JPS63310976A - Alloying method using high-density energy - Google Patents

Alloying method using high-density energy

Info

Publication number
JPS63310976A
JPS63310976A JP14481287A JP14481287A JPS63310976A JP S63310976 A JPS63310976 A JP S63310976A JP 14481287 A JP14481287 A JP 14481287A JP 14481287 A JP14481287 A JP 14481287A JP S63310976 A JPS63310976 A JP S63310976A
Authority
JP
Japan
Prior art keywords
alloying
arc
heating energy
alloyed
alloyed layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14481287A
Other languages
Japanese (ja)
Inventor
Makoto Yoshida
信 吉田
Haratsugu Koyama
原嗣 小山
Takaaki Kanazawa
孝明 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14481287A priority Critical patent/JPS63310976A/en
Publication of JPS63310976A publication Critical patent/JPS63310976A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an alloyed layer having uniform characteristics by reciprocating high-density energy to uniformly melt the whole alloyed layer forming region when an alloying material is arranged on the surface of a metallic substrate, high-density energy is exerted to melt both substrate and material, and the alloyed layer having excellent characteristics is formed. CONSTITUTION:The powder 2 of an alloying material such as Cr is coated on the surface of a metallic substrate 1 over the length (l) of >=10mm with the aid of polyvinyl alcohol, etc. High-density energy of a TIG arc 4, etc., is impressed from the upper part by a TIG torch 3 to simultaneously melt the substrate metal 1 and the alloying material 2, hence a melt pool 5 is formed, the TIG4 arc is then removed to quench and solidify the metals, and the surface characteristics such as wear resistance and fatigue resistance are improved. In this case, the torch 3 is repeatedly reciprocated in the surface treating range (l) to keep the whole melt pool 5 n a molten state, hence an alloy having a uniform composition is formed in the surface treatment range (l), and an alloyed layer 6 without variance in the surface characteristics such as wear resistance and fatigue resistance is formed.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は各種自動車部品やその他機械部品などにおい
て、金属基材の表面の一部の耐摩耗性や耐疲労特性など
の表面特性を改善するために、レーザヤTiGアークな
どの高密度カロ熱エネルギを用いて金属基材の表面の一
部に局部的に合金化処理を施す方法に関するものである
[Detailed Description of the Invention] Industrial Field of Application This invention is for improving the surface properties such as wear resistance and fatigue resistance of a part of the surface of a metal base material in various automobile parts and other mechanical parts. The present invention relates to a method of locally alloying a part of the surface of a metal base material using high-density calothermal energy such as a laser beam TiG arc.

従来の技術 最近に至り、自動車エンジン用シリンダボア、あるいは
クランクシャフト、さらにはシリンダヘッド弁間部等に
おいては、耐摩耗性や耐疲労強度などの表面特性を局部
的に改善するため、レーザヤTIGアーク、プラズマア
ークあるいは電子ビームなどの高密度加熱エネルギを用
いて鋼や鋳鉄、アルミニウム合金からなる金属基材の表
面層の一部を合金化する技術が開発されている。この合
金化処理は、金属基材の表面に合金化すべき元素を含む
合金化材料を配置し、その上からTIGアークやレーザ
ビームなどの高密度加熱エネルギを印加して、合金化材
料とその下側の金属基材表面層とを同時に溶融ざぜ、両
者を混合一体化(合金化)させ、その後高密度加熱エネ
ルギの印加位置の移動もしくは印ha停止により熱を金
属基材側へ拡散させて急冷凝固させ、金属基材表面層を
合金化層とするものである。
BACKGROUND OF THE INVENTION Recently, in order to locally improve surface properties such as wear resistance and fatigue strength in cylinder bores, crankshafts, and cylinder head valve spaces for automobile engines, Lasaya TIG arc, Techniques have been developed to alloy a portion of the surface layer of a metal base material made of steel, cast iron, or aluminum alloy using high-density heating energy such as plasma arc or electron beam. In this alloying process, an alloying material containing the elements to be alloyed is placed on the surface of a metal base material, and high-density heating energy such as a TIG arc or a laser beam is applied from above the alloying material and the material below it. The surface layer of the metal base material on the side is simultaneously melted and mixed together (alloyed), and then the heat is diffused to the metal base material side by moving the application position of high-density heating energy or stopping the application, and rapidly cooled. The metal base material surface layer is solidified to form an alloyed layer.

ところでこのような高密度加熱エネルギを用いた合金化
処理方法によって金属基材表面のある長さの領域を合金
化する場合、従来は高密度加熱エネルギの印加位置を、
合金化材料が配置された領域の長さ方向の一端(始端)
から他端(終端)へ向けて一方向に連続的に移動させる
のが通常であった。
By the way, when alloying a certain length region on the surface of a metal base material by such an alloying treatment method using high-density heating energy, conventionally, the application position of high-density heating energy is
One lengthwise end (starting end) of the area where the alloying material is placed
Normally, it was moved continuously in one direction from one end to the other end (terminus).

一方、合金化処理とは異なるが、高密度加熱エネルギを
使用した金属基材の表面改良処理方法の一つとしては、
鋳鉄基材の表面に高密度エネルギを印加してその表面層
を再溶融させ、続いて′急冷凝固によってその表面層を
チル化させるいわゆる再溶融チル化処理方法があり、こ
の再溶融チル化処理技術としては、本願発明者等が既に
特願昭61−243386号(未公開)において、鋳鉄
表面の10m以上の長さの領1:itJ、をチル化させ
るにあたり高密度加熱エネルギの印加位置をその領域の
長さ方向にその全長にわたって往復移動させて、その領
域の全体を一様に溶融状態とし、その状態で高密度加熱
エネルギの印加を停止させて溶融プール全体を実質的に
同時に冷却凝固させる方法を提案している。
On the other hand, although it is different from alloying treatment, one method of surface improvement treatment for metal substrates using high-density heating energy is
There is a so-called remelting chilling treatment method in which high-density energy is applied to the surface of a cast iron base material to remelt the surface layer, and then the surface layer is chilled by rapid solidification. As for the technology, the present inventors have already disclosed in Japanese Patent Application No. 61-243386 (unpublished) the application position of high-density heating energy to chill the region 1: itJ, which is 10 m or more in length on the surface of cast iron. The entire molten pool is moved back and forth along the length of the area to uniformly melt the entire area, and in that state, the application of high-density heating energy is stopped to cool and solidify the entire molten pool substantially simultaneously. We are proposing a method to do so.

発明が解決すべき問題点 前述のように、高密度加熱エネルギを用いた従来の合金
化処理方法においては、ある長さの領域を合金化する場
合、高密度加熱エネルギの印加位置をその領域の一端か
ら他端へ向けて一方向に連続移動させるのが通常であっ
たが、その領域の長さが長い場合、高密度加熱エネルギ
の印加位置の移動方向に逐次溶融・凝固を繰返しながら
合金化層が形成されて↑1くことになる。すなわち第8
図に示すように金属基材1の表面に合金化材料2を配置
し、高密度加熱エネルギ源、例えばTIGアーク用トー
チ3を図の矢印六方向に連続移動させてTIGアーク4
の印加位置を連続移動させれば、その印加位置の前進に
伴なって合金化材料2およびその下側の金属基材1の表
面層が溶融されて新たな溶融プール5が形成される一方
、印加位置前進方向に対し後方では溶融プールの溶融金
属(基材1と合金化材料2とが溶融一体化されたもの)
が逐次急速凝固されて、合金化層6が形成されて行く。
Problems to be Solved by the Invention As mentioned above, in the conventional alloying processing method using high-density heating energy, when alloying a region of a certain length, the application position of the high-density heating energy is adjusted to Normally, it was moved continuously in one direction from one end to the other, but when the length of the area is long, alloying is performed by repeating melting and solidification sequentially in the direction of movement of the application position of high-density heating energy. A layer is formed and becomes ↑1. That is, the eighth
As shown in the figure, an alloying material 2 is placed on the surface of a metal base material 1, and a high-density heating energy source, for example, a TIG arc torch 3 is continuously moved in the six directions of arrows in the figure to generate a TIG arc 4.
If the application position is continuously moved, as the application position moves forward, the alloying material 2 and the surface layer of the metal base material 1 below it will be melted and a new molten pool 5 will be formed. The molten metal in the molten pool (base material 1 and alloying material 2 melted and integrated) is located at the rear of the application position in the forward direction.
are successively rapidly solidified to form an alloyed layer 6.

ところがこのような合金処理方法では、高密度加熱エネ
ルギの連続移動中のある時刻において生成されている溶
融プールは、処理すべき領域のうちの一部に限られ、こ
のことは同時に溶融している合金化材料と金属表面層の
量が少ないことを意味し、また溶融プールに対する高密
度エネルギの攪拌効果もさほど大きくなく、これらの理
由から合金化層の成分組成がばらついて不均一となる問
題があった。
However, in such alloy processing methods, the molten pool that is generated at any given time during the continuous transfer of high-density heating energy is limited to a portion of the area to be treated, which means that the melt pool is This means that the amount of alloying material and metal surface layer is small, and the stirring effect of high-density energy on the molten pool is not very large.For these reasons, the problem of uneven and non-uniform composition of the alloyed layer is caused. there were.

この問題を解決するためには、上述のように高密度加熱
エネルギ印加位置の一方向連続移動によっである領域の
長さ方向の一端(始端)から他端(終端)までを合金化
させた侵、再び高密度加熱エネルギ源の位置を始端に戻
し、その始端から終端に向けて一方向に連続的に印加位
置を移動させながら高密度エネルギを印加して合金化層
の再溶融・凝固を行ない、ざらに同じ過程を適宜回数だ
け繰返すことも考えられている。しかしながらこの方法
における再溶融の過程でも溶融プールの生成は全領域の
うちの一部に過ぎないため、−回の再溶融過程だけでは
合金化層の成分均一化効果が少なく、そのため何回も再
溶融を繰返さなければ合金化層の合金組成の充分な均一
化を図ることは困難であり、したがって処理に長時間を
要するとともに、一旦冷却・凝固した合金化層を再溶融
させるために相当なエネルギを使用しなければならず、
エネルギコストが高くなる問題があった。
In order to solve this problem, as mentioned above, the high-density heating energy application position is continuously moved in one direction to alloy the region from one end (starting end) to the other end (terminus) in the length direction. The high-density heating energy source is moved back to the starting end, and high-density energy is applied while continuously moving the application position in one direction from the starting end to the ending end to remelt and solidify the alloyed layer. It is also considered that the same process can be repeated as many times as necessary. However, even in the remelting process in this method, the formation of a molten pool is only a part of the total area, so the -th remelting process alone has little effect on homogenizing the composition of the alloyed layer, and therefore, the remelting process is repeated many times. It is difficult to achieve a sufficiently uniform alloy composition in the alloyed layer without repeated melting, and therefore the process takes a long time and a considerable amount of energy is required to remelt the alloyed layer once it has been cooled and solidified. must be used,
There was a problem of high energy costs.

この発明は以上の事情を背景としてなされたもので、金
属基材表面のある長さの領域について高密度加熱エネル
ギを用いて合金化処理を行なうにあたり、その領域の全
域にわたって成分組成が均一な合金化層を、コスト上昇
や処理の長時間化を招くことなく形成することができる
方法を提供することを目的とするものである。
The present invention was made against the background of the above-mentioned circumstances. When performing alloying treatment on a certain length region on the surface of a metal base material using high-density heating energy, it is possible to create an alloy with a uniform composition over the entire region. The object of the present invention is to provide a method that can form a thickening layer without increasing costs or prolonging the processing time.

問題点を解決するための手段 既に述へた特願昭61−243386号の提案の方法は
、この発明で対象としている合金化処理方法とは異なり
、鋳鉄の再溶融チル化処理方法についてのものであるが
、高密度加熱エネルギを用いて溶融、再凝固を行なう点
では共通している。
Means for Solving the Problems The method proposed in Japanese Patent Application No. 61-243386 mentioned above is different from the alloying treatment method targeted by this invention, and is a method for remelting and chilling cast iron. However, they have in common that they perform melting and resolidification using high-density heating energy.

そこでこの提案の方法を合金化処理に応用するべく実験
・検討を加えたところ、上記の提案の方法のように高密
度DO熱エネルギの印加位置を処理すべき領域の長さ方
向の全長にわたって往復移動させて、その領域の全体を
一様に溶融状態とすることによって、合金化層の成分組
成の均一化を容易に図り得ることを見出し、この発明を
なすに至ったのである。
Therefore, when we conducted experiments and studies to apply this proposed method to alloying processing, we found that, as in the above proposed method, the application position of high-density DO thermal energy was reciprocated over the entire length of the region to be processed. It was discovered that the composition of the alloyed layer could be easily made uniform by moving the alloy layer so that the entire region was uniformly molten, and this invention was achieved based on this discovery.

具体的には、この発明は、金属基材表面に合金化すべき
元素を含む合金化材料を配置し、その合金化材料の上か
ら高密度加熱エネルギを印加して合金化材料とその下側
の金属基材表面層を溶融一体化させ、引続いて急冷凝固
させて金属基材の表面に合金化層を形成する方法におい
て、金属基材表面の長さ10m以上の領域に合金化層を
形成するにめたり、高密度加熱エネルギの印加位置を前
記領域の長さ方向にそのほぼ全長にわたり往復移動させ
て、その領域の全体を一様に溶融状態とし、続いてその
状態で高密度加熱エネルギの印加を停止させて、溶融プ
ール全体を冷却凝固させることを特徴とするものである
Specifically, in this invention, an alloying material containing an element to be alloyed is placed on the surface of a metal base material, and high-density heating energy is applied from above the alloying material to heat the alloying material and the layer below the alloying material. In a method of forming an alloyed layer on the surface of the metal substrate by melting and integrating the surface layer of the metal substrate and then rapidly solidifying the surface layer, the alloyed layer is formed in an area of 10 m or more in length on the surface of the metal substrate. Alternatively, the application position of the high-density heating energy may be reciprocated in the longitudinal direction of the region over almost the entire length to uniformly melt the entire region, and then the high-density heating energy is applied in that state. This is characterized in that the application of is stopped and the entire molten pool is cooled and solidified.

作   用 この発明の合金処理方法においては、金属基材表面に合
金化材料を配置した10#以上の長さの領域にその合金
化材料の上からTIGアーク、レーザビームなどの高密
度加熱エネルギを印加するにあたって、その印加位置を
、前記領域の長さ方向の全長にわたって繰返し往復移動
させる。高密度加熱エネルギの印buによって合金化材
料およびその下側の金属基材表面層が溶融し、両者が合
金化されるが、上述のよう・に高密度加熱エネルギの印
加位置を処理すべき領域の全長にわたって繰返し往復移
動させることによって、その領域に対する高密度加熱エ
ネルギの印加期間中は実質的に凝固が開始されることな
くその領域の全長にわたって一様な溶融状態となる。そ
してこのように処理すべき領域の全長にわたって一様な
溶融状態となることと、高密度加熱エネルギの印加位置
の往復移動によって溶融プール内の溶融金属が攪拌され
ることとが相俟って、処理すべき領域の全長にわたって
合金組成が均一化される。その後高密度加熱エネルギの
印加を停止すれば、処理すべき領域の全長にわたる溶融
プールが、母材側への熱拡散によって急速に冷却凝固さ
れ、これによって均一な合金組成の合金化層か形成され
る。
Function: In the alloy processing method of the present invention, high-density heating energy such as TIG arc or laser beam is applied from above the alloying material to a region having a length of 10# or more where the alloying material is placed on the surface of the metal base material. When applying the voltage, the application position is repeatedly moved back and forth over the entire length of the region. The application of high-density heating energy melts the alloying material and the surface layer of the metal substrate underneath, and the two are alloyed, but as described above, the application position of high-density heating energy is adjusted to the area to be treated. By repeatedly moving back and forth over the entire length of the area, solidification is substantially not initiated during the application of high-density heating energy to the area, resulting in a uniform molten state over the entire length of the area. In this way, a uniform molten state is achieved over the entire length of the area to be treated, and the molten metal in the molten pool is stirred by the reciprocating movement of the application position of high-density heating energy. The alloy composition is made uniform over the entire length of the area to be treated. When the application of high-density heating energy is then stopped, the molten pool spanning the entire length of the area to be treated is rapidly cooled and solidified by thermal diffusion toward the base metal, thereby forming an alloyed layer with a uniform alloy composition. Ru.

発明の実施のための具体的説明 第1図〜第3図に、高密度加熱エネルギとしてTIGア
ークを用いた場合においてこの発明の合金化処理を実施
している状況の一例を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 3 show an example of a situation in which the alloying treatment of the present invention is carried out when TIG arc is used as high-density heating energy.

第1図は、処理開始前の状況を示すものであり、金属基
材1の表面における合金化層を形成すべき領域(艮ざ!
の部分)に合金化材料2が配置されている。そして第2
図に示すようにTIGアーク用トーチ3を処理すべき領
域の長さ方向にほぼその全長にわたって往復運動させる
ことによって、トーチ3と金属基材1との間に発生して
いるアーク4の位置、すなわち高密度加熱エネルギの印
加位置が処理すべき領域の長さ方向に往復移動し、これ
によって処理すべき領域の合金化材料および金属基材表
面層が均一に溶融されて、長さ2の全長にわたって一様
な溶融プール4が形成される。
FIG. 1 shows the situation before the start of treatment, and shows the area on the surface of the metal base material 1 where an alloyed layer is to be formed.
The alloying material 2 is placed in the area ). and the second
As shown in the figure, by reciprocating the TIG arc torch 3 in the length direction of the area to be treated over almost its entire length, the position of the arc 4 generated between the torch 3 and the metal base material 1 can be adjusted. In other words, the application position of high-density heating energy moves back and forth in the length direction of the area to be treated, thereby uniformly melting the alloying material and the surface layer of the metal base material in the area to be treated, and thereby melting the entire length of length 2. A uniform molten pool 4 is formed throughout.

その後トーチ3の電流を切ってアーク4を消滅させれば
、?’fl FA’Aプール5の全体にわたって実質的
に同時に凝固が進行し、第3図に示す合金化層6が形成
される。
What if we then cut off the current in torch 3 and extinguish arc 4? Solidification proceeds substantially simultaneously throughout the 'fl FA' A pool 5, forming an alloyed layer 6 shown in FIG.

ここで、TIGアーク等の高密度加熱エネルギの印加位
置を往復移動させて同時に合金化させる領域の長さ!、
すなわち高密度加熱エネルギ印加位置の往復移動距離2
が10Irvr1未満の場合は、往復移動させるメリッ
トが特にないから、往復移動距離!は10an以上とし
た。すなわち、長さ10m未満の短かい領域では、高密
度加熱エネルギの印加位置を移動させずに固定していて
もその領域全体を同時に合金化させて比較的均一な合金
組成の合金化層を形成することかできるからてめる。
Here, the length of the area to be simultaneously alloyed by reciprocating the application position of high-density heating energy such as TIG arc! ,
In other words, the reciprocating distance of the high-density heating energy application position 2
If it is less than 10Irvr1, there is no particular advantage to moving it back and forth, so the distance of the round trip! was set to be 10 an or more. In other words, in a short region of less than 10 m in length, even if the application position of high-density heating energy is fixed without moving, the entire region is simultaneously alloyed to form an alloyed layer with a relatively uniform alloy composition. I'm happy because I can do what I can.

また特に高密度加熱エネルギとしてTIGアークを用い
る場合には、前記往復移動距離!の上限を30mmとし
、かつ高密度加熱エネルギ(TIGアーク)の往復移動
周波数(Hz)と高密度加熱エネルギ(TIGアーク)
の往復移動距離(処理すべき部位の長さ!にほぼ等しい
)とを、アーク電流に応じて第4図、第5図に示すよう
な範囲内とすることか好ましい。またTIGアークのア
ーク電流は150〜400Aの範囲内とすることが好ま
しい。
Moreover, especially when using TIG arc as high-density heating energy, the above-mentioned reciprocating distance! The upper limit of 30 mm, and the reciprocating frequency (Hz) of high-density heating energy (TIG arc)
It is preferable that the reciprocating distance (approximately equal to the length of the part to be treated!) is within the range shown in FIGS. 4 and 5 depending on the arc current. Further, it is preferable that the arc current of the TIG arc is within the range of 150 to 400A.

それらの叩出は次の通りである。Their output is as follows.

すなわちこの発明の合金化処理方法の場合、高密度力u
熱エネルギの印加位置の往復移動により処理領域の全長
にわたって一様な溶融状態とならなければならいないか
、一様な溶融状態とするための要因としては、高密度加
熱エネルギの往復移動距離!と、往復移動速度(往復周
波数)およびアーク電流値の各条件がある。そして先ず
往復移動距離!が30Mを越える場合には、TIGアー
クの往復移動速度を極端に速くしなければ一様に溶融プ
ールを保持してあくことができないが、そのように往復
移動速度を極端に速くすればアークが安定せず、)d融
が不均一となる。したがってTIGアークの往復移動距
離!は30rrvn以下(前述の10M以上の条件と合
わせて10〜30mの範囲内)とすることが好ましい。
That is, in the case of the alloying treatment method of this invention, the high density force u
The reciprocating movement of the application position of thermal energy must result in a uniform molten state over the entire length of the processing area, or the factor for achieving a uniform molten state is the reciprocating distance of high-density heating energy! There are also conditions for reciprocating speed (reciprocating frequency) and arc current value. And first, the round trip distance! When the TIG arc exceeds 30M, it is not possible to maintain a uniform molten pool unless the reciprocating speed of the TIG arc is extremely fast; however, if the reciprocating speed is made extremely fast, the arc It is not stable and the melting becomes non-uniform. Therefore, the round trip distance of the TIG arc! is preferably 30 rrvn or less (within the range of 10 to 30 m, including the above-mentioned condition of 10 M or more).

またTIGアークの往復移動距離2が10〜30Mの範
囲内であっても、その距離!に対して往復移動速度(往
復移動周波数)が低過ぎれば溶融プールを一様に保持し
ておくことが回動となり、またその関係はアーク電流値
によっても変化し、アーク電流値が少ないほど往復移動
速度を高めなければならない。具体的には、アーク電流
値が300Aの場合、往復移動距離!が10.では往復
移動周波数が1.りH2未満となれば一様に溶融プール
を保持することが困難となり、また同じくアーク電流値
が300Aの場合、往復移動距離!が30mでは往復移
動周波数が38Z未満となれば一様に溶融プールを保持
することが困難となる。そしてアーク電流値が30OA
で往復移動距離!が10〜30rn!r&の間でも、往
復移動距離!によって一様に溶融プールを保持すること
が可能な往復移動周波数の下限が定まり、結局第4図の
斜線領域内の往復移動周波数とすることが好ましい。こ
のような関係を、150〜400Aの範囲内のアーク電
流値を50八ごとに区分して安全サイドに見積って示し
たものが第5図でおる。
Also, even if the reciprocating distance 2 of the TIG arc is within the range of 10 to 30M, that distance! However, if the reciprocating speed (reciprocating frequency) is too low, holding the molten pool uniformly becomes rotation, and this relationship also changes depending on the arc current value; the lower the arc current value, the faster the reciprocating Movement speed must be increased. Specifically, when the arc current value is 300A, the round trip distance! is 10. Then, the reciprocating frequency is 1. If the value is less than H2, it will be difficult to maintain a uniform molten pool, and if the arc current value is 300A, the reciprocating distance! is 30 m, and if the reciprocating frequency is less than 38Z, it becomes difficult to maintain a uniform molten pool. And the arc current value is 30OA
The round trip distance! is 10~30rn! Round trip distance even between r &! The lower limit of the reciprocating frequency that can maintain the molten pool uniformly is determined by this, and it is preferable that the reciprocating frequency be within the shaded area in FIG. FIG. 5 shows such a relationship estimated on the safe side by dividing the arc current value within the range of 150 to 400 A into every 508.

すなわち第5図において、アーク電流値150A以上2
00A未満の場合は曲線P1の上側の領域、200A以
上250A未禍の場合は曲線P2の上側の領域、25O
A以上30OA未満の場合は曲線P3の上側の@域、3
00A以上350A未満の場合は曲線P4の上側の領域
、350A以上400A以下の場合は曲線P5の上側の
領域がそれぞれ好ましい往復移動周波数の範囲となる。
In other words, in Fig. 5, if the arc current value is 150 A or more, 2
If it is less than 00A, it is the area above the curve P1, and if it is 200A or more and 250A, it is the area above the curve P2, 25O.
In the case of A or more and less than 30OA, the upper @ area of curve P3, 3
In the case of 00A or more and less than 350A, the region above the curve P4 is a preferable range, and in the case of 350A or more and less than 400A, the region above the curve P5 is a preferable reciprocating frequency range.

さらにアーク電流値自体については、その値が150A
未満では金属基材表面層の溶融が不充分となるおそれか
ある。一方400Aを越えれば過熱されすぎて凝固速度
が遅くなり、急冷凝固による合金化層の組織の微細化を
図れなくなるおそれがある。したがってアーク電流値は
150〜400Aの範囲内とすることが好ましい。
Furthermore, the arc current value itself is 150A.
If it is less than that, there is a risk that the surface layer of the metal base material will not be sufficiently melted. On the other hand, if it exceeds 400 A, it will be overheated too much, slowing down the solidification rate, and there is a possibility that it will not be possible to refine the structure of the alloyed layer by rapid solidification. Therefore, it is preferable that the arc current value is within the range of 150 to 400A.

またTIGアークによる処理時間が30秒を越えても過
熱されすぎて凝固速度が遅くなり、急冷凝固による合金
化層の組織の微細化が図れなくなるおそれがある。した
がってTIGアーク処理時間は30秒以内とすることが
好ましい。
Furthermore, even if the TIG arc treatment time exceeds 30 seconds, overheating may occur, resulting in a slow solidification rate, and there is a risk that the microstructure of the alloyed layer cannot be refined by rapid solidification. Therefore, it is preferable that the TIG arc treatment time be within 30 seconds.

なお以上の説明では高密度ハu熱エネルキとしてTIG
アークを用いる場合について示したが、]−IGアーク
に限らず、レーザ、電子ビーム、プラズマアーク等を高
密度力u熱エネルギとして用いても良いことは勿論でお
る。
In the above explanation, TIG is used as high-density heat energy.
Although the case where an arc is used is shown, it is of course possible to use not only the -IG arc but also a laser, an electron beam, a plasma arc, etc. as the high-density force u thermal energy.

なおこの発明の合金化処理を剥す対象となる金属基材は
任意であり、例えば炭素鋼、鋳鉄、鍛鋼あるいはA2合
金などに適用することができる。
Note that the metal base material to be stripped by the alloying treatment of the present invention is arbitrary, and can be applied to carbon steel, cast iron, forged steel, A2 alloy, etc., for example.

また合金化すべき元素は、合金化によって改善すべき特
性や金属基材の材質に応じて任意に定めれば良く、例え
ば金属基材が鋼や鋳鉄、鍛鋼の場合には、Cr、Co、
Mo、A!等を合金化することができ、また金属基材が
A2合金の場合N1ヤFe等を合金化することができ、
またもちろん2種以上の元素を合金化しても良い。さら
にこれらの合金化元素を含む合金化材料を金属基材上に
配置する荊態も任意でおり、合金化材料の粉末層を任意
のバインダを用いて塗布形成したり、あるいは溶射した
り、ざらには薄板の状態で配置したりすることができる
Further, the elements to be alloyed may be arbitrarily determined depending on the properties to be improved by alloying and the material of the metal base material. For example, when the metal base material is steel, cast iron, or forged steel, Cr, Co,
Mo, A! etc., and when the metal base material is A2 alloy, N1, Fe, etc. can be alloyed,
Of course, two or more elements may also be alloyed. Furthermore, the manner in which the alloying material containing these alloying elements is placed on the metal base material is optional, and the powder layer of the alloying material may be formed by coating using an arbitrary binder, or by thermal spraying or roughening. It can be placed in the form of a thin plate.

実施例 [実施例11 JIS  5US410Lの低炭素ステンレス鋼を金属
基材とし、その表面層にCrを合金化させる合金化処理
を次のようにして行なった。
Examples [Example 11 JIS 5US410L low carbon stainless steel was used as a metal base material, and alloying treatment for alloying Cr on the surface layer was performed as follows.

すなわち前記金属基材上にCr粉末をポリビニルアルコ
ールを用いて塗布し、高密度加熱エネルギとしてTIG
アークを用いて合金化層を形成した。この場合、TIG
トーチは処理領域の長さ方向に往復移動させた。合金化
処理条件は次の通りである。
That is, Cr powder is applied onto the metal base material using polyvinyl alcohol, and TIG is applied as high-density heating energy.
The alloyed layer was formed using an arc. In this case, T.I.G.
The torch was moved back and forth along the length of the treatment area. The alloying treatment conditions are as follows.

TIG出カニ  250A TIGトーチ往復移動周波数:  2Hz処理長さ: 
20m 処理時間:20秒 以上の条件で作成した合金化層の成分組成についてEP
〜IA分析により調査したところ、合金化、@の平均C
r濃度は25.1wt%であり、また合金化層内のCr
濃度分布は24.4〜25.8wt%で、Cr濃度のば
らつきは平均濃度の±3%以下であった。
TIG output crab 250A TIG torch reciprocating frequency: 2Hz Processing length:
20m Processing time: EP regarding the composition of the alloyed layer created under conditions of 20 seconds or more
~As investigated by IA analysis, the average C of alloying, @
The r concentration is 25.1 wt%, and the Cr concentration in the alloyed layer
The concentration distribution was 24.4 to 25.8 wt%, and the variation in Cr concentration was less than ±3% of the average concentration.

[実施例2] 実施例1で用いたと同じ金属基材に対し、Or十八へを
合金化させる処理を行なった。処理方法、条件は゛実施
例1の場合と同じである。
[Example 2] The same metal base material used in Example 1 was subjected to a process of alloying Or18. The processing method and conditions are the same as in Example 1.

得られた合金化層の成分組成についてE PMA分析を
行なったところ、平均Cr濃度は23.3wt%、平均
A!濃度は3.8wt%であり、また濃度のばらつきは
Cr、A!ともに平均′a度の±3%以下でめった。
E PMA analysis of the composition of the obtained alloyed layer revealed that the average Cr concentration was 23.3 wt% and the average A! The concentration is 3.8 wt%, and the variation in concentration is Cr, A! In both cases, it was less than ±3% of the average 'a degree'.

[比較例11 実施例1で用いたと同じ金属基材に対してOrを合金化
するにあたり、高密度加熱エネルギとしてTIGアーク
を用い、TIGトーチを処理領域の一端から他端へ向け
て一方向にのみ連続移動させることによって合金化を行
なった。処理条件は次の通りである。
[Comparative Example 11 In alloying Or on the same metal substrate used in Example 1, TIG arc was used as high-density heating energy, and the TIG torch was directed in one direction from one end of the processing area to the other. Alloying was performed by continuously moving the The processing conditions are as follows.

TIG出カニ  250A TIGトーチ移動速度:  2m/’Sec処理長さ:
20# 処理回数:1〜5回 なおここで、処理回数は、処理領域の一端から他端まで
のTIGアークの一方向連続移動を1回とする。したか
つて処理回数が2回以上とは同じ領域に2回以上繰返し
てTIGアークを印加することを意味する。
TIG out crab 250A TIG torch movement speed: 2m/'Sec processing length:
20# Number of processing times: 1 to 5 times Here, the number of processing times is defined as one continuous movement of the TIG arc in one direction from one end of the processing area to the other end. The number of times the process is performed twice or more means that the TIG arc is repeatedly applied to the same area twice or more.

各処理回数で処理された合金化層について、EP〜IA
分析によりCr濃度を調査し、同じ合金化層内てのCr
 ’+RfXのばらつきを調べた。その結果を処理回数
に対応して第6図に示す。なお参考のため実施例1の往
復移動処理によるCr濃度ばらつきも第6図中に併せて
示す。
For the alloyed layer treated with each number of treatments, EP to IA
The Cr concentration in the same alloyed layer was investigated by analysis.
'+RfX variations were investigated. The results are shown in FIG. 6 in correspondence to the number of times of processing. For reference, the Cr concentration variations due to the reciprocating process of Example 1 are also shown in FIG.

また処理に要した時間について第7図に示す。Further, the time required for processing is shown in FIG.

この第7図には、実施例1の往復移動処理による処理時
間も併せて示す。
FIG. 7 also shows the processing time for the reciprocating process of the first embodiment.

第6図、第7図から明らかように、この発明の実施例1
の往復移動処理の場合は、20秒間の処理によって合金
化層のCr濃度の平均濃度に対するばらつき±3%以下
が達成できたのに対し、比較例1の一方向のみの連続移
動処理の場合、処理回数が1回のみではCrs度の平均
濃度に対するばらつきか110%以上と著しく大きく、
処理回数を重ねるごとにばらつきが減少してはいるが、
処理回数が5回でようやく平均濃度に対するばらつきが
±3%近くまで低下し、それまでに要した処理時間は実
施例1の場合の約6倍であった。
As is clear from FIGS. 6 and 7, Embodiment 1 of the present invention
In the case of the reciprocating movement process of 20 seconds, the variation of the Cr concentration in the alloyed layer with respect to the average concentration could be achieved by ±3% or less, whereas in the case of the continuous movement process in only one direction of Comparative Example 1, When the number of treatments is only one, the variation in the average concentration of Crs degree is extremely large, exceeding 110%.
Although the variation decreases as the number of processing increases,
After 5 treatments, the variation in average concentration finally decreased to nearly ±3%, and the treatment time required up to that point was about 6 times that of Example 1.

このような結果から、この発明の方法か従来法と比較し
て極めて効率的に合金化層の成分組成を均一化できるこ
とが明らかである。
From these results, it is clear that the method of the present invention can uniformize the composition of the alloyed layer more efficiently than the conventional method.

[比較例21 Cr+Afの合金化を、比較例1と同様な方法、条件で
実施した。その結果は、第6図、第7図に示す比較例1
の結果とほぼ同様でめった。
[Comparative Example 21 Alloying of Cr+Af was carried out in the same manner and under the same conditions as in Comparative Example 1. The results are shown in Comparative Example 1 shown in Figures 6 and 7.
The results were almost the same.

発明の効果 この発明の合金化処理方法によれば、金屈塞材表面のi
omm以上の長さの領域に合金化処理を施すにあたって
、形成すべき合金化層の成分組成のばらつきを従来より
も著しく少なくして成分組成を均一化することができ、
したがって均一な特性を有する合金化層を形成すること
が容易であり、しかも上述のように均一な成分組成を有
する合金化層を形成するに要する処理時間も従来よりも
大幅に短縮されて、作業能率の効率化を図ることができ
るとともに、処理に要するエネルギコストの大幅な低減
を図る口とができる。
Effects of the Invention According to the alloying treatment method of the present invention, the i
When performing alloying treatment on a region with a length of 0 mm or more, the variation in the composition of the alloyed layer to be formed can be significantly reduced compared to conventional methods, and the composition can be made uniform.
Therefore, it is easy to form an alloyed layer with uniform properties, and the processing time required to form an alloyed layer with a uniform composition as described above is significantly shorter than conventional methods. Not only can efficiency be improved, but the energy cost required for processing can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図まではこの発明の方法を実施している
状況を段階的に示す模式的な断面図、第4図は高密度り
0熱エネルギとしてTIGアークを用いた場合のアーク
電流30OAにおけるアークの往復移動距離と往復移動
周波数の適正範囲を示す線図、第5図は同じく高密度加
熱エネルギとしてTIGアークを用いた場合の各アーク
電流値におけるアークの往復移動距離と往復移動周波数
の適正範囲を示す線図、第6図は比較例1の方法により
形成された合金化層のCr濃度の平均濃度に対するばら
つきを、処理回数に対応して示1グラフ、第7図は同じ
く比較例1の方法にあける処理時間の推移を示すグラフ
、第8図は従来の一般的な合金化処理方法を実施してい
る状況を示す模式的な断面図で゛ある。 1・・・金属基材、 2・・・合金化材料、 3・・・
TIGトーヂ、 4・・・高密度加熱エネルギとしのて
TIGアーク、 5・・・溶融プール、 6・・・合金
化層。
Figures 1 to 3 are schematic cross-sectional views showing step-by-step the situation in which the method of this invention is implemented, and Figure 4 shows the arc current when using a TIG arc with high density and zero thermal energy. A diagram showing the appropriate range of the reciprocating distance of the arc and the reciprocating frequency at 30OA, and Figure 5 shows the reciprocating distance of the arc and the reciprocating frequency at each arc current value when TIG arc is used as high-density heating energy. Figure 6 is a graph showing the variation of the Cr concentration in the alloyed layer formed by the method of Comparative Example 1 with respect to the average concentration, corresponding to the number of treatments, and Figure 7 is a graph showing the same comparison. FIG. 8 is a graph showing the change in processing time for the method of Example 1, and is a schematic cross-sectional view showing a situation in which a conventional general alloying processing method is implemented. 1... Metal base material, 2... Alloying material, 3...
TIG torch, 4... TIG arc as high-density heating energy, 5... Molten pool, 6... Alloyed layer.

Claims (1)

【特許請求の範囲】 金属基材表面に合金化すべき元素を含む合金化材料を配
置し、その合金化材料の上から高密度加熱エネルギを印
加して合金化材料とその下側の金属基材表面層を溶融一
体化させ、引続いて急冷凝固させて金属基材の表面に合
金化層を形成する方法において、 金属基材表面の長さ10mm以上の領域に合金化層を形
成するにあたり、高密度加熱エネルギの印加位置を前記
領域の長さ方向にそのほぼ全長にわたり往復移動させて
、その領域の全体を一様に溶融状態とし、続いてその状
態で高密度加熱エネルギの印加を停止させて、溶融プー
ル全体を冷却凝固させることを特徴とする高密度エネル
ギを用いた合金化処理方法。
[Claims] An alloying material containing an element to be alloyed is placed on the surface of a metal base material, and high-density heating energy is applied from above the alloying material to form the alloying material and the metal base below it. In the method of forming an alloyed layer on the surface of a metal base material by melting and integrating the surface layer and then rapidly solidifying the surface layer, when forming the alloyed layer on a region of 10 mm or more in length on the surface of the metal base material, The application position of high-density heating energy is reciprocated in the length direction of the region over almost the entire length thereof to uniformly melt the entire region, and then the application of high-density heating energy is stopped in that state. An alloying processing method using high-density energy characterized by cooling and solidifying the entire molten pool.
JP14481287A 1987-06-10 1987-06-10 Alloying method using high-density energy Pending JPS63310976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14481287A JPS63310976A (en) 1987-06-10 1987-06-10 Alloying method using high-density energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14481287A JPS63310976A (en) 1987-06-10 1987-06-10 Alloying method using high-density energy

Publications (1)

Publication Number Publication Date
JPS63310976A true JPS63310976A (en) 1988-12-19

Family

ID=15371032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14481287A Pending JPS63310976A (en) 1987-06-10 1987-06-10 Alloying method using high-density energy

Country Status (1)

Country Link
JP (1) JPS63310976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097581A (en) * 2000-09-19 2002-04-02 Toyota Central Res & Dev Lab Inc Surface modification method for metal member and metal member having modified layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097581A (en) * 2000-09-19 2002-04-02 Toyota Central Res & Dev Lab Inc Surface modification method for metal member and metal member having modified layer

Similar Documents

Publication Publication Date Title
IL46078A (en) Method of case-alloying metals such as steel or cast iron
JP5119326B2 (en) Melted edge of piston combustion chamber recess
JP2017154159A (en) Intermetallic compound alloy, metal member and manufacturing method of clad layer
BR9811107A (en) Process and apparatus for melting metal strip continuously and cast steel strip produced by continuous casting
JPS63310976A (en) Alloying method using high-density energy
CN1297061A (en) Laser technology for treating surface of cold hard roller, nodular iron casting or gray casting
CN1332255A (en) Reinforcing laser treatment for surface of cast steel roll
JPS63224890A (en) Laser build-up welding method
US5096662A (en) Method for forming high abrasion resisting layers on parent materials
JPH01100298A (en) Formation of anodic oxide film on aluminum alloy casting
KR20200005371A (en) Continuous casting mold, method for manufacturing of continuous casting mold by laser assisted heat treatment, and method for coating thermal sprayed layer by laser assisted heat treatment
JPS6396212A (en) Treating method for remelt chilling of cast iron
JPS63130712A (en) Treating method for chilling by remelting cast iron
JPH03238193A (en) Hard facing method to aluminum alloy base material
JPH03275285A (en) Manufacture of aluminum clad plate
JP3149619B2 (en) Metal surface remelting method
RU2198239C2 (en) Method of plasma application of coats
JPH0372707B2 (en)
JPS62112786A (en) Improvement of wear resistance of surface of steel member
Basu et al. Surface Modification of High Carbon Steel by Autogenous Pulsed Tungsten Inert Gas Arcing.
JPH01116028A (en) Method for remelting cast iron surface
JP2000256822A (en) Surface modified aluminum alloy and surface modifying method therefor
JPH04172193A (en) Method for alloying al series base material with cladding by welding
JPS61106708A (en) Method for hardening surface of iron-base metal
HU223610B1 (en) Method for producing work pieces having a surface of a monotectic alloy