve. The melting process is carried out in such a way that the specific load surface to be subsequently processed lies in the area of the material to be irradiated and melted.

特性改良に基盤となる作用は、溶融範囲の伝熱を条件と
した極めて迅速な冷却に基き、この冷却が母材から明ら
かに異なる組織形式を構成させる。
The effect underlying the property improvement is based on extremely rapid cooling, conditioned on heat transfer in the melting range, which leads to the formation of a clearly different microstructure from the base material.

たとえば、内燃機関の第1項状溝のような摩耗負荷され
る溝をつくるために溝のフランクに対応しかつ溝の深さ
以上に達する2つの溶融帯域をつくることが公知である
。周期的に転移性のビーム偏向によって溝のフランクに
対応される決った偏向状態へ互いに平行に延びる2つの
溶融帯域を成る程度同時につくることも公知である。
For example, it is known to produce wear-loaded grooves, such as the first-line grooves of internal combustion engines, to produce two melting zones that correspond to the flanks of the groove and extend beyond the depth of the groove. It is also known to produce, to a greater or lesser extent simultaneously, two melting zones extending parallel to each other to a defined deflection state corresponding to the flanks of the groove by periodically displacing beam deflections.

これらの公知の方法の決定的な欠陥は、材料に含有され
る不純物の含量および種類にしたが(3) つて溶融範囲において孔が発生する可能があ抄、それが
ため溝のフランクの障害をもたらす結果となることにあ
る。さらに所要照射溶融深さが所定の寸法を上回る場合
、両溶融帯域の間で収縮応力の発生する結果加工される
溝へ達する亀裂を発生する可能性がある。鋳造体の溶融
処理の際特に発生する別の欠陥は、鋳物に存在する空隙
が同様に欠陥溝部にする可能性のある中空室を溶融範囲
に残すことにある。
A critical drawback of these known methods lies in the content and type of impurities contained in the material (3), which can lead to the formation of pores in the melting range, which can lead to obstruction of the groove flanks. It is about the results it brings. Furthermore, if the required irradiation melting depth exceeds a predetermined dimension, shrinkage stress may occur between the two melting zones, resulting in cracks reaching the groove to be machined. Another defect which occurs particularly during the melting process of castings is that the voids present in the casting leave hollow spaces in the melting region which can likewise become defective grooves.

本発明の目的は、電子ビームを用いる溶融処理の際の上
述の欠陥を防止しかつ耐摩耗面の製造を、特に内燃機関
のピストンの際に可能にする方法を提供することにある
The object of the invention is to provide a method which prevents the above-mentioned defects during melt processing with electron beams and which makes it possible to produce wear-resistant surfaces, especially for pistons of internal combustion engines.

本発明の課題は、内燃機関用ピストンの特に第1環状溝
の範囲の局部的溶融処理をする方法を開発することにあ
り、その際この方法は、溶融範囲において孔の形成を防
止し、加工される溝へ達する亀裂が発生できずまた空隙
の発生が溝のフランク範囲において十分に減少されるよ
うに構成できねばならない。
The object of the invention is to develop a method for localized melting of a piston for an internal combustion engine, in particular in the area of the first annular groove, which prevents the formation of holes in the melting area and It must be possible to construct the groove in such a way that no cracks can occur that reach the groove in which it is formed, and the formation of voids is sufficiently reduced in the flank region of the groove.

(4) 本発明によるとこの課題は、以下のようにして解決され
る。すなわち、溝のフランク範囲に対応する照射溶融範
囲が溝の縦方向に延びかつ互いにオーバラップする互い
に向かい会っている同じ長さのセグメントにつくられ、
セグメントの長さに亘って延びる溶融池がそれぞれ溝の
フランク平面から出発しかつこの平面に対して平行して
溝の中心の方向に単調に減少する溶融深さで案内される
ことによる。上述のことは以下のようにして達成される
。すなわち、電子ビームは、溝の縦方向に対して直交し
て互いに向かい会っている溝のフランク平面へ周期的に
転移性ならびに交互に偏向されかつ側方平面から出発し
て零から単調に増加する偏向速度で溝の中心の方向に案
内されており、転移作用の振動数に較べてかなり高い振
動数をもつ2次元のビーム振動が上記ビーム偏向に追加
してオーバラップされており、溝の縦方向のビーム振動
の振幅が上述のセグメントの長さに等しくまたビームの
直径に較べて大きくなっており、またビー(5) ム振動の溝に直交する成分の振幅が溝の縦方向の成分よ
り小さくなっている。
(4) According to the present invention, this problem is solved as follows. That is, irradiation melting areas corresponding to the flank areas of the groove are created in segments of the same length extending in the longitudinal direction of the groove and facing each other and overlapping each other;
This is because the weld pools extending over the length of the segments each start from the flank plane of the groove and are guided parallel to this plane with a melting depth that decreases monotonically in the direction of the center of the groove. The above is accomplished as follows. That is, the electron beam is periodically and alternately deflected into the flank planes of the groove facing each other perpendicular to the longitudinal direction of the groove and increases monotonically from zero starting from the lateral planes. The beam deflection is guided in the direction of the center of the groove by the deflection velocity, and a two-dimensional beam vibration with a frequency considerably higher than that of the transfer action is added to and overlapped with the beam deflection, and the longitudinal direction of the groove is The amplitude of the beam vibration in the direction of It's getting smaller.

振動図形として溝の縦方向にある8”あるいは溝の中心
に対して開放される2重放物線を使用するのが合理的で
ある。さらに、電子ビームがセグメントの滞留期間の間
移動される加工品表面に対して静止する振動図形を持続
するように溝の縦方向にあるビーム偏向に追加して鋸歯
作用をオーバラップして加えるのが有利である。
It is reasonable to use as the vibration figure an 8" in the longitudinal direction of the groove or a double parabola open to the center of the groove. Furthermore, the workpiece in which the electron beam is moved during the residence period of the segment It is advantageous to apply an overlapping sawtooth effect in addition to the beam deflection in the longitudinal direction of the groove so as to maintain an oscillation pattern that is stationary with respect to the surface.

以下本発明による実施例ならびにこれに所属する図面を
参照して本発明を説明し、上記図面が内燃機関ピストン
の表面範囲の展開部を介する断面ヲ示シ、ピストンはピ
ストンリンク溝の側面の範囲において溶融処理される。
The invention will be explained below with reference to exemplary embodiments according to the invention and to the accompanying drawings, which figures show a section through the development of the surface area of an internal combustion engine piston, the piston being shown in the area of the side surface of the piston link groove. It is melt-processed in.

図示した加工品断片1では、点線によって示される環状
溝2をつくらねばならない。材料の耐摩耗性は、溝の面
側面2aおよび2bにおいて電子ビーム5での局部的照
射溶融によって改良することができる。
In the illustrated workpiece piece 1, an annular groove 2, indicated by the dotted line, has to be created. The wear resistance of the material can be improved by localized irradiation melting with an electron beam 5 on the side faces 2a and 2b of the groove.

照射溶融を行なった抜溝2を掘らねばならぬ(6) ので、溝の両側面2aおよび2bは、溶融処理された材
料の中にある。溶融処理は、電子ビーム5を用いて溝の
側面2aおよび2bに所属する照射溶融範囲をつくるこ
とによって行なわれる。このため、電子ビーム3は、互
いに向かい会っておりかつ相互にオーバラップされる同
じ長さのセグメントへ交互に働らかされる。その際セグ
メント5の長さに亘って延びる溶融池6は、それぞれ溝
の側面2aまたFi、2bから出発して溝の中心に向っ
て単調に減少する照射溶融深さで案内される。電子ビー
ム3は、所定の環状溝2に沿っておよび溝2に対して横
方向に偏向される。溶融処理を行なうために電子ビーム
6は、環状溝2の縦方向に対して互いに向かい会ってい
る溝の側面2aおよび2bへ周期的に転移性かつ交互に
偏向されまた零から単調に増加する偏向速度で溝の側面
から7矢視方向に溝の中心に向って案内される。
A groove 2 for radiation melting has to be dug (6) so that both sides 2a and 2b of the groove are in the melted material. The melting process is carried out by using an electron beam 5 to create irradiated melting areas belonging to the flanks 2a and 2b of the groove. For this purpose, the electron beam 3 is directed alternately into segments of the same length facing each other and overlapping each other. The weld pool 6, which extends over the length of the segment 5, is guided in each case with an irradiation melting depth that decreases monotonically starting from the side faces 2a or Fi, 2b of the groove towards the center of the groove. The electron beam 3 is deflected along and transversely to the predetermined annular groove 2 . To carry out the melting process, the electron beam 6 is deflected periodically and alternately in the longitudinal direction of the annular groove 2 onto the flanks 2a and 2b of the groove facing each other and with a monotonically increasing deflection from zero. It is guided from the side of the groove toward the center of the groove in the direction of arrow 7 at a high speed.

電子ビーム3のこの偏向に、転移作用の振動数に較べて
、かなり高い振動数をもつ2次元のビ(7) 一ム振動が追加してオーバラップされる。2重矢印8に
よって特徴づけられかつ溝の縦方向にあるビーム振動の
成分の振幅は、電子ビーム6の直径に較べて大きくかつ
セグメント5の長さに等しく、溶融池乙の縦方向伸びを
決定する。
This deflection of the electron beam 3 is additionally overlapped by a two-dimensional beam vibration having a considerably higher frequency compared to the frequency of the transfer action. The amplitude of the component of the beam vibration characterized by the double arrow 8 and lying in the longitudinal direction of the groove is large compared to the diameter of the electron beam 6 and equal to the length of the segment 5 and determines the longitudinal elongation of the molten pool. do.

2重矢印9によって特徴づけられるビーム振動の横方向
成分は、縦方向成分よし小さくまた環状溝 の幅に較べ
て小さくなっている。環状溝2の縦方向の偏向に転移作
用に対して2倍の振動数の追加の鋸歯作用を加算するか
ら、電子ビーム3は滞留期間の間セグメントにおいて溝
2の縦方向に10矢視方向に移動される材料表面に対し
て静止する振動図形を持続する。したがって電子ビーム
3は、振動を無視した場合常に矢印7に沿ってセグメン
ト5に亘って案内されかつセグメント5からすぐ次のセ
グメントへ点線の矢印に沿って転移する。
The transverse component of the beam vibration, characterized by the double arrow 9, is smaller than the longitudinal component and is smaller compared to the width of the annular groove. Since we add to the longitudinal deflection of the annular groove 2 an additional sawtooth effect of twice the frequency as compared to the transfer effect, the electron beam 3 moves in the longitudinal direction of the groove 2 in the 10 arrow direction during the dwell period. Sustains an oscillating figure that remains stationary relative to the surface of the material being moved. Neglecting vibrations, the electron beam 3 is therefore always guided along the arrow 7 over the segment 5 and is transferred from the segment 5 to the next segment along the dotted arrow.

【図面の簡単な説明】[Brief explanation of the drawing]

唯一つの添付図面は本発明による方法の好ましい実施例
である内燃機関ピストンの局部的熱(8) 耐溶融処理される表面展開部の断面図である。 2a、2b・・・溝のフランク 4a、4b・・・照射溶融範囲 5・・・セグメント 6・・・溶融池 代理人江崎光好 代理人江崎光史 (9) 113
The only accompanying drawing is a sectional view of a surface development to be treated to resist local heat (8) melting of an internal combustion engine piston, which is a preferred embodiment of the method according to the invention. 2a, 2b... Groove flanks 4a, 4b... Irradiation melting range 5... Segment 6... Molten pool agent Mitsuyoshi Ezaki agent Mitsufumi Ezaki (9) 113

Claims (1)

【特許請求の範囲】 (リ 転移ビーム方法の電子ビームを用いて照射溶融処
理後えぐり取られる溝、なるべく内燃機関用ピストンの
環状溝のフランクの範囲を局部的に照射溶融処理する方
法において、溝のフランク(2a、2b)に所属する照
射溶融範囲(4a、 、ib)が互いに向かい会いかつ
溝の縦方向に交互に延ばされかつ互いにオーバラップす
る同じ長さのセグメント(5)にしてつくられており、
セグメント(5)の長さに亘って延びる浴融池(6)が
それぞれ溝のフランク平面から延びかつこの平面に対し
平行になって溝の中心の方向に単調に減少する照射溶融
深さで案内されること全特徴とする、方法。 (2)振動図形として溝の縦方向にある“8″あるいは
場合によっては溝の中心に対して開放される放物線が使
用されることを特徴とする、(1) 特許請求の範囲第1項に記載の方法。 (6)溝の縦方向にあるビーム偏向に追加して鋸歯作用
がオーバラップして加えられ、したがって電子ビーム(
3)がセグメント(5)の滞留期間の間移動される加工
品表面に対して静止する振動図形を溝の縦方向に持続す
ることを特徴とする特許請求の範囲第1項に記載の方法
[Claims] (Re) A method of locally irradiating and melting a groove that is gouged out after irradiation and melting using an electron beam in a transfer beam method, preferably the flank range of an annular groove of a piston for an internal combustion engine. The irradiated melting areas (4a, , ib) belonging to the flanks (2a, 2b) of are formed in segments (5) of equal length facing each other and extending alternately in the longitudinal direction of the groove and overlapping each other. has been
A bath weld pool (6) extending over the length of the segments (5) each extends from the flank plane of the groove and is guided parallel to this plane with an irradiation melt depth that decreases monotonically in the direction of the center of the groove. All features and methods of being done. (2) The vibration pattern is characterized in that an "8" extending in the longitudinal direction of the groove or, in some cases, a parabola open to the center of the groove is used. (1) Claim 1 Method described. (6) In addition to the beam deflection in the longitudinal direction of the groove, an overlapping sawtooth effect is applied, thus the electron beam (
2. A method as claimed in claim 1, characterized in that 3) maintains in the longitudinal direction of the groove an oscillatory figure that is stationary with respect to the workpiece surface being moved during the residence period of the segment (5).
JP58230693A 1982-12-09 1983-12-08 Radiation fusion treatment for internal combustion engine piston by electron beam Pending JPS59113122A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DD23K/24573 1982-12-09
DD82245736A DD211983A1 (en) 1982-12-09 1982-12-09 METHOD OF MELTING, IN PARTICULAR MOTOR PISTON, BY ELECTRON BEAM

Publications (1)

Publication Number Publication Date
JPS59113122A true JPS59113122A (en) 1984-06-29

Family

ID=5543142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58230693A Pending JPS59113122A (en) 1982-12-09 1983-12-08 Radiation fusion treatment for internal combustion engine piston by electron beam

Country Status (6)

Country Link
JP (1) JPS59113122A (en)
DD (1) DD211983A1 (en)
DE (1) DE3339906A1 (en)
FR (1) FR2537484B1 (en)
GB (1) GB2131458A (en)
SE (1) SE8306760L (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3810391A1 (en) * 1988-03-26 1989-10-05 Leybold Ag DEVICE AND METHOD FOR CONTROLLING AND MONITORING A DEFLECTABLE ELECTRON BEAM FOR METAL WORKING
DE19603037C1 (en) * 1996-01-29 1997-02-27 Saechsische Elektronenstrahl G Electron beam multi-chamber unit, e.g. for welding and hardening

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2013674B2 (en) * 1970-03-21 1974-03-07 Steigerwald Strahltechnik Gmbh, 8000 Muenchen Process for hardening workpieces, such as tools, by means of an energy beam
GB1404865A (en) * 1971-12-29 1975-09-03 Nissan Motor Method of forming hardened layers on castings
BE793529A (en) * 1971-12-30 1973-06-29 Rotterdamsche Droogdok Mij N V METHOD FOR RECYSTALLIZING A BASE MATERIAL LOCATED UNDER A WELDED LAYER
GB1373987A (en) * 1972-07-27 1974-11-13 Mahle Gmbh Method of manufacturing pistons
DE2741567C2 (en) * 1977-09-15 1981-09-24 Audi Nsu Auto Union Ag, 7107 Neckarsulm Process for producing remelt hardening hardened surfaces
DE2742597C3 (en) * 1977-09-22 1980-02-07 Audi Nsu Auto Union Ag, 7107 Neckarsulm Camshaft for piston engines and work machines, preferably reciprocating internal combustion engines
DE2824373A1 (en) * 1978-06-03 1979-12-06 Aeg Elotherm Gmbh PROCESS FOR SURFACE HARDENING OF A CAST-IRON WORKPIECE OF LIMITED THERMAL CAPACITY
GB2057510B (en) * 1979-09-04 1982-09-08 Aeg Elotherm Gmbh Surface hardening by remelting
IT1205610B (en) * 1981-04-28 1989-03-23 Ae Plc PROCEDURE FOR THE MANUFACTURE OF ALUMINUM-BASED PISTONS IN PARTICULARLY FOR ENGINES OR COMPRESSORS OR SIMILAR

Also Published As

Publication number Publication date
GB8331334D0 (en) 1984-01-04
SE8306760D0 (en) 1983-12-07
DD211983A1 (en) 1984-08-01
FR2537484B1 (en) 1987-12-11
SE8306760L (en) 1984-06-10
DE3339906A1 (en) 1984-06-14
GB2131458A (en) 1984-06-20
FR2537484A1 (en) 1984-06-15

Similar Documents

Publication Publication Date Title
KR102396213B1 (en) Method and system for laser hardening of a surface of a workpiece
JPS5951668B2 (en) cylinder liner
JP6353108B2 (en) Method of machining a surface of a metal part and metal part
US3838288A (en) Method for the remelt treatment of workpieces and the like
JPS59113122A (en) Radiation fusion treatment for internal combustion engine piston by electron beam
JPH02142690A (en) Laser beam welding method
JPH0138852B2 (en)
KR940004030B1 (en) Method of forming chilled layer
JPS63194884A (en) Laser build-up welding method
JPS6052526A (en) Production of remelted and chilled cam shaft
JP3572590B2 (en) Metal surface remelting treatment method
FI78120C (en) FOERFARANDE FOER FRAMSTAELLNING AV CYLINDRISKA IHAOLIGA ARBETSSTYCKEN.
JP3752811B2 (en) Method for remelting the surface of an aluminum workpiece
JPH01218A (en) Metal surface remelting treatment method
RU2107600C1 (en) Method of laser treatment
KR20230062554A (en) Laser welding method
JPH01142064A (en) Treatment of metallic surface
JPS6389624A (en) Surface hardening method for cam shaft
JPH062897B2 (en) Method for remelting metal surface
JPS5848622A (en) Heat treatment for hardening surface of cast iron sliding member by remelting
JPS5976816A (en) Surface hardening method
Ricciardi et al. Remelting Surface Hardening of Cast Iron by CO sub 2 Laser
JPH01142063A (en) Treatment of metallic surface
JPH01127654A (en) Remelting treatment of casting surface
JPS60166167A (en) Welding method