JPH01100298A - Formation of anodic oxide film on aluminum alloy casting - Google Patents

Formation of anodic oxide film on aluminum alloy casting

Info

Publication number
JPH01100298A
JPH01100298A JP25672387A JP25672387A JPH01100298A JP H01100298 A JPH01100298 A JP H01100298A JP 25672387 A JP25672387 A JP 25672387A JP 25672387 A JP25672387 A JP 25672387A JP H01100298 A JPH01100298 A JP H01100298A
Authority
JP
Japan
Prior art keywords
oxide film
alloy
anodic oxide
alloying
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25672387A
Other languages
Japanese (ja)
Inventor
Haratsugu Koyama
原嗣 小山
Masahiro Nakagawa
仲川 政宏
Takaaki Kanazawa
孝明 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP25672387A priority Critical patent/JPH01100298A/en
Publication of JPH01100298A publication Critical patent/JPH01100298A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a uniform and dense anodic oxide film having superior corrosion resistance by alloying the surface layer of an Al alloy casting with an Al alloy having a higher alloying degree than the casting under high density heating energy and by carrying out anodic oxidation. CONSTITUTION:High density heating energy 3 such as laser beams or electron beams are projected on an alloying material 2 to simultaneously melt the material 2 and the surface layer of an Al alloy casting 1 under the material 2. In the resulting molten pool 4, the Al alloy of the surface layer of the casting 1 and the material 2 are integrated to form an alloy layer 5. The rough surface of the layer 5 is smoothened and the smoothened surface 6 is anodically oxidized. A uniform and dense anodic oxide film 7 having superior corrosion resistance can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は自動車部品等に使用されるアルミニウム合金
鋳物、特に合金元素含有量の高いアルミニウム合金鋳物
について、耐摩耗性や耐食性等の表面特性改善のために
陽極酸化皮膜を形成する方法に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention is for improving the surface properties such as wear resistance and corrosion resistance of aluminum alloy castings used for automobile parts, especially aluminum alloy castings with high alloying element content. The present invention relates to a method of forming an anodic oxide film on.

従来の技術 Al合金部材の耐摩耗性や耐食性等の表面特性を向上さ
せるだめの手段としては、従来からその表面に陽極酸化
処理を施す方法が広く知られている。すなわちAl合金
の陽極酸化処理によって形成される陽極酸化皮膜は一般
に硬質で耐摩耗性に冨み、かつ耐食性も優れているとこ
ろから、陽極酸化皮膜を形成することによってこれらの
表面特性を大幅に向1させることができる。
BACKGROUND OF THE INVENTION As a means of improving the surface properties of Al alloy members such as wear resistance and corrosion resistance, a method of subjecting the surface to anodizing treatment has been widely known. In other words, since the anodic oxide film formed by anodizing Al alloys is generally hard, has high wear resistance, and has excellent corrosion resistance, forming an anodic oxide film can significantly improve these surface properties. 1.

ところでA2合金の展伸材については従来から上述のよ
うに陽極酸化皮膜を形成することにより耐摩耗性、耐食
性等の向上が図られていたが、鋳造のままのAl合金部
材、すなわちAl合金鋳物については、その表面層にピ
ンホールやブローホール、巣゛などの鋳造欠陥が存在す
ることが多く、また窒素ガス等のガス成分が多量に固溶
もしくは吸蔵されていることが多いため、均質かつ緻密
な陽極酸化皮膜を生成することが困難とされていた。
By the way, it has been conventionally attempted to improve the wear resistance, corrosion resistance, etc. of wrought A2 alloy materials by forming an anodic oxide film as described above. For example, casting defects such as pinholes, blowholes, and cavities often exist in the surface layer, and large amounts of gaseous components such as nitrogen gas are often solid-dissolved or occluded. It was considered difficult to produce a dense anodic oxide film.

すなわち、前述のような鋳造欠陥のないA2合金鋳物に
対してそのまま陽極酸化処理を施した場合、ピンホール
やブローホール、巣などの欠陥が陽極酸化皮膜にそのま
ま残って、耐摩耗性や耐食性の良好な均質かつ緻密な陽
極酸化皮膜か得難かった。
In other words, if an A2 alloy casting with no casting defects as described above is directly anodized, defects such as pinholes, blowholes, and cavities will remain in the anodized film, impairing its wear resistance and corrosion resistance. It was difficult to obtain a good homogeneous and dense anodic oxide film.

、  またピンホール、ブローホール、巣などの欠陥内
のガスや固溶もしくは吸蔵されたガス成分が陽極酸化処
理時に放出されてAl合金鋳物表面にカス気泡として何
者した状態となり、その表面のガス気泡によって陽極酸
化処理のための電解液のAl合金鋳物表面に対する接触
が妨げられて、その部分で陽極酸化反応が進行せず、そ
の結果均質かつWi密な陽極酸化皮膜を生成し難かった
のである。
In addition, gas in defects such as pinholes, blowholes, and cavities, as well as dissolved or occluded gas components, are released during the anodizing process and form gas bubbles on the surface of the Al alloy casting, resulting in gas bubbles on the surface. This prevented the electrolytic solution for anodizing treatment from coming into contact with the surface of the Al alloy casting, and the anodic oxidation reaction did not proceed in that area, making it difficult to form a homogeneous and Wi-dense anodic oxide film.

そこで本発明者等は既に特願昭60−99375号(特
開昭61.−257496号)において、陽極酸化皮膜
を形成すべき部位の表面に予めレーザビームやTIGア
ーク等の高密度加熱エネルギを印加してその表面層を急
速溶融、急速再凝固ざぜ、しかる後にその再凝固した部
分の表面に陽極酸化処理を施すようにしたAl合金鋳物
の陽極酸化皮膜形成方法を提案している。
Therefore, the present inventors have already proposed in Japanese Patent Application No. 60-99375 (Japanese Unexamined Patent Publication No. 61-257496) that high-density heating energy such as a laser beam or TIG arc is applied to the surface of the area where the anodic oxide film is to be formed. This paper proposes a method for forming an anodized film on an Al alloy casting, in which the surface layer is rapidly melted and rapidly resolidified by applying an electric current, and then the surface of the resolidified portion is anodized.

この提案の方法によれば、高密度加熱エネルギ照射によ
るAl合金鋳物表面層の急速溶融後の急速再凝固が、主
として母材側への熱移動によってなされるため、母材側
から表面へ向けて指向性をもって凝固することになり、
そのため溶融前に表面層に存在していたピンホール、ブ
ローホール、巣などの鋳造欠陥は凝固時に外部へ押出さ
れる状態となり、また吸蔵もしくは固溶していたガス成
分に起因して溶融時に生じた気泡も凝固時に外部へ押出
される状態となり、その結果溶融・再凝固した表面層に
は鋳造欠陥がほとんど存在せずかつ固溶もしくは吸蔵ガ
ス成分も極めて少ない状態となる。また再凝固は急速に
なされるため、その表面層の組織が著しく微細化される
。したがってこのような急速溶融・急速再凝固処理を施
した後にその表面に陽極酸化処理を施せば、陽極酸化皮
膜自体にも鋳造欠陥やカス成分に起因する欠陥が少なく
なるとともに皮膜組織も微細となり、皮膜性状の優れた
陽極酸化皮膜を得ることができる。
According to this proposed method, rapid resolidification after rapid melting of the Al alloy casting surface layer by high-density heating energy irradiation is achieved mainly by heat transfer from the base metal side to the surface. It solidifies in a directional manner,
Therefore, casting defects such as pinholes, blowholes, and cavities that existed in the surface layer before melting are pushed out during solidification, and also occur during melting due to occluded or solid-dissolved gas components. During solidification, the air bubbles are also extruded to the outside, and as a result, the melted and resolidified surface layer has almost no casting defects and has very little solid solution or occluded gas components. Furthermore, since resolidification occurs rapidly, the structure of the surface layer becomes extremely fine. Therefore, if the surface is anodized after such rapid melting and rapid resolidification treatment, the anodic oxide film itself will have fewer defects caused by casting defects and residue components, and the film structure will become finer. An anodized film with excellent film properties can be obtained.

発明が解決すべき問題点 前)小のように特願昭60−99375号の方法によれ
ば、Al合金鋳物表面に直接陽極酸化処理を施す場合と
比較すれば格段に陽極酸化皮膜の性状を改善することが
できる。しかしながら、合金元素含有岨の多い高合金系
のAl合金鋳物においては、合金元素、例えばS1ヤM
Q、Cuなどが陽極酸化皮膜の性状を劣化させる要因と
なっており、そのため高合金系のAl合金鋳物について
陽極酸化処理前に前述のような高密度加熱エネルギの照
射による急速溶融・急速再凝固処理を行なっても、鋳造
欠陥解消および組織微細化による効果は認められるもの
の、未だ満足できる程度まで充分に陽極酸化皮膜の性状
が改善されるには至らず、したがって未だ光分な耐摩耗
性、耐食性か得られていなかったのが実情である。すな
わち、高合金系のAl合金鋳物においては、各種の金属
間化合物ヤ゛非固溶合金元素の晶出物(例えば過共晶A
l−3i合金鋳物における初晶Si)が表面層にも多量
に存在しており、このような金属間化合物や初品物の部
分は陽極酸化処理時において陽極酸化の円滑な進行を妨
げるとともに、陽極酸化処理時もそのまま陽性酸化皮膜
中に残存して、皮膜の性状を損なう要因となっているが
、この要因に対しては前述のような急速溶融・急速再凝
固処理は有効ではなかったのである。
Problems to be Solved by the Invention According to the method disclosed in Japanese Patent Application No. 60-99375, the properties of the anodic oxide film can be significantly improved compared to the case where the surface of the aluminum alloy casting is directly anodized. It can be improved. However, in high-alloy Al alloy castings containing many alloying elements, such as S1 and M
Q, Cu, etc. are factors that deteriorate the properties of the anodic oxide film, so before anodizing high-alloy aluminum alloy castings, rapid melting and rapid resolidification by irradiation with high-density heating energy as described above is required. Although the treatment has been effective in eliminating casting defects and refining the structure, the properties of the anodic oxide film have not yet been sufficiently improved to a satisfactory degree, and therefore the wear resistance is still at an excellent level. The reality is that corrosion resistance was not achieved. That is, in high-alloy Al alloy castings, various intermetallic compounds and crystallized products of non-solid solution alloying elements (for example, hypereutectic A
In l-3i alloy castings, a large amount of primary crystal Si) is present in the surface layer, and these intermetallic compounds and the initial product part hinder the smooth progress of anodization during anodizing treatment, and the anode Even during oxidation treatment, it remains in the positive oxide film and is a factor that impairs the properties of the film, but the rapid melting and rapid resolidification treatments described above were not effective against this factor. .

この発明は以上の事情を背景としてなされたもので、A
l合金鋳物に陽極酸化皮膜を形成するにあたって、面述
の提案の場合と同様に鋳造欠陥の減少と組織微細化によ
り陽極酸化皮膜の性状改善を図るのみならず、高合金系
のAl合金鋳物の場合においても、陽極酸化処理に対す
る合金元素の影響を排除して、皮膜性状の著しく優れた
陽極酸化皮膜、すなわち均一かつ緻密で耐摩耗性や耐食
性の著しく優れた陽極酸化皮膜を形成することができる
方法を提供することを目的とするものである。
This invention was made against the background of the above circumstances, and
In forming an anodized film on l-alloy castings, we not only aim to improve the properties of the anodized film by reducing casting defects and refining the structure, as in the case of the proposal mentioned above, but also to improve the properties of the anodic oxide film on high-alloy aluminum alloy castings. Even in some cases, it is possible to eliminate the influence of alloying elements on anodizing treatment and form an anodic oxide film with extremely excellent film properties, that is, an anodic oxide film that is uniform, dense, and has extremely excellent wear and corrosion resistance. The purpose is to provide a method.

問題点を解決するための手段 この発明においては、アルミニウム合金鋳物表面に陽極
酸化皮膜を形成するにあたり、陽極酸化皮膜を形成すべ
き部位の表面層に高密度加熱エネルギを用いて純Alも
しくはAl含有量が前記アルミニウム合金鋳物より高い
Al合金を合金化し、しかる後その合金化された層の表
面に陽極酸化処理を施すことを特徴としている。
Means for Solving the Problems In the present invention, when forming an anodic oxide film on the surface of an aluminum alloy casting, high-density heating energy is used to coat the surface layer of the area where the anodic oxide film is to be formed with pure Al or Al-containing material. It is characterized by alloying an Al alloy with a higher amount than the aluminum alloy casting, and then subjecting the surface of the alloyed layer to anodizing treatment.

作   用 Al合金鋳物の陽極酸化皮膜を形成すべき部位の表面層
に、高密度エネルギを用いて純A!もしくはAl含有量
が前記Al合金鋳物よりも高いAl合金を合金化するこ
とによって、その合金化された表面層はAl含有量が増
す反面、合金元素濃度が低下する。したがってその後陽
極酸化処理を行なうに際しては、Al合金鋳物母材部分
よりも合金元素濃度が低下した部分に陽極酸化処理を施
すことになるから、高合金系のAl合金鋳物の場合にも
合金元素により陽極酸化皮膜の性状が劣化するおそれが
少なくなる。すなわち、純A!もしくはへ1含有量が高
いAl合金を合金化して表面層の合金元素濃度が低下す
ることは、表面層における金属間化合物や非固溶合金元
素晶出物の量が減少することを意味するから、これらの
金属間化合物などの晶出物により陽極酸化の進行が妨げ
られたりまたこれらの晶出物が陽極酸化皮膜中に残存し
たりする可能性か低くなって、均一な陽極酸化皮膜を生
成させることが可能となったのでおる。
Function: Using high-density energy to form pure A! Alternatively, by alloying an Al alloy with a higher Al content than the Al alloy casting, the alloyed surface layer has an increased Al content but a reduced concentration of alloying elements. Therefore, when performing anodizing treatment afterwards, the anodizing treatment is performed on the part where the concentration of alloying elements is lower than that of the base material part of the Al alloy casting. There is less risk that the properties of the anodic oxide film will deteriorate. In other words, pure A! Alternatively, reducing the concentration of alloying elements in the surface layer by alloying an Al alloy with a high He1 content means that the amount of intermetallic compounds and non-dissolved alloying element crystallized substances in the surface layer decreases. , the possibility that the progress of anodic oxidation is hindered by crystallized substances such as these intermetallic compounds or that these crystallized substances remain in the anodic oxide film is reduced, resulting in a uniform anodic oxide film. It is now possible to do so.

また’d!ANもしくはAl含有量の高いA2合金の合
金化にあたっては、それらの合金化材料をAl合金鋳物
の表面に配置してその上からレーザヤTIGアーク、プ
ラズマアークあるいは電子ビーム等の高密度加熱エネル
ギを印加し、合金化材料とその下側のA !合金鋳物表
面層を同時に溶融して合金化させ、引続き再凝固させる
ことになるが、この再凝固時における冷却・凝固は既に
述べた特願昭60−99375号の方法の場合と同様に
Al合金鋳物母材側から表面へ向けて指向性をもって急
速になされることになる:そのため合金化処理前に鋳物
表面層に存在していたピンホールやブローホール、巣な
どの鋳造欠陥は表面に押出され、また吸蔵もしくは固溶
していたガス成分に起因して溶融時に生じた気泡も凝固
時に表面から外部へ押出され、その結果再凝固により形
成された合金化層中には鋳造欠陥がほとんど存在せずか
つ固溶もしくは吸蔵ガス成分が極めて少ない状態となる
。そしてまた、前述のように再凝固が急速冷却・凝固に
よってなされるため、再凝固された表面層の組織は著し
く微細化されていることにな−る。このように鋳造欠陥
がほとんど存在せずかつ組織が微細化されている表面層
に陽極酸化処理を施せば、それにより形成される陽極酸
化皮膜も欠陥がほとんどなくかつ微細な組織を有するも
のとなる。
Again'd! When alloying AN or A2 alloy with high Al content, these alloying materials are placed on the surface of the Al alloy casting, and high-density heating energy such as laser TIG arc, plasma arc, or electron beam is applied from above. And the alloyed material and its lower A! The surface layer of the alloy casting is simultaneously melted and alloyed, and then re-solidified, but the cooling and solidification during this re-solidification is performed in the same manner as in the method of Japanese Patent Application No. 60-99375 mentioned above. This is done rapidly and directionally from the casting base metal side to the surface: Therefore, casting defects such as pinholes, blowholes, and cavities that existed in the casting surface layer before alloying are pushed out to the surface. In addition, air bubbles generated during melting due to occluded or dissolved gas components are extruded from the surface to the outside during solidification, and as a result, there are almost no casting defects in the alloyed layer formed by resolidification. The state is such that there is very little solid solution or occluded gas component. Furthermore, since the resolidification is performed by rapid cooling and solidification as described above, the structure of the resolidified surface layer is extremely fine. If the surface layer, which has almost no casting defects and has a fine structure, is anodized, the resulting anodic oxide film will have almost no defects and will have a fine structure. .

したがって高密度加熱エネルギを用いて純Alもしくは
Al含有量の高いAl合金をAl合金鋳物表面層に合金
化しておくことによって、既に述へたように表面層の合
金元素濃度が低下することによる作用と、表面層の鋳造
欠陥の減少および組織m細化による作用とが相俟って、
均一でかつ緻密な、優れた性状の陽極酸化皮膜を形成す
ることができるのである。
Therefore, by alloying pure Al or an Al alloy with a high Al content into the surface layer of an Al alloy casting using high-density heating energy, the concentration of alloying elements in the surface layer decreases, as described above. This, combined with the reduction of casting defects in the surface layer and the effect of finer structure,
A uniform, dense, and excellent anodic oxide film can be formed.

発明の実施のための具体的な説明 第1図〜第5図に、この発明の方法を実施している状況
の一例を段階的に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 5 show step by step an example of a situation in which the method of the invention is implemented.

先ず第1図に示すように、処理対象となるAl合金鋳物
1における陽極酸化皮膜を形成すべき部位の表面1Aに
、合金化材料2として、純Alもしくはへ1含有量の高
いAl合金を配置する。こ・の合金化材料2の配置の方
法としては、例えばその粉末を単純に静置する方法、お
るいはその粉末をスラリー状として塗布もしくは吹付け
る方法、ざらには粉末を溶射する方法等を適用でき、特
に限定されるものではない。なお合金化材料としては純
Alが最適でおるが、へ2濃度が処理対象となるAl合
金鋳物より高いもの、換言すれば合金元素濃度が処理対
象となるAl合金鋳物より低いものは使用可能でおる。
First, as shown in FIG. 1, pure Al or an Al alloy with a high He1 content is placed as an alloying material 2 on the surface 1A of the Al alloy casting 1 to be treated where an anodized film is to be formed. do. As a method for arranging this alloyed material 2, for example, a method of simply leaving the powder still, a method of applying or spraying the powder as a slurry, a method of thermally spraying the powder, etc. Applicable and not particularly limited. Although pure Al is optimal as the alloying material, it is possible to use materials with a higher He2 concentration than the Al alloy castings to be treated, or in other words, materials with lower alloying element concentrations than the Al alloy castings to be treated. is.

次に第2図に示すように合金化材料2の上からTIGア
ーク、レーザビーム、プラズマアーク、電子ビームなど
の高密度加熱エネルギ3を印加して、合金化材料2およ
びその下側のAl合金鋳物1の表面層を同時に溶融させ
る。これによって形成された溶融プール4においては、
母材のA2合金鋳物と合金化材料とが溶融一体止(合金
化)される。続いて高密度加熱エネルギ3の印加位置の
移動あるいは印加停止によって、主として鋳物母材側へ
の急速熱拡散により溶融プール4が急速に冷却凝固され
、合金化層5となる。この合金化層5は、既に述べたよ
うに母材であるAl合金鋳物1よりもAl含有量が多く
、合金元素含有量が少ないものとなっており、しかも表
面側への指向性をもっての急速冷却凝固によって、鋳造
欠陥が少なくかつ組慨が微細化したものとなっている。
Next, as shown in FIG. 2, high-density heating energy 3 such as TIG arc, laser beam, plasma arc, electron beam, etc. is applied from above the alloying material 2 to heat the alloying material 2 and the Al alloy below it. The surface layer of the casting 1 is simultaneously melted. In the molten pool 4 thus formed,
The A2 alloy casting of the base material and the alloying material are fused together (alloyed). Subsequently, by moving the application position or stopping the application of the high-density heating energy 3, the molten pool 4 is rapidly cooled and solidified, mainly due to rapid heat diffusion toward the casting base material side, and becomes an alloyed layer 5. As already mentioned, this alloyed layer 5 has a higher Al content and a lower alloying element content than the Al alloy casting 1 which is the base material, and also has a rapid Cooling and solidification results in fewer casting defects and a finer structure.

このようにして形成された合金化層5は、第3図に示す
ように通常は表面に凹凸が多い状態となっているから、
表面に機械加工や研磨を施して、表面が凹凸のない平滑
な状態となるように仕上げる。その状態を第4図に示す
。次いでその平滑化された合金化層5の表面6に陽極酸
化処理を施し、第5図に示すように陽極酸化皮11!7
を形成する。
The alloyed layer 5 formed in this way usually has many irregularities on its surface, as shown in FIG.
The surface is machined or polished to create a smooth surface with no irregularities. The state is shown in FIG. Next, the surface 6 of the smoothed alloyed layer 5 is anodized to form an anodized skin 11!7 as shown in FIG.
form.

この陽極酸化処理、は、合金元素含有量が少なくかつ鋳
造欠陥が少ないとともに微細な組織を有する合金化層5
に対してなされるため、得られる陽極酸化皮膜は均一か
つ緻密で皮膜性状の優れたちのとなる。なお陽極酸化処
理自体は常法に従って行なえば良いが、より耐摩耗性を
向上させるためには、低温の電解浴を用いるなどの手法
により所謂硬質陽極酸化皮膜を生成させることが望まし
い。
This anodic oxidation treatment produces an alloyed layer 5 with a low content of alloying elements, few casting defects, and a fine structure.
Since the anodized film is applied to the surface of the anodic oxide film, the resulting anodic oxide film is uniform, dense, and has excellent film properties. Note that the anodizing treatment itself may be carried out according to a conventional method, but in order to further improve the wear resistance, it is desirable to generate a so-called hard anodic oxide film by a method such as using a low-temperature electrolytic bath.

なおこの発明の方法が適用されるAl合金の組成は特に
限定されるものではなく、要は鋳物用として用いられる
Al合金には全て適用可能であるが、待に過共晶Al−
3i合金鋳物の如く、合金元素含有量の高いものに適用
して大きな効果が得られる。
Note that the composition of the Al alloy to which the method of the present invention is applied is not particularly limited, and in short, it is applicable to all Al alloys used for castings.
A great effect can be obtained when applied to products with a high content of alloying elements, such as 3i alloy castings.

またこの発明の方法の実施にあたって、kAlもしくは
Al含有量の高いAl合金の合金化によって形成するA
l含有量の高い合金化層の厚さは、合金化させるべく配
置する純AlもしくはA/l含有量の高いAl合金の、
壷や、合金化のための高密度加熱エネルギの強度やその
移動速度(走査速度)などによって調整可能であるが、
この合金化層の厚みは要は仕上加工後の合金化層の厚み
が生成すべき陽極酸化皮膜の厚みより厚くなるように設
定すれば良い。
Further, in carrying out the method of the present invention, A formed by alloying kAl or an Al alloy with a high Al content
The thickness of the alloyed layer with high l content is determined by the thickness of pure Al or Al alloy with high A/l content to be alloyed.
It can be adjusted depending on the pot, the intensity of high-density heating energy for alloying, and its moving speed (scanning speed), etc.
The thickness of this alloyed layer may be set so that the thickness of the alloyed layer after finishing is greater than the thickness of the anodic oxide film to be produced.

実施例 し実施例1] JIS  AC8A合金(Cu t、1%、8112%
、Mg1.1%、Ni1.5%、残部Af>の鋳物材に
陽%Tx%化皮膜を形成するにあたって、前記のAl合
金鋳物からなる外径30#、厚ざ10.の円盤状テスト
ピースの外周表面部に先ず合金化材料として縛Al扮末
を用いてTIGアークにより純A!を合金化させた。こ
の時のTIGアーク照射条件は次の通りでめる。
Example 1] JIS AC8A alloy (Cut, 1%, 8112%
, 1.1% Mg, 1.5% Ni, and the remainder Af>, in order to form a positive %Tx% coating on a casting material of 1.1% Mg, 1.5% Ni, and the balance Af>, the above-mentioned aluminum alloy casting with an outer diameter of 30# and a thickness of 10. First, pure A! was applied to the outer peripheral surface of a disc-shaped test piece using a TIG arc using bound Al powder as an alloying material. was alloyed. The TIG arc irradiation conditions at this time are as follows.

ピーク電流/′ベース電流:  120A/90A電 
      圧   =15V トーチ移動速度(周速) :  1.5〜3s/Sec
アルゴンガス流量:25f/mi口 なおこの合金化処理においては、次式で表わされる合金
化率が30%となるように合金化のための純Al粉末層
の厚さを調整した。
Peak current/base current: 120A/90A current
Pressure = 15V Torch movement speed (peripheral speed): 1.5 to 3s/Sec
Argon gas flow rate: 25 f/mi In this alloying treatment, the thickness of the pure Al powder layer for alloying was adjusted so that the alloying rate expressed by the following equation was 30%.

次いで合金化層の表面に仕上加工を施して平滑化した後
、陽極酸化処理を施した。この時の陽極酸化処理条件は
次の通りである。
Next, the surface of the alloyed layer was finished and smoothed, and then anodized. The conditions for the anodizing treatment at this time were as follows.

電解液組成:硫酸 10〜20% 電流密度:2〜4A/dIi(直流) 電  圧二60〜80V 温  度:20’C±2°C [実施例2]、 実施例1で用いたと同様なテストピースについて、合金
化率が50%となるように合金化処理を行なった点以外
は、実施例1と同じ条件で合金化処理−仕上hOエニー
極酸化処理を行なった。
Electrolyte composition: Sulfuric acid 10-20% Current density: 2-4 A/dIi (DC) Voltage: 260-80 V Temperature: 20'C ± 2°C [Example 2] Same as used in Example 1 The test piece was subjected to alloying treatment and finishing hO any polar oxidation treatment under the same conditions as in Example 1, except that the alloying treatment was performed so that the alloying rate was 50%.

(実施例3] 実施例1で用いたと同様なテストピースについて、合金
化率が70%どなるように合金化処理を行なった点以外
は、実施例1と同じ条件で合金化処理−仕上haミニ−
極酸化処理を行なった。
(Example 3) The same test piece as used in Example 1 was alloyed under the same conditions as Example 1, except that the alloying process was carried out so that the alloying rate was 70%. −
Polar oxidation treatment was performed.

[比較例1] 実施例1で用いたと同様なテストピースについて、特に
合金化処理を行なわずに、陽極酸化処理を行なった。陽
極酸化処理の条件は実施例1と同じである。
[Comparative Example 1] A test piece similar to that used in Example 1 was subjected to anodic oxidation treatment without any particular alloying treatment. The conditions for the anodizing treatment are the same as in Example 1.

し比較例2] 実施例1で用いたと同様なテストピースについて、その
外周表面部に特願昭60−99375号の方法に従いT
IGアークを用いて再溶融・再凝固処理を行ない、その
後仕上加工を行なった後、陽極酸化処理を施した。再溶
融・再凝固処理におけるTIGアーク照射条件は、実施
例1における合金化処理時のTIGアーク照射条件と同
じとし、また陽極酸化処理条件も実施例1と同じとした
Comparative Example 2] A test piece similar to that used in Example 1 was coated with T on the outer peripheral surface according to the method of Japanese Patent Application No. 60-99375.
A remelting/resolidification process was performed using an IG arc, and then a finishing process was performed, followed by an anodizing process. The TIG arc irradiation conditions in the remelting/resolidification treatment were the same as those in the alloying treatment in Example 1, and the anodizing treatment conditions were also the same as in Example 1.

以上の実施例1〜3および比較例1.2により得られた
各@極酸化皮膜の下地の状況および各陽極酸化皮膜の性
状を調べた結果を第1表に示す。
Table 1 shows the results of examining the underlying condition of each @polar oxide film and the properties of each anodic oxide film obtained in Examples 1 to 3 and Comparative Example 1.2.

なおここで陽極酸化皮膜の下地は、実施例1〜3の場合
は合金化処理による合金化層、比較例1の場合は鋳物の
まま、比較例2の場合は再溶融・再凝固層である。また
第1表中において、DASはデンドライトアーム間隔(
Dendrite Arm Spacing>でおり、
組織の微細化の程度をめられす。
Note that the base of the anodic oxide film is the alloyed layer obtained by alloying treatment in Examples 1 to 3, the casting as it is in Comparative Example 1, and the remelted/resolidified layer in Comparative Example 2. . In Table 1, DAS is the dendrite arm spacing (
Dendrite Arm Spacing>
The degree of fineness of the tissue is measured.

第   1   表 第1表から明らかなように、この発明の方法にしたがっ
て陽極酸化処理前に純Alの合金化処理を行ない、陽極
酸化処理皮膜の下地の合金元素含有量を減少させた実施
例1〜3では、陽極酸化皮膜の硬ざがHv 450〜5
50と高硬度で、皮膜性状も優れていることが明らかで
ある。これに対し純Alの合金化処理を行なわなかった
比較例1では、下地の組織が粗くかつ鋳造欠陥が多いの
に加えて合金元素含有量が高いため、陽極酸化皮膜の硬
ざHvが280と低く、皮膜性状もポーラスであった。
Table 1 As is clear from Table 1, Example 1 in which alloying treatment of pure Al was performed before anodizing treatment according to the method of the present invention to reduce the content of alloying elements in the base of the anodized coating. ~3, the hardness of the anodic oxide film is Hv 450~5
It is clear that the hardness is as high as 50 and the film properties are also excellent. On the other hand, in Comparative Example 1 in which pure Al was not alloyed, the underlying structure was coarse and had many casting defects, and the alloying element content was high, so the hardness of the anodic oxide film was 280 Hv. The film properties were also porous.

また再)容融・再凝固処理を施した比較例2では、下地
の組織の微細化および鋳造欠陥の解消によって比較例1
の場合よりは高い硬さが得られ、また皮膜性状も若干良
好となったが、下地(再溶融・再凝固層)の合金元素含
有量は無処理の比較例1と変わらないため、本発明実施
例1〜3よりも硬さが低く、また皮膜性状も劣っていた
In addition, in Comparative Example 2, which was subjected to re)melting and resolidification treatment, Comparative Example 1
Although higher hardness was obtained and the film properties were slightly better than in the case of The hardness was lower than that of Examples 1 to 3, and the film properties were also inferior.

[実施例41 第6図、第7図に示すようにJIS  AC8A合金(
具体的成分組成は実施例1と同じ)のアルミニウム合金
鋳物からなる内燃機関用ピストン10のトップリング溝
穴11の付近の耐摩耗性を向上させるべく、その上下面
に陽極酸化皮膜7を形成するにあたって、次のような処
理を行なった。
[Example 41 As shown in Figures 6 and 7, JIS AC8A alloy (
In order to improve the wear resistance near the top ring slot 11 of an internal combustion engine piston 10 made of an aluminum alloy casting (the specific composition of which is the same as in Example 1), an anodic oxide film 7 is formed on the upper and lower surfaces thereof. For this purpose, the following process was performed.

すなちトップリング溝穴11の上下面に対して、TIG
アークを用いて実施例2と同じ条件で純Alを合金化し
て、合金元素含有量が母材より低下した合金化層5を形
成し、その後仕上加工を行なってから、実施例1と同じ
条件で陽極酸化処理を施して、陽極酸化皮膜7を生成さ
せた。
That is, TIG is applied to the upper and lower surfaces of the top ring slot 11.
Pure Al is alloyed using an arc under the same conditions as in Example 2 to form an alloyed layer 5 in which the content of alloying elements is lower than that of the base material, and then finishing processing is performed and then under the same conditions as in Example 1. An anodic oxidation treatment was performed to form an anodic oxide film 7.

処理後のピストンを2000CC14気筒、過給機(タ
ーボチャージャー)付のディーゼルエンジンに組込み、
高水温、高油温状態で全負荷4000 rpmx 30
0時間の連続高速耐久運転試験を実施した。
Insert the treated piston into a 2000CC 14-cylinder diesel engine with a turbocharger,
Full load 4000 rpm x 30 at high water temperature and high oil temperature
A 0-hour continuous high-speed durability driving test was conducted.

その結果、リング溝穴11の陽極酸化皮膜7はほとんど
摩耗されず、良好な耐摩耗性を有していることがrII
a?iされた。なお比較のため、比較例2と同じ条件で
リング溝穴11の上下面にTIGアークによる再溶融・
再凝固処理および陽極酸化処理を行なったピストンにつ
いても同様の連続高速耐久運転試験を実施したか、この
場合はリング溝穴の陽極酸化皮膜の一部が摩耗により消
滅していることが判明した。
As a result, the anodized coating 7 of the ring slot 11 is hardly worn out and has good wear resistance.
a? It was done. For comparison, the upper and lower surfaces of the ring slot 11 were remelted and remelted by TIG arc under the same conditions as Comparative Example 2.
A similar continuous high-speed durability test was conducted on pistons that had been resolidified and anodized, and in this case it was found that part of the anodized film on the ring slot had disappeared due to wear.

発明の効果 この発明の方法によれば、陽極酸化皮膜を形成すべきA
l合金鋳物の表面に予めTIGアーク等の高密度加熱エ
ネルギを用いて純A!もしくはAl含有但の高いAl合
金を合金化させることによりその表面層の合金元素含有
量を低減させた状態で陽極酸化処理を行なうため、Al
合金鋳物自体の合金元素含有量が高い場合でもその合金
元素に起因して陽ff1M化皮膜の性状が劣化すること
がなく、しかも前述の合金化は高密度加熱エネルギを用
いての急速溶融・急速再凝固によってなされるため、鋳
物表面に存在していた鋳造欠陥が減少するとともに組織
が微細化され、そのため陽極酸化皮膜自体も欠陥が少な
くかつ微細な組織のものとなる。したがってこれらの要
因が相俟って、この発明の方法によれば皮膜性状の優れ
た陽極酸化皮膜、すなわち均一かつ緻密で耐摩耗性や耐
食性が潰れた陽極酸化皮膜を得ることができ、特に合金
元素含有量の多いアルミニウム合金鋳物に陽極酸化皮膜
を形成する場合に顕著な効果を1qることができる。
Effects of the Invention According to the method of this invention, A to form an anodic oxide film
l The surface of the alloy casting is heated in advance using high-density heating energy such as TIG arc to form pure A! Alternatively, by alloying an Al alloy with a high Al content, anodizing is performed with the alloying element content in the surface layer reduced.
Even if the alloy casting itself has a high content of alloying elements, the properties of the positive FF1M coating will not deteriorate due to the alloying elements, and the above-mentioned alloying can be achieved by rapid melting and rapid melting using high-density heating energy. Since this is done by resolidification, the casting defects that existed on the surface of the casting are reduced and the structure is made finer, so that the anodic oxide film itself has fewer defects and has a finer structure. Therefore, by combining these factors, according to the method of the present invention, it is possible to obtain an anodic oxide film with excellent film properties, that is, an anodic oxide film that is uniform, dense, and has good wear resistance and corrosion resistance. When forming an anodic oxide film on an aluminum alloy casting with a high element content, a remarkable effect of 1q can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第5図まではこの発明の方法を実施している
状況の一例を段階的に示す略解的な断面図、第6図はこ
の発明の方法を自動車用エンジンのピストンに適用した
例を示す縦断面図、第7図は第6図のA部を拡大して示
す縦断面図である。 1・・・Al合金鋳物、 2・・・合金化材料(純へ2
もしくはA/l含有伍の高いAl合金)、 3・・・高
密度加熱エネルギ、 5・・・合金化層、 7・・・陽
極酸化皮膜。 出願人  トヨタ自動車株式会社
Figures 1 to 5 are schematic cross-sectional views showing step-by-step an example of a situation in which the method of the present invention is implemented, and Figure 6 is an example of applying the method of the present invention to a piston of an automobile engine. FIG. 7 is an enlarged vertical cross-sectional view of section A in FIG. 6. 1... Al alloy casting, 2... Alloying material (pure 2
or an Al alloy with a high A/l content), 3... High-density heating energy, 5... Alloyed layer, 7... Anodic oxide film. Applicant Toyota Motor Corporation

Claims (1)

【特許請求の範囲】[Claims] アルミニウム合金鋳物表面に陽極酸化皮膜を形成するに
あたり、陽極酸化皮膜を形成すべき部位の表面層に高密
度加熱エネルギを用いて純AlもしくはAl含有量が前
記アルミニウム合金鋳物より高いAl合金を合金化し、
しかる後その合金化された層の表面に陽極酸化処理を施
すことを特徴とするアルミニウム合金鋳物の陽極酸化皮
膜形成方法。
In forming an anodic oxide film on the surface of an aluminum alloy casting, pure Al or an Al alloy with a higher Al content than the aluminum alloy casting is alloyed using high-density heating energy on the surface layer of the part where the anodic oxide film is to be formed. ,
A method for forming an anodic oxide film on an aluminum alloy casting, the method comprising: thereafter subjecting the surface of the alloyed layer to an anodic oxidation treatment.
JP25672387A 1987-10-12 1987-10-12 Formation of anodic oxide film on aluminum alloy casting Pending JPH01100298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25672387A JPH01100298A (en) 1987-10-12 1987-10-12 Formation of anodic oxide film on aluminum alloy casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25672387A JPH01100298A (en) 1987-10-12 1987-10-12 Formation of anodic oxide film on aluminum alloy casting

Publications (1)

Publication Number Publication Date
JPH01100298A true JPH01100298A (en) 1989-04-18

Family

ID=17296553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25672387A Pending JPH01100298A (en) 1987-10-12 1987-10-12 Formation of anodic oxide film on aluminum alloy casting

Country Status (1)

Country Link
JP (1) JPH01100298A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508653A (en) * 2008-01-04 2011-03-17 スミス アンド ネフュー インコーポレーテッド Surface-alloyed medical implant
US20130081951A1 (en) * 2011-09-30 2013-04-04 Apple Inc. Laser Texturizing and Anodization Surface Treatment
JP2013170555A (en) * 2012-02-23 2013-09-02 Mazda Motor Corp Heat insulation structure and method of manufacturing the same
CN114427111A (en) * 2022-01-17 2022-05-03 北京富创精密半导体有限公司 Aluminum alloy anode vacuum sealing surface treatment process
EP4283002A1 (en) * 2022-05-24 2023-11-29 Suzuki Motor Corporation Piston for internal combustion engine and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156737A (en) * 1976-06-24 1977-12-27 Yamazaki Keiichiro Surface treatment of cast aluminum
JPS58217697A (en) * 1982-06-11 1983-12-17 Daiwa Seiko Inc Alumite treatment of die cast aluminum product
JPS61257496A (en) * 1985-05-10 1986-11-14 Toyota Motor Corp Formation of anodized film for aluminum alloy casting
JPS6224852A (en) * 1985-07-25 1987-02-02 Toyota Motor Corp Coating method for aluminum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156737A (en) * 1976-06-24 1977-12-27 Yamazaki Keiichiro Surface treatment of cast aluminum
JPS58217697A (en) * 1982-06-11 1983-12-17 Daiwa Seiko Inc Alumite treatment of die cast aluminum product
JPS61257496A (en) * 1985-05-10 1986-11-14 Toyota Motor Corp Formation of anodized film for aluminum alloy casting
JPS6224852A (en) * 1985-07-25 1987-02-02 Toyota Motor Corp Coating method for aluminum

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508653A (en) * 2008-01-04 2011-03-17 スミス アンド ネフュー インコーポレーテッド Surface-alloyed medical implant
US10675384B2 (en) 2008-01-04 2020-06-09 Smith & Nephew Inc. Surface alloyed medical implant
US11717597B2 (en) 2008-01-04 2023-08-08 Smith & Nephew, Inc. Surface alloyed medical implant
US20130081951A1 (en) * 2011-09-30 2013-04-04 Apple Inc. Laser Texturizing and Anodization Surface Treatment
US9644283B2 (en) * 2011-09-30 2017-05-09 Apple Inc. Laser texturizing and anodization surface treatment
JP2013170555A (en) * 2012-02-23 2013-09-02 Mazda Motor Corp Heat insulation structure and method of manufacturing the same
CN114427111A (en) * 2022-01-17 2022-05-03 北京富创精密半导体有限公司 Aluminum alloy anode vacuum sealing surface treatment process
EP4283002A1 (en) * 2022-05-24 2023-11-29 Suzuki Motor Corporation Piston for internal combustion engine and method for manufacturing the same

Similar Documents

Publication Publication Date Title
Liang et al. Geometrical and microstructural characteristics of the TIG-CMT hybrid welding in 6061 aluminum alloy cladding
JPH0737660B2 (en) Improved treatment method of cylinder head for internal combustion engine made of cast aluminum alloy
JP3835694B2 (en) Manufacturing method of valve seat
US4483286A (en) Piston
JPH01100298A (en) Formation of anodic oxide film on aluminum alloy casting
JPH04105787A (en) Filler metal for surface reforming of aluminum material
JPH0633502B2 (en) Method for forming anodized film on cast aluminum alloy
Caliari et al. Influence of microstructure and surface finishing on the hard anodizing of diecast Al-Si-Cu alloys
JP3135612B2 (en) Al alloy member and method of manufacturing the same
RU2026890C1 (en) Method of wear-resistant coating forming
JPH079085A (en) Manufacture of partially reformed aluminum-made core for casting
JP2623605B2 (en) Method for forming surface plating layer on aluminum alloy casting
JPS6372488A (en) Surface processing method for sliding member
JPS61170577A (en) Formation of alloyed layer on al alloy casting surface
JPH1096087A (en) Surface-modified aluminum member and cylinder for internal combustion engine using it
JP7325446B2 (en) Welding electrode for aluminum or steel plate and method for obtaining same
JPH062897B2 (en) Method for remelting metal surface
JPH0531567A (en) Aluminum alloy-made casting and this manufacture
JPH01218A (en) Metal surface remelting treatment method
JPH0277583A (en) Production of corrosion resistant and wear resistant aluminum alloy material
JP2001271176A (en) Method for improving surface quality of molded metal
JPS63310976A (en) Alloying method using high-density energy
JPH06109134A (en) Method and device for remelt treatment of engine piston
JPS61264140A (en) Formation of alloyed surface layer
JP3149619B2 (en) Metal surface remelting method