JP2005254317A - Coating method and apparatus for self-fluxing alloy, and continuous casting mold using the same, and manufacturing method for mold - Google Patents

Coating method and apparatus for self-fluxing alloy, and continuous casting mold using the same, and manufacturing method for mold Download PDF

Info

Publication number
JP2005254317A
JP2005254317A JP2004072364A JP2004072364A JP2005254317A JP 2005254317 A JP2005254317 A JP 2005254317A JP 2004072364 A JP2004072364 A JP 2004072364A JP 2004072364 A JP2004072364 A JP 2004072364A JP 2005254317 A JP2005254317 A JP 2005254317A
Authority
JP
Japan
Prior art keywords
self
fluxing alloy
coating
copper plate
fluxing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004072364A
Other languages
Japanese (ja)
Inventor
Yoshiaki Azuma
佳昭 四阿
Yuichi Ishimori
裕一 石森
Katsuhiro Minamida
勝宏 南田
Hiroyuki Yamamoto
博之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004072364A priority Critical patent/JP2005254317A/en
Publication of JP2005254317A publication Critical patent/JP2005254317A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for inexpensively and firmly coating a copper plate with a self-fluxing alloy, and to obtain a continuous casting mold having a high wear resistance and a long life by using the copper plate coated by the above method and apparatus. <P>SOLUTION: The coating apparatus and the method are provided in which copper plate to be coated with the self-fluxing alloy is irradiated with laser and a self-fluxing alloy powder is continuously fed to the irradiated part. The coating layer is formed by irradiating the self-fluxing alloy with a laser beam having a wavelength of 630-940 nm, an energy density of at least 10 kW/cm<SP>2</SP>, and a heat input imparted to the coating part of 5-15 kJ/cm, and then by performing a remelting treatment. The continuous casting mold using the copper plate which is coated with the self-fluxing alloy with the use of the above apparatus and method is also provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は自溶性合金を銅板に被覆する装置および方法並びにこの被覆した銅板を用いた連続鋳造用鋳型及びその製造方法に関する。   The present invention relates to an apparatus and method for coating a self-fluxing alloy on a copper plate, a continuous casting mold using the coated copper plate, and a method for producing the same.

鋼の連続鋳造用鋳型の基材は銅製であり、そのままでは鋳片やパウダーの摺動に対して摩耗が激しい。よって通常、摩耗対策としてNi基やCo基のメッキが施されているが、溶射皮膜と比べて硬度が低く耐摩耗性が不充分であり、寿命向上の要求があった。 特に鋳型の下部は摩耗が激しいため、摩耗対策としてNi基の自溶性合金の適用が検討されてきたが、自溶性合金は一般に溶射後、再溶融処理(ヒュージング)を高温で行うため、鋳型の基材の熱変形が大きくなり、処理後の銅板を鋳型として組み立てることが出来なくなる問題があり、スラブ連鋳鋳型の場合、400mm幅を越える長辺には出来ず短辺のみの適用に止まっている。   The base material of the continuous casting mold for steel is made of copper, and if it is left as it is, it is very worn against sliding of slab and powder. Therefore, Ni-based or Co-based plating is usually applied as a countermeasure against wear, but the hardness is lower than that of the sprayed coating, and the wear resistance is insufficient. In particular, since the lower part of the mold is severely worn, the application of Ni-based self-fluxing alloys has been studied as a countermeasure against wear. There is a problem that the heat deformation of the base material becomes large and it becomes impossible to assemble the processed copper plate as a mold. In the case of a slab continuous casting mold, the long side exceeding 400 mm cannot be made, and only the short side is applied. ing.

再溶融処理は、通常ガスバーナーの火炎で溶射皮膜を加熱することによって実施されるが、この方法では、上記の熱変形以外に被膜の酸化劣化も問題である。また、ガスバーナーでは広い面積を被覆する場合、加熱状態が不均一になりやすく、被膜の密着強度が不足する部位の発生、さらにはピンホールの発生も問題となる。更に、再溶融処理後の被膜厚みが不均一になりやすいため、要求膜厚以上に厚い溶射膜を形成してから研削する方法が一般に行われており、溶射材料の歩留まりが悪く施工コストが増大するという問題もあった。   The remelting treatment is usually carried out by heating the sprayed coating with a flame of a gas burner. However, in this method, oxidation degradation of the coating is also a problem in addition to the thermal deformation described above. Further, when covering a large area with a gas burner, the heating state is likely to be non-uniform, and the occurrence of a part where the adhesion strength of the film is insufficient, and further the generation of pinholes, are also problematic. Furthermore, since the coating thickness after remelting tends to be non-uniform, a method of grinding after forming a sprayed coating that is thicker than the required thickness is generally used, resulting in poor yield of the sprayed material and increased construction costs. There was also a problem of doing.

上記課題の対策として、例えば特許文献1、特許文献2にて開示されているように、自溶性合金を超音速フレーム溶射(再溶融処理省略)、又はWC・NiCr、WC・Co、CrC・NiCrを超音速フレーム溶射にて施工する方法が提供されている。   As countermeasures for the above problems, as disclosed in Patent Document 1 and Patent Document 2, for example, self-fluxing alloy is subjected to supersonic flame spraying (remelting process omitted), or WC / NiCr, WC / Co, CrC / NiCr. There is provided a method for constructing the steel by supersonic flame spraying.

また、再溶融処理時の溶射皮膜の酸化劣化を防止する手段としては、特許文献3に開示されているように、自溶性合金に酸化防止剤を塗布してヒュージングする方法、また特許文献4に開示されているように、自溶性合金に電子ビームを与えてヒュージングする方法が提案されている。これらはどちらもヒュージングを行うので連続鋳造用鋳型の長辺には適用できていない。   Further, as a means for preventing the oxidative deterioration of the thermal spray coating during the remelting process, as disclosed in Patent Document 3, a method of applying an antioxidant to a self-fluxing alloy and fusing, or Patent Document 4 As disclosed in Japanese Patent Application Laid-Open No. H11-260, a method for fusing by applying an electron beam to a self-fluxing alloy has been proposed. Since both of these perform fusing, they cannot be applied to the long side of a continuous casting mold.

さらに、特許文献5では自溶性合金を溶射または積層してからレーザー光で再溶融させて被覆する方法が開示されている。この方法では表面が溶融することで滑らかとなるが、被覆界面近くまで十分な熱が伝わらない場合があり、この部分では自溶性合金が十分に溶融せず、被覆材に空孔ができて剥離する懸念があった。また、溶射と再溶融の2回の加熱があるのでコストが高くなる懸念もあった。
特開平8−225917号公報 特開平8−187554号公報 特開平10−121126号公報 特開平11−226700号公報 特開2003−320441号公報
Furthermore, Patent Document 5 discloses a method in which a self-fluxing alloy is sprayed or laminated and then remelted with a laser beam to coat. In this method, the surface is smoothed by melting, but sufficient heat may not be transmitted to the vicinity of the coating interface, and the self-fluxing alloy does not melt sufficiently in this part, and voids are formed in the coating material and peeled off. There was a concern. In addition, there is a concern that the cost becomes high because there are two heating steps of thermal spraying and remelting.
JP-A-8-225917 JP-A-8-187554 JP-A-10-121126 JP 11-226700 A JP 2003-320441 A

本発明の課題は自溶性合金を安価でかつ強固に銅板に被覆する方法および装置を提供すると共に、これによって得られた銅板を用いて耐摩耗性の高く長寿命である連続鋳造用鋳型を得ることを目的とする。   An object of the present invention is to provide a method and an apparatus for coating a self-fluxing alloy on a copper plate at low cost and firmly, and to obtain a continuous casting mold having a high wear resistance and a long life using the copper plate obtained thereby. For the purpose.

上記の目的を達成するため、本発明者は半導体レーザー光による自溶性合金の被覆方法およびについて広く研究を行い、次のような知見を得た。
(1)半導体レーザーは被覆の母材となる銅に対する吸収率が低い一方、自溶性合金の主成分であるNi、Cr、Feに対して高い。これにより同じ照射を受けても銅はあまり加熱されないが、自溶性合金は加熱される。
(2)粉末を供給しながらレーザー光で加熱被覆した場合、粉末が微視的に連続体でないので、深くまで光が届き、このことによって被覆界面まで十分に加熱される。
In order to achieve the above object, the present inventor has extensively studied a coating method and a self-fluxing alloy with a semiconductor laser beam, and has obtained the following knowledge.
(1) While the semiconductor laser has a low absorptivity with respect to copper as a base material for coating, it is high with respect to Ni, Cr, and Fe, which are main components of self-fluxing alloys. Thereby, copper is not heated very much even if it receives the same irradiation, but the self-fluxing alloy is heated.
(2) When the powder is heated and coated with laser light while supplying the powder, since the powder is not microscopically continuous, the light reaches deeply, thereby sufficiently heating the coating interface.

本発明者は上記の知見を基に以下のような発明をした。
(1)自溶性合金を被覆する銅板を固定する定盤と、銅板に向けてレーザー光を照射する半導体レーザー装置と、該レーザー装置がレーザー光を照射する部分に自溶性合金粉末を連続的に供給する装置からなることを特徴とする、自溶性合金の被覆装置。
The inventor made the following invention based on the above findings.
(1) A surface plate for fixing a copper plate covering a self-fluxing alloy, a semiconductor laser device for irradiating a laser beam toward the copper plate, and a self-fluxing alloy powder continuously applied to a portion where the laser device irradiates a laser beam. A self-fluxing alloy coating apparatus comprising a supply apparatus.

(2)銅板の表面に自溶性合金粒子を供給し、この自溶性合金に波長が630〜940nm、エネルギー密度が少なくとも10kW/cmのレーザ光を照射し、前記自溶性合金を溶融させた後、凝固させ、被覆層を形成させることを特徴とする自溶性合金の被覆方法。 (2) After supplying self-fluxing alloy particles to the surface of the copper plate and irradiating the self-fluxing alloy with laser light having a wavelength of 630 to 940 nm and an energy density of at least 10 kW / cm 2 to melt the self-fluxing alloy A self-fluxing alloy coating method characterized by solidifying and forming a coating layer.

(3)レーザー光が照射面被覆部に与える入熱量が、5kJ/cm以上15kJ/cm以下であることを特徴とする前記(2)に記載の自溶性合金の被覆方法。   (3) The self-fluxing alloy coating method according to (2) above, wherein the amount of heat input to the irradiated surface coating portion by the laser light is 5 kJ / cm or more and 15 kJ / cm or less.

(4)銅板の表面に、下地処理として脱酸剤を塗布又は積層し、その上に自溶性合金粒子を供給することを特徴とする前記(2)又は(3)に記載の自溶性合金の被覆方法。   (4) The self-fluxing alloy according to (2) or (3), wherein the surface of the copper plate is coated or laminated with a deoxidizer as a base treatment, and self-fluxing alloy particles are supplied thereon. Coating method.

(5)銅板の表面にNi、Co、Feメッキ層若しくはこれらを基材とする合金メッキ層、又はNi若しくはCu−Ni合金のろう材のいずれか1種又は2種以上の被覆層を形成したものを基材とすることを特徴とする前記(2)〜(4)の何れか1項に記載の自溶性合金の被覆方法。   (5) One or more coating layers of Ni, Co, Fe plating layers or alloy plating layers based on these, or Ni or Cu-Ni alloy brazing material were formed on the surface of the copper plate. The self-fluxing alloy coating method according to any one of the above (2) to (4), wherein the base material is a base material.

(6)自溶性合金が、Ni、Co若しくはFe基の自溶性合金、又はこれらの自溶性合金にクロム炭化物、タングステン炭化物、バナジウム炭化物、ニオブ炭化物、ジルコニウム炭化物の1種又2種以上を添加したものであることを特徴とする前記(2)〜(5)の何れか1項に記載の自溶性合金の被覆方法。   (6) The self-fluxing alloy is Ni, Co or Fe-based self-fluxing alloy, or chromium carbide, tungsten carbide, vanadium carbide, niobium carbide, zirconium carbide is added to these self-fluxing alloys. The method for coating a self-fluxing alloy according to any one of (2) to (5) above, wherein

(7)前記(2)〜(6)のいずれかに記載の方法で銅製連続鋳造用鋳型を被覆することを特徴とする連続鋳造用鋳型への自溶性合金の被覆方法。   (7) A method of coating a self-fluxing alloy on a continuous casting mold, wherein the copper continuous casting mold is coated by the method according to any one of (2) to (6).

(8)前記(2)〜(6)のいずれかに記載の方法で自溶性合金を被覆された銅板を用いて造られたことを特徴とする連続鋳造用鋳型。   (8) A casting mold for continuous casting, characterized by being produced using a copper plate coated with a self-fluxing alloy by the method according to any one of (2) to (6).

本発明では溶射と再溶融といった2回の加熱ではないので、工程が短縮され、効率的に被覆を得ることができた。また、自溶性合金粉末が十分に溶融して被覆されるので、銅板の表面は滑らかで欠陥のない被覆がされるようになった。さらに、このように被覆された銅板は自溶性合金の特性が生かされて耐摩耗性が高く、連続鋳造用の鋳型としての寿命が大幅に向上した。   In the present invention, since the heating is not performed twice such as spraying and remelting, the process is shortened and the coating can be obtained efficiently. In addition, since the self-fluxing alloy powder is sufficiently melted and coated, the surface of the copper plate is smoothly coated with no defects. Furthermore, the copper plate coated in this way has high wear resistance by taking advantage of the characteristics of the self-fluxing alloy, and the service life as a casting mold for casting is greatly improved.

本発明について最良の形態を用いて以下に詳細に説明する。
図1は、本発明の最良の形態を示した斜視図である。定盤に固定された銅板6の表面に半導体レーザー装置1から発射される照射光4を照射し、その照射部に自溶性合金粉末2を供給することにより、溶融処理を行い、自溶性合金皮膜5を形成する。
The present invention will be described in detail below using the best mode.
FIG. 1 is a perspective view showing the best mode of the present invention. The surface of the copper plate 6 fixed to the surface plate is irradiated with the irradiation light 4 emitted from the semiconductor laser device 1, and the self-fluxing alloy powder 2 is supplied to the irradiation part to perform the melting treatment, and the self-fluxing alloy film 5 is formed.

半導体レーザー装置1は送り装置に取り付けられ、一定速度で被覆材と一定の距離を保ちながら、被覆材の表面を走査するのが好ましい。また粉末供給装置3は、レーザーの照射光4の走査に追従して移動する。上記粉末供給装置3は、常に自溶性合金粉末2が定量供給される機構を有することが好ましい。   The semiconductor laser device 1 is preferably attached to a feeding device and scans the surface of the coating material while maintaining a constant distance from the coating material at a constant speed. Moreover, the powder supply apparatus 3 moves following the scanning of the irradiation light 4 of the laser. It is preferable that the powder supply device 3 has a mechanism that constantly supplies the self-fluxing alloy powder 2 in a fixed amount.

自溶性合金粉体の粒径は小さいと供給時にレーザー照射光の範囲よりも大きく散逸し歩留まりが低下する。また供給装置の詰まりなどの障害も発生しやすい。一方粒径が大きいと、粉末の重量に対する表面積の割合が小さいため、レーザー光への暴露面積が低下することにより溶融処理が効率的に行われない。したがって、ここで用いられる自溶性合金粉体の粒径は好ましくは10μm以上、200μm以下であることが望ましい。   If the particle size of the self-fluxing alloy powder is small, it will be dissipated more than the range of the laser irradiation light at the time of supply and the yield will be lowered. Also, troubles such as clogging of the supply device are likely to occur. On the other hand, when the particle size is large, the ratio of the surface area to the weight of the powder is small, so that the area exposed to the laser light is reduced, so that the melting treatment is not efficiently performed. Therefore, the particle size of the self-fluxing alloy powder used here is preferably 10 μm or more and 200 μm or less.

図2は特許文献5で開示された被覆方法である。銅板6の表面に自溶性合金被覆を溶射により形成し、レーザ装置1から発射される照射光4を被覆表面に照射して再溶融処理を行う。この被覆方法に於いては溶射と再溶融という2回の加熱が必要であり工程が増加する。またあらかじめ成膜化した自溶性合金被覆の表面にレーザー光を照射するため、本法の粉末状態の自溶性合金への照射に比較して、自溶性合金にレーザー光が照射される表面積が小さく、被覆形成の効率が低い。   FIG. 2 shows a coating method disclosed in Patent Document 5. A self-fluxing alloy coating is formed on the surface of the copper plate 6 by thermal spraying, and the coating surface is irradiated with irradiation light 4 emitted from the laser device 1 to perform remelting treatment. In this coating method, two heating steps of thermal spraying and remelting are necessary, and the number of processes increases. In addition, since the surface of the self-fluxing alloy coating formed in advance is irradiated with laser light, the surface area on which the self-fluxing alloy is irradiated with laser light is smaller than the irradiation of the powdered self-fluxing alloy in this method. The coating formation efficiency is low.

一般に実用的な半導体レーザーはレーザー波長が630〜940nmであり、エネルギー密度が少なくとも10kW/cmの出力を出すことができる。銅と自溶性合金の吸収率の差を顕著とするためには、レーザー波長は好ましくは800nm以上であることが望ましい。 In general, a practical semiconductor laser has a laser wavelength of 630 to 940 nm, and can output an energy density of at least 10 kW / cm 2 . In order to make the difference in absorption rate between copper and self-fluxing alloy remarkable, the laser wavelength is preferably 800 nm or more.

レーザー光が照射面被覆部に与える入熱量は、レーザー出力とレーザー装置の送り速度によって与えられる。入熱量が小さいと自溶性合金が十分に溶融せず、被覆が形成されない。また入熱量が大きいと自溶性合金が蒸発して被覆形成不良、酸化による被覆層の性能低下、急熱急冷による被覆層の割れが発生する。したがって、レーザー光が照射面被覆部に与える入熱量は、5kJ/cm以上15kJ/cm以下の範囲とすることが良好な被覆層を形成するために望ましい。   The amount of heat input that the laser beam gives to the irradiated surface coating portion is given by the laser output and the feed rate of the laser device. If the amount of heat input is small, the self-fluxing alloy will not melt sufficiently and a coating will not be formed. If the heat input is large, the self-fluxing alloy evaporates, resulting in poor coating formation, reduced performance of the coating layer due to oxidation, and cracking of the coating layer due to rapid heating and quenching. Therefore, it is desirable that the amount of heat input that the laser beam gives to the irradiated surface coating portion be in the range of 5 kJ / cm to 15 kJ / cm in order to form a good coating layer.

また、銅板は一般に表面の酸化や腐食が発生しやすく、自溶性合金を被覆する前に、あらかじめ銅板表面にショットブラストやグラインダー加工、ブラシかけ等の下地処理を施し、酸化膜等を除去しておくことが望ましい。さらに脱酸剤を塗布又は積層し、その上に自溶性合金粒子を供給しレーザー光を照射して被覆すれば、より効果的な被覆層を得ることができ、自溶性合金の銅板への密着力も向上する。   Also, copper plate is generally prone to surface oxidation and corrosion. Before coating the self-fluxing alloy, the surface of the copper plate is pretreated by shot blasting, grinder processing, brushing, etc. to remove the oxide film, etc. It is desirable to keep it. Furthermore, a more effective coating layer can be obtained by applying or laminating a deoxidizer, supplying self-fluxing alloy particles thereon and irradiating it with laser light to adhere the self-fluxing alloy to the copper plate. Power is also improved.

加えて、上記のように自溶性合金の銅板への密着力を向上する下地処理として、銅板の表面にNi、Co、Feメッキ層若しくはこれらを基材とする合金メッキ層、又はNi若しくはCu−Ni合金のろう材のいずれか1種又は2種以上の被覆層を形成すれば、銅板表面の酸化を防止することができ、また上記メッキ材料は自溶性合金との密着性が優れ、より好ましい被覆層を得ることができる。   In addition, as a base treatment for improving the adhesion of the self-fluxing alloy to the copper plate as described above, the surface of the copper plate is Ni, Co, Fe plating layer or an alloy plating layer based on these, or Ni or Cu- If any one or two or more coating layers of a brazing material of Ni alloy are formed, it is possible to prevent oxidation of the copper plate surface, and the plating material is excellent in adhesion with a self-fluxing alloy and more preferable. A coating layer can be obtained.

被覆層を形成する自溶性合金としては、Ni、Co若しくはFe基の自溶性合金が好ましい。これらは、溶融処理によって緻密化し、銅板表面との密着性も良好である。また、これらの自溶性合金にクロム炭化物、タングステン炭化物、バナジウム炭化物、ニオブ炭化物、ジルコニウム炭化物の1種又は2種以上を添加したものを用いれば、被覆層の硬度すなわち耐摩耗性が向上し、より好ましい被覆層を得ることが出来る。   The self-fluxing alloy forming the coating layer is preferably a Ni-, Co- or Fe-based self-fluxing alloy. These are densified by a melting process and have good adhesion to the copper plate surface. In addition, if these self-fluxing alloys are added with one or more of chromium carbide, tungsten carbide, vanadium carbide, niobium carbide, zirconium carbide, the hardness of the coating layer, that is, the wear resistance is improved. A preferable coating layer can be obtained.

図1の本発明装置を用いて、幅2500mm、高さ900mmの連続鋳造用鋳型1の表面にショットブラストで下地処理を行い、Ni基自溶性合金4種、およびこれにクロム炭化物を配合した被覆層5を種々の条件で形成した。Ni基自溶性合金4種はNi、Cr、B、Si等から構成される、溶融処理後のビッカース硬度が600〜800の皮膜である。自溶性合金粉末2は、粒子径が、いずれも40μm以上、130μm以下の範囲のガスアトマイズ製法による球状粒子を用いた。溶融処理に用いたレーザー装置1は、波長805nmの半導体レーザーで、最大出力4kWのものを用いた。また、レーザー照射光4のビーム形状は長方形で、長辺6mm×短辺0.25mmのものを用いた。レーザー装置1の先端と被覆表面との距離は、これに用いたレーザー装置の焦点距離に合わせて40mmとした。   The surface of the continuous casting mold 1 having a width of 2500 mm and a height of 900 mm is ground-treated by shot blasting using the apparatus of the present invention shown in FIG. Layer 5 was formed under various conditions. The four Ni-based self-fluxing alloys are films made of Ni, Cr, B, Si, etc. and having a Vickers hardness of 600 to 800 after the melting treatment. As the self-fluxing alloy powder 2, spherical particles produced by a gas atomizing method with a particle size in the range of 40 μm to 130 μm were used. The laser device 1 used for the melting treatment was a semiconductor laser having a wavelength of 805 nm and a maximum output of 4 kW. Further, the beam shape of the laser irradiation light 4 was a rectangle, and a long side of 6 mm × short side of 0.25 mm was used. The distance between the tip of the laser device 1 and the coating surface was 40 mm in accordance with the focal length of the laser device used for this.

表1に本発明の実施例と比較例を対比して示す。表1において、「SFA」は自溶性合金の略である。

Figure 2005254317
実施例における、条件1および2は本発明の被覆法にてレーザーの照射条件を与えてNi基自溶性合金の被覆層を形成した例である。条件3はNi基自溶性合金粉末の供給量を変化させて、被覆層を形成した例である。また、条件4および5は、銅板表面に下地処理として膜厚0.5〜1mmのNiメッキおよびCo−Niメッキを施した上で、Ni基自溶性合の被覆層を形成した例である。条件6は、クロム炭化物をNi基自溶性合金4種に配合した材質の被覆層を、本発明の方法で形成した例である。 Table 1 compares the examples of the present invention with the comparative examples. In Table 1, “SFA” is an abbreviation for self-fluxing alloy.
Figure 2005254317
Conditions 1 and 2 in the examples are examples in which a coating layer of a Ni-based self-fluxing alloy was formed by applying laser irradiation conditions in the coating method of the present invention. Condition 3 is an example in which the coating layer is formed by changing the supply amount of the Ni-based self-fluxing alloy powder. Conditions 4 and 5 are examples in which a Ni-based self-soluble coating layer was formed on the copper plate surface after Ni plating and Co-Ni plating with a film thickness of 0.5 to 1 mm were applied as a base treatment. Condition 6 is an example in which a coating layer made of a material in which chromium carbide is blended with four kinds of Ni-based self-fluxing alloys is formed by the method of the present invention.

比較例における条件7は、実施例の条件1および2と異なるレーザーの照射条件でNi基自溶性合金の被覆層を形成した例である。また、条件8は、銅板表面にNi基自溶性合金粉末を約1mmの層厚であらかじめ積層し、ガスバーナーによる溶融処理を実施した例である。条件9および10は、銅板表面に高速フレーム溶射によって、Ni基自溶性合金、およびそれにクロム炭化物を配合した被覆層を溶射によって形成し、再溶融処理を実施しなかったものである。高速フレーム溶射は、酸素と石油を用い、秒速1km以上に達する超音速で溶射粉末をガンから発射し基材に溶射する方法で、通常のガス溶射よりも緻密な皮膜が形成できるとされる。   Condition 7 in the comparative example is an example in which a coating layer of a Ni-based self-fluxing alloy was formed under laser irradiation conditions different from the conditions 1 and 2 of the example. Condition 8 is an example in which a Ni-based self-fluxing alloy powder is laminated in advance with a layer thickness of about 1 mm on the surface of a copper plate, and a melting process is performed using a gas burner. Conditions 9 and 10 are those in which a Ni-based self-fluxing alloy and a coating layer in which chromium carbide is blended are formed by thermal spraying on the copper plate surface by high-speed flame spraying, and the remelting treatment is not performed. High-speed flame spraying is a method in which oxygen and petroleum are used, and a sprayed powder is fired from a gun at a supersonic speed of 1 km / second or more and sprayed onto a base material.

上記実施例の条件による被覆層を作成し、実際の連続鋳造用鋳型に使用したところ、いずれの実施例の被覆層も、皮膜状態が良好であったものは従来のNiメッキに比べ、下部の摩耗により銅製の鋳型基材が露出するまでの寿命が2倍以上となることをを示した。特に条件6のクロム炭化物を配合したNi基自溶性合金4種の被覆層は、Niメッキの3倍以上の寿命を示した。他方、比較例における条件9および10の被覆層は、Niメッキの摩耗寿命と同じ期間の使用後に点検したところ、部分的に剥離が生じ、継続使用が不可能であった。   When a coating layer according to the conditions of the above examples was prepared and used for an actual continuous casting mold, the coating layer of any of the examples had a good coating state, compared to the conventional Ni plating, the lower layer. It was shown that the lifetime until the copper mold base material was exposed due to abrasion was more than doubled. In particular, four kinds of coating layers of Ni-based self-fluxing alloy containing chromium carbide of Condition 6 showed a life three times longer than that of Ni plating. On the other hand, when the coating layers under conditions 9 and 10 in the comparative example were inspected after use for the same period as the wear life of the Ni plating, partial peeling occurred and continuous use was impossible.

本発明の最良の形態を示した斜視図である。It is the perspective view which showed the best form of this invention. 特許文献5に開示された被覆形態を示した斜視図である。It is the perspective view which showed the coating | cover form disclosed by patent document 5. FIG.

符号の説明Explanation of symbols

1半導体レーザー装置
2自溶性合金粉末
3粉末供給装置
4照射光
5完成した自溶性合金被覆層
6定盤に固定された銅板
DESCRIPTION OF SYMBOLS 1 Semiconductor laser apparatus 2 Self-fluxing alloy powder 3 Powder supply apparatus 4 Irradiation light 5 Completed self-fluxing alloy coating layer 6 Copper plate fixed to the surface plate

Claims (8)

自溶性合金を被覆する銅板を固定する定盤と、銅板に向けてレーザー光を照射する半導体レーザー装置と、該レーザー装置がレーザー光を照射する部分に自溶性合金粉末を連続的に供給する装置からなることを特徴とする、自溶性合金の被覆装置。 A surface plate for fixing a copper plate covering a self-fluxing alloy, a semiconductor laser device for irradiating a laser beam toward the copper plate, and a device for continuously supplying a self-fluxing alloy powder to a portion where the laser device irradiates a laser beam A self-fluxing alloy coating apparatus comprising: 銅板の表面に自溶性合金粒子を供給し、この自溶性合金に波長が630〜940nm、エネルギー密度が少なくとも10kW/cmのレーザ光を照射し、前記自溶性合金を溶融させた後、凝固させ、被覆層を形成させることを特徴とする自溶性合金の被覆方法。 The self-fluxing alloy particles are supplied to the surface of the copper plate, and the self-fluxing alloy is irradiated with laser light having a wavelength of 630 to 940 nm and an energy density of at least 10 kW / cm 2 to melt the self-fluxing alloy and then solidify. A method for coating a self-fluxing alloy, comprising forming a coating layer. レーザー光が照射面被覆部に与える入熱量が、5kJ/cm以上15kJ/cm以下であることを特徴とする請求項2に記載の自溶性合金の被覆方法。 3. The self-fluxing alloy coating method according to claim 2, wherein the amount of heat input to the irradiated surface coating portion by the laser light is 5 kJ / cm or more and 15 kJ / cm or less. 銅板の表面に、下地処理として脱酸剤を塗布又は積層し、その上に自溶性合金粒子を供給することを特徴とする請求項2又は3に記載の自溶性合金の被覆方法。 4. The self-fluxing alloy coating method according to claim 2, wherein a deoxidizer is applied or laminated on the surface of the copper plate as a base treatment, and self-fluxing alloy particles are supplied thereon. 銅板の表面にNi、Co、Feメッキ層若しくはこれらを基材とする合金メッキ層、又はNi若しくはCu−Ni合金のろう材のいずれか1種又は2種以上の被覆層を形成したものを基材とすることを特徴とする請求項2〜4の何れか1項に記載の自溶性合金の被覆方法。 Based on the surface of the copper plate formed with one or more coating layers of Ni, Co, Fe plating layer or alloy plating layer based on these, or brazing material of Ni or Cu-Ni alloy The method for coating a self-fluxing alloy according to any one of claims 2 to 4, wherein the material is a material. 自溶性合金が、Ni、Co若しくはFe基の自溶性合金、又はこれらの自溶性合金にクロム炭化物、タングステン炭化物、バナジウム炭化物、ニオブ炭化物、ジルコニウム炭化物の1種若しくは2種以上を添加したものであることを特徴とする請求項2〜5の何れか1項に記載の自溶性合金の被覆方法。 The self-fluxing alloy is a Ni-, Co- or Fe-based self-fluxing alloy, or one or more of chromium carbide, tungsten carbide, vanadium carbide, niobium carbide, zirconium carbide added to these self-fluxing alloys. The method for coating a self-fluxing alloy according to any one of claims 2 to 5. 請求項2〜6のいずれか1項に記載の方法で銅製連続鋳造用鋳型を被覆することを特徴とする連続鋳造用鋳型への自溶性合金の被覆方法。 A method of coating a self-fluxing alloy on a continuous casting mold, wherein the copper continuous casting mold is coated by the method according to any one of claims 2 to 6. 請求項2〜6のいずれか1項に記載の方法で自溶性合金を被覆された銅板を用いて造られたことを特徴とする連続鋳造用鋳型。 A casting mold for continuous casting produced by using a copper plate coated with a self-fluxing alloy by the method according to any one of claims 2 to 6.
JP2004072364A 2004-03-15 2004-03-15 Coating method and apparatus for self-fluxing alloy, and continuous casting mold using the same, and manufacturing method for mold Withdrawn JP2005254317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004072364A JP2005254317A (en) 2004-03-15 2004-03-15 Coating method and apparatus for self-fluxing alloy, and continuous casting mold using the same, and manufacturing method for mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004072364A JP2005254317A (en) 2004-03-15 2004-03-15 Coating method and apparatus for self-fluxing alloy, and continuous casting mold using the same, and manufacturing method for mold

Publications (1)

Publication Number Publication Date
JP2005254317A true JP2005254317A (en) 2005-09-22

Family

ID=35080557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072364A Withdrawn JP2005254317A (en) 2004-03-15 2004-03-15 Coating method and apparatus for self-fluxing alloy, and continuous casting mold using the same, and manufacturing method for mold

Country Status (1)

Country Link
JP (1) JP2005254317A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2022596A1 (en) * 2007-07-25 2009-02-11 United Technologies Corporation Method for performing a manual laser deposition using a weld filler
JP2009525186A (en) * 2006-02-01 2009-07-09 ティッセンクルップ スチール アクチェンゲゼルシャフト Laser beam welding
WO2012128025A1 (en) * 2011-03-24 2012-09-27 日本碍子株式会社 Method for processing thin cu plate
JP2016539805A (en) * 2013-10-04 2016-12-22 シーメンス エナジー インコーポレイテッド Method of melting a surface with a laser whose beam size is adjusted by programming
JP2019098371A (en) * 2017-12-04 2019-06-24 株式会社野村鍍金 Die for continuous casting and method of manufacturing the same
JP2019122973A (en) * 2018-01-15 2019-07-25 株式会社野村鍍金 Mold for continuous casting and method for producing the same
JP2019130578A (en) * 2018-02-01 2019-08-08 株式会社野村鍍金 Mold for continuous casting and method for producing the same
WO2020225846A1 (en) * 2019-05-07 2020-11-12 株式会社野村鍍金 Continuous casting die and method for manufacturing continuous casting die
CN113652688A (en) * 2021-08-18 2021-11-16 江苏智远激光装备科技有限公司 Laser cladding nickel-based tungsten carbide process for copper alloy core glass mold
WO2021240696A1 (en) * 2020-05-27 2021-12-02 三島光産株式会社 Continuous casting mold and method for manufacturing continuous casting mold

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525186A (en) * 2006-02-01 2009-07-09 ティッセンクルップ スチール アクチェンゲゼルシャフト Laser beam welding
US7847208B2 (en) 2007-07-25 2010-12-07 United Technologies Corporation Methods for performing manual laser deposition
EP2022596A1 (en) * 2007-07-25 2009-02-11 United Technologies Corporation Method for performing a manual laser deposition using a weld filler
WO2012128025A1 (en) * 2011-03-24 2012-09-27 日本碍子株式会社 Method for processing thin cu plate
JP2012200752A (en) * 2011-03-24 2012-10-22 Ngk Insulators Ltd Method for processing thin cu sheet
US9676060B2 (en) 2011-03-24 2017-06-13 Ngk Insulators, Ltd. Method for treating Cu thin sheet
JP2016539805A (en) * 2013-10-04 2016-12-22 シーメンス エナジー インコーポレイテッド Method of melting a surface with a laser whose beam size is adjusted by programming
JP7013823B2 (en) 2017-12-04 2022-02-01 株式会社野村鍍金 Manufacturing method of mold for continuous casting
JP2019098371A (en) * 2017-12-04 2019-06-24 株式会社野村鍍金 Die for continuous casting and method of manufacturing the same
JP2019122973A (en) * 2018-01-15 2019-07-25 株式会社野村鍍金 Mold for continuous casting and method for producing the same
JP7010008B2 (en) 2018-01-15 2022-02-10 株式会社野村鍍金 Manufacturing method of mold for continuous casting
JP2019130578A (en) * 2018-02-01 2019-08-08 株式会社野村鍍金 Mold for continuous casting and method for producing the same
JP7020147B2 (en) 2018-02-01 2022-02-16 株式会社野村鍍金 Manufacturing method of mold for continuous casting
WO2020225846A1 (en) * 2019-05-07 2020-11-12 株式会社野村鍍金 Continuous casting die and method for manufacturing continuous casting die
WO2021240696A1 (en) * 2020-05-27 2021-12-02 三島光産株式会社 Continuous casting mold and method for manufacturing continuous casting mold
CN113652688A (en) * 2021-08-18 2021-11-16 江苏智远激光装备科技有限公司 Laser cladding nickel-based tungsten carbide process for copper alloy core glass mold
CN113652688B (en) * 2021-08-18 2023-09-29 江苏智远激光装备科技有限公司 Laser cladding nickel-based tungsten carbide technology for copper alloy core glass mold

Similar Documents

Publication Publication Date Title
KR101671679B1 (en) Brake disc and method for producing same
US8342386B2 (en) Braze materials and processes therefor
US20080226843A1 (en) Laser Cladding on Low Heat Resistant Substrates
TWI567238B (en) Hearth roll and method of manufacturing the same
WO2008004708A1 (en) Method for manufacturing cast iron member, cast iron member, and engine for vehicle
JP2005254317A (en) Coating method and apparatus for self-fluxing alloy, and continuous casting mold using the same, and manufacturing method for mold
WO2019156168A1 (en) Method for reclaiming tool material and tool material
US20110229665A1 (en) Thermal spray coating for track roller frame
JP2017154159A (en) Intermetallic compound alloy, metal member and manufacturing method of clad layer
JP2004149915A (en) Heat-shielding ceramic coating parts and manufacturing method thereof
WO2021240696A1 (en) Continuous casting mold and method for manufacturing continuous casting mold
JP4027153B2 (en) Coating method for continuous casting mold
JP5535280B2 (en) Method for strengthening welding tip and welding tip
JPWO2021240696A5 (en)
JP7105535B2 (en) Steam turbine blade manufacturing method
JP2020063478A (en) Method for laminating cured layer and method for manufacturing laminated molding
JP2021088728A (en) Corrugated roll and method for manufacturing the same
WO2019181085A1 (en) Corrugating roll and manufacturing method therefor
JP2021088726A (en) Corrugating roll and manufacturing method thereof
JP7287915B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED PRODUCT
JP2010221261A (en) Method for forming texture
JP2906012B2 (en) Surface hardening method for aluminum material or its alloy material
JP2023122005A (en) Method for manufacturing hard metal member, hard metal member, and raw material powder of the same
JP2007118012A (en) Vertical upward welding method
Gnanasekaran et al. Effect of Defocusing Distance on Microstructural, Hardness, and Tribological Behavior of Ni-Cr-Si-BC Powder Deposit on 316LN Austenitic Stainless Steel Substrate Using Laser Hard-Facing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605