JPH04172193A - Method for alloying al series base material with cladding by welding - Google Patents
Method for alloying al series base material with cladding by weldingInfo
- Publication number
- JPH04172193A JPH04172193A JP2295673A JP29567390A JPH04172193A JP H04172193 A JPH04172193 A JP H04172193A JP 2295673 A JP2295673 A JP 2295673A JP 29567390 A JP29567390 A JP 29567390A JP H04172193 A JPH04172193 A JP H04172193A
- Authority
- JP
- Japan
- Prior art keywords
- overlay
- base material
- cladding
- alloying
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 62
- 238000005275 alloying Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims description 17
- 238000003466 welding Methods 0.000 title abstract 9
- 238000005253 cladding Methods 0.000 title abstract 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 42
- 239000010949 copper Substances 0.000 claims abstract description 25
- 238000005260 corrosion Methods 0.000 claims abstract description 10
- 230000007797 corrosion Effects 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 239000010953 base metal Substances 0.000 claims abstract description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 41
- 239000000956 alloy Substances 0.000 claims description 31
- 229910045601 alloy Inorganic materials 0.000 claims description 27
- 229910052802 copper Inorganic materials 0.000 claims description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 19
- 230000001678 irradiating effect Effects 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 9
- 230000007547 defect Effects 0.000 abstract description 2
- 150000001879 copper Chemical class 0.000 abstract 3
- 239000000843 powder Substances 0.000 description 17
- 238000001000 micrograph Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 229910000881 Cu alloy Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Laser Beam Processing (AREA)
Abstract
Description
(産業上の利用分野)
この発明は、アルミニウム系母材への耐熱性。
耐摩耗性、耐食性等に優れた銅系肉盛り用合金材料を肉
盛り合金化するのに利用されるアルミニウム系母材への
肉盛り合金化方法に関するものである。
(従来の技術)
従来、アルミニウム系母材へ銅系肉盛り用合金材料を肉
盛り合金化する方法としては、例えば、特開昭62−1
6894号公報に記載されたものがあり、また、広くア
ルミニウム系部材に応用可能な肉盛り方法としては、例
えば、特開昭62−150014号公報に記載されてい
るものがある。
このような従来のアルミニウム系母材への肉盛り合金化
方法にあっては、母材よりのアルミニウムの希釈を小さ
く抑えて肉盛り層の化学組成をあまり変化させないで所
望の性能を得るものとなっていた。
(発明が解決しようとする課題)
しかしながら、従来の場合には、肉盛り層と母材との間
に中間層を設けているため、この中間層では母材より゛
アルミニウムの拡散がおこってアルミニラムリッチで硬
くて脆い合金層が形成され、研磨加工あるいは研削加工
時にこの部分でしばしばクラックの発生が見られるなど
実用材料として使用するにはまだまだ問題があるという
課題があった。
(発明の目的)
この発明は、このような従来の課題にかんがみてなされ
たもので、肉盛り材である銅合金中のアルミニウム含有
量のみを所望の合金組成に比べてあらかじめ低く設定し
ておき、高密度エネルギ源による肉盛りを行って、母材
中のアルミニウムと合金化することにより所望の合金組
成を達成しかつ脆い中間合金層が形成されないようにす
ることにより、上記課題を解決し、これにより耐熱性。
耐摩耗性、耐食性等に優れたアルミニウム系部材を提供
することを目的としている。(Industrial Application Field) This invention provides heat resistance to aluminum base materials. The present invention relates to a method for overlaying an aluminum base material, which is used to overlay a copper overlay alloy material with excellent wear resistance, corrosion resistance, etc. (Prior Art) Conventionally, as a method for forming a copper-based overlay alloy material onto an aluminum base material, for example, Japanese Patent Application Laid-Open No. 62-1
There is a method described in Japanese Patent Publication No. 6894, and a build-up method that can be widely applied to aluminum-based members is, for example, a method described in Japanese Patent Application Laid-Open No. 150014/1983. In such a conventional overlay alloying method for an aluminum base material, the dilution of aluminum from the base metal is kept to a small level to obtain the desired performance without changing the chemical composition of the overlay layer. It had become. (Problem to be solved by the invention) However, in the conventional case, an intermediate layer is provided between the built-up layer and the base material, and in this intermediate layer, diffusion of aluminum occurs from the base material, resulting in aluminum A hard and brittle alloy layer is formed due to the ram richness, and cracks are often observed in this part during polishing or grinding, so there are still problems in using it as a practical material. (Purpose of the Invention) This invention was made in view of the above-mentioned conventional problems, and it is possible to set only the aluminum content in the copper alloy, which is the overlay material, to be lower than the desired alloy composition. , solves the above problems by performing build-up using a high-density energy source to achieve the desired alloy composition by alloying with aluminum in the base material and preventing the formation of a brittle intermediate alloy layer, This makes it heat resistant. The purpose is to provide aluminum-based members with excellent wear resistance, corrosion resistance, etc.
(課題を解決するための手段)
この発明に係わるアルミニウム系母材への肉盛り合金化
方法は、アルミニウム系母材へ耐熱性。
耐摩耗性、耐食性等に優れた銅系肉盛り用合金材料を高
密度エネルギ源の照射により肉盛り合金化する方法であ
って、重量%で、AI:0〜5%、Ni:3〜6%、F
e:3〜6%を含有し、残部がCuおよび不可避的不純
物よりなる銅合金肉盛り材を粉末供給装置等により供給
し、高密度エネルギ源の照射により肉盛り合金化を行い
、母材中のアルミニウムと合金化することにより前記母
材と肉盛り合金化層との間に脆い中間合金層が形成され
ない肉盛合金化を行う構成としたことを特徴としており
、必要に応じて実施態様において、前記銅合金肉盛り材
を粉末により供給するに際して、前記粉末の供給量を1
0〜30 g/m i nとし、かつまた前記高密度エ
ネルギ源としてレーザを用いる場合において、レーザパ
ワー密度を240〜3000W/mm2とする構成とし
たことを特徴としており、このようなアルミニウム系母
材への肉盛り合金化方法に係わる発明の構成を前述した
従来の課題を解決するための手段としている。
次に、本発明において使用される銅系肉盛り材の金属組
成の限定理由を示す。
AIは引張り強さと硬さの向上に有効であるが、5重量
%超過では肉盛り合金化後、希釈により靭性を悪化させ
ることから、0〜5重量%とじた。
そして、より好ましくは0〜2重量%が良い。
Feは組織を効果的に微細化して強靭化するのに有効で
あるが、3重量%未満では効果が少なく、6重量%超過
であると合金の耐食性を劣化させる。
従って、Feは3〜6重量%とじた。
Niは組織を効果的に微細化して強靭化するのに有効で
あるが、Feの添加量との比が1.8を超えると分散状
態が一様でなくなる。従って、Niは3〜6重量%とじ
た。
さらに、本発明において採用される銅系肉盛り材の供給
態様および高密度エネルギ源について説明する
本発明において、銅系肉盛り材の供給態様としては、粉
末により供給するようになすことがより好ましく、この
場合に、粉末供給量は、10〜3Qg/minとするの
がとく好ましい。すなわち、粉末供給量がLog/mi
nよりも少ないと、母材アルミニウムの溶融に比べて粉
末の供給量が不足し、母材アルミニウムの希釈が多くな
りすぎて肉盛り層のアルミニウム合金量が10重量%を
超え、第6図に示すように靭性が低下する傾向となるた
めであり、反対に粉末供給量が30g/minよりも多
くなると、アルミニウム母材との界面に合金層が形成さ
れる傾向となるためである。
また、高密度エネルギ源としては、レーザを用いること
が可能であるが、この場合に、レーザパワー密度を24
0〜3000w/mm2とするのがとくに好ましい。す
なわち、レーザパワー密度が240w/mm2よりも小
さいとアルミニウム母材の溶融量が少なく、やはりアル
ミニウム母材との界面に合金層が形成される傾向となる
ためであり、反対に3000 w/mm2よりも大きい
と均一な肉盛り合金層得られるものの母材アルミニウム
の希釈が多くなりすぎて肉盛り層のアルミニウム含有量
が10重量%を超えるようになって第6図に示したよう
に靭性が低下する傾向となるためである。
(実施例)
実施例1
第1図は本発明の第1実施例に係わるアルミニウム系母
材への肉盛り合金化方法を実施している状態を示す概略
構成図であって、第1図において、1は高密度エネルギ
源であるレーザ光であり、図示しないレーザ発生装置か
ら照射され、集光レンズ2を通って適当な大きさに成形
されて処理面に照射される。3はアルミニウム系母材で
あり、このアルミニウム系母材3は、加工テーブル4に
より加工方向に移動される。このアルミニウム系母材3
上には良好な耐摩耗性を発揮する合金組成に比べて、A
I含有量のみを減じた粉末状の銅系肉盛り材5が、粉末
供給装置6より粉末供給用ノズル7によって供給される
。8は肉盛り合金化層である。
本発明では、アルミニウム系母材3による希釈を積極的
に起こさせるため銅系肉盛り材5とアルミニウム系母材
3中のAIが相互に拡散しあって均一でかつ母層との間
に脆い中間層が形成されず、結果的に合金組成として耐
熱性、耐摩耗性、耐食性等に優れる良好な肉盛り合金化
層8が得られる。
9はシールドガスてあり、肉盛り処理部を酸化反応など
から保護するために用いている。
本実施例では、銅系肉盛り材5として、重量%で、Al
:2%、Ni:5%、Fe:3%を含有し、残部がCu
および不可避的不純物よりなる粉末を用いた。また、そ
の粒径は平均100μmのものとした。レーザ照射条件
は、レーザ出力・3゜0kW、出力モード:マルチモー
ド、ビーム径:1.4mm、相対移動速度:5mm/s
、 シールドガス:Ar、 シールドガス流量:1
0 1/min、粉末供給量:15.42g/minと
して肉盛り合金化を行った。
また、比較の銅系肉盛り材5として、重量%で、Al:
10%、Ni:5%、Fe:3%を含有し、残部がCu
および不可避的不純物よりなる粉末を用い、その他のレ
ーザ照射条件は同一とした。
第2図は上述の如〈実施例1て得られたレーザ肉盛り合
金化層8の金属組織を示す顕微鏡写真、第3図は本発明
の実施例1で得られたレーザ肉盛り合金化層8の硬さ分
布を示すグラフ、第4図は本発明の比較例で得られたレ
ーザ肉盛り合金化層8の金属組織を示す顕微鏡写真、第
5図は本発明の比較例で得られたレーザ肉盛り合金化層
8の硬さ分布を示すグラフである。
第2図および第3図より明らかなように、本実施例によ
れば、アルミニウム系母材3と銅系肉盛り材5との間に
脆い中間層が形成されることなく肉盛り合金化が行われ
ていることがわかる一方、第4図および第5図より明ら
かなように、従来の方法では、アルミニウム系母材3と
銅系肉盛り材5との間に硬くて脆い中間層が形成されて
いることがわかる。
実施例2
次に、第2の実施例を示す。ここでは、銅系肉盛り材5
として、平均粒径 100μm、重量%で、AI:2%
、Ni:5%、Fe:3%を含有し、残部がCuおよび
不可避的不純物よりなる粉末を用い、出力モード:マル
チモード、相対移動速度+ 0. 2m/m i n、
シールドガス:Ar。
シールドガス流量:10 1/minは一定として、第
1表に示す各種レーザ照射条件で肉盛り合金化処理を行
い、これにより肉盛り合金化層8を形成した。
第7図は得られた肉盛り合金化層の特徴をまとめた結果
を示すグラフ、第8図は条件Cで得られたレーザ肉盛り
合金化層の金属組織を示す顕微鏡写真、第9図は条件し
て得られたレーザ肉盛り合金化層の金属組織を示す顕微
鏡写真、第10図は条件して得られたレーザ肉盛り合金
化層の硬さ分布を示す顕微鏡写真である。
第1表および第7図より明らかなように、粉末状の銅系
肉盛り材の粉末供給量を10〜30g/min、レーサ
バワー密度を240〜3500W/mm2の範囲内とし
た場合に、種々の肉盛り合金化層が得られていることか
わかる。
一方、第8図より明らかなように、銅系肉盛り材の粉末
供給量か10g/minより少ないと、アルミニウム母
材の溶融に比べて粉末の供給量が不足し、母材アルミニ
ウムの希釈が多くなりすきるため、肉盛り合金化層内で
クラックが発生していることがわかる。
また、第9図および第10図より明らかなように、レー
ザパワー密度が3000W/mm’を超えると均一な肉
盛り合金化層は得られるもののアルミニウム母材の希釈
量が多(なりすぎて硬さか必要以上に増大し、やはり肉
盛り合金化層内でクラックが発生していることがわかる
。
【発明の効果]
以上説明してきたように、この発明によれば、その構成
を肉盛り材である銅合金中のアルミニウム含有量のみを
所望の合金組成に比べてあらかじめ低く設定しておき、
高密度エネルギ源による肉盛り合金を行って、母材中の
アルミニウムと合金化することにより所望の合金組成を
達成しかつ脆い中間合金層が形成されない肉盛り合金化
を行うこととしたため、剥離やクラック等の欠陥の発生
が少なく、耐熱性、耐摩耗性、耐食性等に優れる良好な
肉盛り合金化層が得られ、耐熱性、耐摩耗性、耐蝕性等
に優れた軽量部材が提供できるという著大なる効果がも
たらされる。(Means for Solving the Problems) The method of overlaying an aluminum base material according to the present invention provides heat resistance to the aluminum base material. A method of forming a copper overlay alloy material with excellent wear resistance, corrosion resistance, etc. by irradiation with a high-density energy source, in which the weight percentage is AI: 0 to 5%, Ni: 3 to 6. %, F
A copper alloy overlay material containing 3 to 6% e: with the remainder consisting of Cu and unavoidable impurities is supplied by a powder supply device, etc., and overlay alloying is performed by irradiation with a high-density energy source. It is characterized by a structure in which overlay alloying is performed in which a brittle intermediate alloy layer is not formed between the base material and the overlay alloyed layer by alloying with aluminum, and if necessary, in embodiments. , when supplying the copper alloy overlay material in the form of powder, the supply amount of the powder is 1
0 to 30 g/min, and when a laser is used as the high-density energy source, the laser power density is 240 to 3000 W/mm2. The structure of the invention relating to a method of overlaying and alloying a material is a means for solving the above-mentioned conventional problems. Next, reasons for limiting the metal composition of the copper-based overlay material used in the present invention will be described. Although AI is effective in improving tensile strength and hardness, if it exceeds 5% by weight, the toughness deteriorates due to dilution after overlay alloying, so it is limited to 0 to 5% by weight. And more preferably 0 to 2% by weight. Fe is effective in effectively refining and toughening the structure, but if it is less than 3% by weight, the effect is small, and if it is more than 6% by weight, it deteriorates the corrosion resistance of the alloy. Therefore, Fe was limited to 3 to 6% by weight. Ni is effective in effectively refining and toughening the structure, but when the ratio to the amount of Fe added exceeds 1.8, the dispersion state becomes uneven. Therefore, Ni was limited to 3 to 6% by weight. Furthermore, in the present invention, which describes the supply mode of the copper-based build-up material and the high-density energy source employed in the present invention, it is more preferable that the copper-based build-up material is supplied in the form of powder. In this case, it is particularly preferable that the powder supply amount be 10 to 3 Qg/min. That is, the powder supply amount is Log/mi
If it is less than n, the amount of powder supplied will be insufficient compared to the melting of the base material aluminum, and the base material aluminum will be diluted too much, and the amount of aluminum alloy in the build-up layer will exceed 10% by weight, and as shown in Fig. 6. This is because, as shown, the toughness tends to decrease, and conversely, when the powder supply rate exceeds 30 g/min, an alloy layer tends to be formed at the interface with the aluminum base material. In addition, a laser can be used as a high-density energy source, but in this case, the laser power density can be increased to 24
It is particularly preferable to set it to 0-3000w/mm2. In other words, if the laser power density is lower than 240 w/mm2, the amount of melting of the aluminum base material will be small, and an alloy layer will tend to be formed at the interface with the aluminum base material. If it is too large, a uniform overlay alloy layer can be obtained, but the base material aluminum will be diluted too much, and the aluminum content of the overlay layer will exceed 10% by weight, resulting in a decrease in toughness as shown in Figure 6. This is because there is a tendency to (Example) Example 1 FIG. 1 is a schematic configuration diagram showing a state in which a method for overlaying alloying on an aluminum base material according to a first example of the present invention is being carried out. , 1 is a laser beam that is a high-density energy source, and is irradiated from a laser generator (not shown), shaped into an appropriate size through a condenser lens 2, and irradiated onto the processing surface. 3 is an aluminum base material, and this aluminum base material 3 is moved by a processing table 4 in the processing direction. This aluminum base material 3
Compared to alloy compositions that exhibit good wear resistance, A
Powdered copper-based overlay material 5 with only reduced I content is supplied from a powder supply device 6 through a powder supply nozzle 7 . 8 is a built-up alloy layer. In the present invention, in order to actively cause dilution by the aluminum-based base material 3, the AI in the copper-based overlay material 5 and the aluminum-based base material 3 are mutually diffused and are uniform and brittle between the base material and the base material. No intermediate layer is formed, and as a result, a good built-up alloyed layer 8 having excellent heat resistance, wear resistance, corrosion resistance, etc. as an alloy composition is obtained. 9 is a shield gas, which is used to protect the overlay processing area from oxidation reactions and the like. In this example, as the copper-based overlay material 5, Al
:2%, Ni:5%, Fe:3%, and the balance is Cu.
and unavoidable impurities. Moreover, the average particle size was 100 μm. Laser irradiation conditions were: laser output: 3°0kW, output mode: multimode, beam diameter: 1.4mm, relative movement speed: 5mm/s
, Shield gas: Ar, Shield gas flow rate: 1
Overlay alloying was performed at a powder feed rate of 15.42 g/min and a powder supply rate of 15.42 g/min. In addition, as a comparison copper-based overlay material 5, Al:
10%, Ni: 5%, Fe: 3%, and the balance is Cu.
The other laser irradiation conditions were the same, using powders consisting of and unavoidable impurities. FIG. 2 is a micrograph showing the metal structure of the laser-deposited alloyed layer 8 obtained in Example 1 as described above, and FIG. 3 is a micrograph showing the metallographic structure of the laser-deposited alloyed layer 8 obtained in Example 1 of the present invention. Graph showing the hardness distribution of No. 8, FIG. 4 is a micrograph showing the metal structure of the laser deposited alloy layer 8 obtained in a comparative example of the present invention, and FIG. It is a graph showing the hardness distribution of the laser deposited alloy layer 8. As is clear from FIGS. 2 and 3, according to this example, overlay alloying is possible without forming a brittle intermediate layer between the aluminum base material 3 and the copper overlay material 5. On the other hand, as is clear from FIGS. 4 and 5, in the conventional method, a hard and brittle intermediate layer is formed between the aluminum-based base material 3 and the copper-based overlay material 5. I can see that it has been done. Example 2 Next, a second example will be shown. Here, copper-based overlay material 5
As, average particle size 100μm, weight%, AI: 2%
, using a powder containing 5% Ni, 3% Fe, and the balance consisting of Cu and unavoidable impurities, output mode: multimode, relative movement speed + 0. 2m/min,
Shielding gas: Ar. The build-up alloying process was performed under various laser irradiation conditions shown in Table 1, with the shielding gas flow rate: 10 1/min constant, thereby forming the build-up alloy layer 8. Figure 7 is a graph summarizing the characteristics of the obtained overlay alloyed layer, Figure 8 is a micrograph showing the metal structure of the laser overlay alloyed layer obtained under condition C, and Figure 9 is FIG. 10 is a micrograph showing the metal structure of the laser-deposited alloyed layer obtained under the conditions. FIG. 10 is a micrograph showing the hardness distribution of the laser-deposited alloyed layer obtained under the conditions. As is clear from Table 1 and Figure 7, when the powder supply amount of powdered copper-based overlay material is 10 to 30 g/min and the laser power density is within the range of 240 to 3500 W/mm2, various It can be seen that a built-up alloy layer has been obtained. On the other hand, as is clear from Fig. 8, if the powder supply amount of the copper-based overlay material is less than 10 g/min, the powder supply amount will be insufficient compared to the melting of the aluminum base material, and the dilution of the base aluminum will occur. It can be seen that cracks are generated within the overlay alloy layer because the gap increases. Furthermore, as is clear from Figures 9 and 10, when the laser power density exceeds 3000 W/mm', a uniform overlay alloy layer can be obtained, but the amount of dilution of the aluminum base material is large (it becomes too hard). It can be seen that cracks have also occurred in the overlay alloy layer.As explained above, according to the present invention, the structure can be improved by using overlay materials. By setting only the aluminum content in a certain copper alloy to be lower than the desired alloy composition,
We decided to perform overlay alloying using a high-density energy source to achieve the desired alloy composition by alloying with aluminum in the base material, and to perform overlay alloying without forming a brittle intermediate alloy layer. It is said that it is possible to obtain a good overlay alloy layer with few defects such as cracks and excellent heat resistance, abrasion resistance, corrosion resistance, etc., and to provide lightweight parts with excellent heat resistance, abrasion resistance, corrosion resistance, etc. A great effect is brought about.
【図面の簡単な説明】
第1図は本発明の実施例によるアルミニウム系母材への
肉盛り合金化方法を示す概略構成図、第2図は本発明の
実施例1で得られたレーザ肉盛り合金化層の金属組織を
示す顕微鏡写真、第3図は本発明の実施例1で得られた
レーザ肉盛り合金化層の硬さ分布を示すグラフ、第4図
は本発明の比較例で得られたレーザ肉盛り合金化層の金
属組織を示す顕微鏡写真、第5図は本発明の比較例で得
られたレーザ肉盛り合金化層の硬さ分布を示すグラフ、
第6図は銅系肉盛り材中のアルミニウム含有量と機械的
特性との関係を表わすグラフ、第7図は得られた肉盛り
合金化層の特徴をまとめた結果を示すグラフ、第8図は
第1表の条件Cで得られたレーザ肉盛り合金化層の金属
組織を示す顕微鏡写真、第9図は第1表の条件して得ら
れたレーザ肉盛り合金化層の金属組織を示す顕微鏡写真
、第10図は第1表の条件して得られたレーザ肉盛り合
金化層の硬さ分布を示す顕微鏡写真である。
1・・・レーザ光(高密度エネルギ源)、3・・・アル
ミニウム系母材、5・・・銅系肉盛り材、8・・・肉盛
り合金化層。
特許出願人 日産自動車株式会社
代理人弁理士 小 塩 豊
第1111
第2図
第Uiffl
第4図
第5図
Cu−fOAI−5Ni−3Fg
116図
412%
第7図
(xlO)[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a schematic diagram showing a method for overlaying alloying on an aluminum base material according to an embodiment of the present invention, and Fig. 2 is a schematic diagram showing a method for overlaying alloying on an aluminum base material according to an embodiment of the present invention. A micrograph showing the metal structure of the deposited alloyed layer, FIG. 3 is a graph showing the hardness distribution of the laser deposited alloyed layer obtained in Example 1 of the present invention, and FIG. 4 is a comparative example of the present invention. A micrograph showing the metal structure of the obtained laser-deposited alloyed layer, FIG. 5 is a graph showing the hardness distribution of the laser-deposited alloyed layer obtained in a comparative example of the present invention,
Figure 6 is a graph showing the relationship between aluminum content and mechanical properties in a copper-based overlay material, Figure 7 is a graph summarizing the characteristics of the obtained overlay alloy layer, and Figure 8 is a micrograph showing the metallographic structure of the laser-deposited alloyed layer obtained under condition C in Table 1, and FIG. 9 shows the metallographic structure of the laser-deposited alloyed layer obtained under the conditions in Table 1. FIG. 10 is a micrograph showing the hardness distribution of the laser deposited alloyed layer obtained under the conditions shown in Table 1. DESCRIPTION OF SYMBOLS 1... Laser light (high-density energy source), 3... Aluminum-based base material, 5... Copper-based overlay material, 8... Overlay alloy layer. Patent applicant Nissan Motor Co., Ltd. Patent attorney Yutaka Oshio 1111 Figure 2 Uiffl Figure 4 Figure 5 Cu-fOAI-5Ni-3Fg 116 Figure 412% Figure 7 (xlO)
Claims (1)
等に優れた銅系肉盛り用合金材料を高密度エネルギ源の
照射によりに肉盛り合金化する方法であって、重量%で
、Al:0〜5%、Ni:3〜6%、Fe:3〜6%を
含有し、残部がCuおよび不可避的不純物よりなる銅系
肉盛り材を供給し、高密度エネルギ源の照射により肉盛
り合金化を行い、母材中のアルミニウムと合金化するこ
とにより前記母材と肉盛り合金化層との間に脆い中間合
金層が形成されない肉盛合金化を行うことを特徴とする
アルミニウム系母材への肉盛り合金化方法。(1) A method of forming a copper overlay alloy material with excellent heat resistance, wear resistance, corrosion resistance, etc. onto an aluminum base material by irradiating it with a high-density energy source, the method comprises: A copper-based overlay material containing Al: 0 to 5%, Ni: 3 to 6%, and Fe: 3 to 6%, with the balance consisting of Cu and unavoidable impurities is supplied, and the overlay material is irradiated with a high-density energy source. An aluminum system characterized by performing overlay alloying and alloying with aluminum in the base material so that a brittle intermediate alloy layer is not formed between the base material and the overlay alloy layer. Method for overlaying alloying on base metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2295673A JPH04172193A (en) | 1990-11-01 | 1990-11-01 | Method for alloying al series base material with cladding by welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2295673A JPH04172193A (en) | 1990-11-01 | 1990-11-01 | Method for alloying al series base material with cladding by welding |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04172193A true JPH04172193A (en) | 1992-06-19 |
Family
ID=17823710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2295673A Pending JPH04172193A (en) | 1990-11-01 | 1990-11-01 | Method for alloying al series base material with cladding by welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04172193A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11310837A (en) * | 1998-02-26 | 1999-11-09 | Mitsui Mining & Smelting Co Ltd | Copper alloy excellent in wear resistance |
JP2019136726A (en) * | 2018-02-08 | 2019-08-22 | 中村留精密工業株式会社 | Laser cladding device |
-
1990
- 1990-11-01 JP JP2295673A patent/JPH04172193A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11310837A (en) * | 1998-02-26 | 1999-11-09 | Mitsui Mining & Smelting Co Ltd | Copper alloy excellent in wear resistance |
JP2019136726A (en) * | 2018-02-08 | 2019-08-22 | 中村留精密工業株式会社 | Laser cladding device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sexton et al. | Laser cladding of aerospace materials | |
US5188799A (en) | Wear-resistant copper-base alloy | |
JP2678804B2 (en) | Method for forming pure Cu build-up layer on iron alloy substrate | |
EP2610361B1 (en) | Flux-cored welding wire for carbon steel and process for arc welding | |
JPS6233089A (en) | Alloy powder for building up of powder | |
JPH1096037A (en) | Copper alloy excellent in wear resistance | |
EP0221752A2 (en) | High energy padding method utilizing coating containing copper | |
JP3305738B2 (en) | Overlaid copper-based alloy with excellent wear resistance | |
JPH04172193A (en) | Method for alloying al series base material with cladding by welding | |
JP2621448B2 (en) | Cladding method | |
JP2005254317A (en) | Coating method and apparatus for self-fluxing alloy, and continuous casting mold using the same, and manufacturing method for mold | |
JP2023046302A (en) | Welding electrode with functional coatings | |
JP3020670B2 (en) | Cu-Al composite wire for overlay welding on Al-based material surface | |
US20050067064A1 (en) | Steel surface hardness using laser deposition and active gas shielding | |
Gassmann et al. | Laser cladding of hard particles rich alloys | |
JPH0557480A (en) | Composite wire for build up welding to surface of al base material | |
JP2812772B2 (en) | Laser welding method | |
JP7506421B2 (en) | Method for manufacturing hard metal member, hard metal member and raw material powder thereof | |
Dwivedi et al. | Surface modification by developing coating and cladding | |
JPH05285690A (en) | Composite material for welding and its production | |
JPH0762192B2 (en) | Cu-based wear-resistant alloy with excellent lubricity | |
JP2906012B2 (en) | Surface hardening method for aluminum material or its alloy material | |
Śliwński et al. | Effect of laser remelting of plasma sprayed coating of Cr-Ni-Re | |
JPH02165884A (en) | Formation of protective film | |
JPH0615482A (en) | Filler metal for build-up welding to surface of al-base material |