JP2019098371A - Die for continuous casting and method of manufacturing the same - Google Patents

Die for continuous casting and method of manufacturing the same Download PDF

Info

Publication number
JP2019098371A
JP2019098371A JP2017232375A JP2017232375A JP2019098371A JP 2019098371 A JP2019098371 A JP 2019098371A JP 2017232375 A JP2017232375 A JP 2017232375A JP 2017232375 A JP2017232375 A JP 2017232375A JP 2019098371 A JP2019098371 A JP 2019098371A
Authority
JP
Japan
Prior art keywords
layer
copper
alloy
laser
build
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017232375A
Other languages
Japanese (ja)
Other versions
JP7013823B2 (en
Inventor
幸平 石田
Kohei Ishida
幸平 石田
利幸 中嶋
Toshiyuki Nakajima
利幸 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Plating Co Ltd
Original Assignee
Nomura Plating Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Plating Co Ltd filed Critical Nomura Plating Co Ltd
Priority to JP2017232375A priority Critical patent/JP7013823B2/en
Publication of JP2019098371A publication Critical patent/JP2019098371A/en
Application granted granted Critical
Publication of JP7013823B2 publication Critical patent/JP7013823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To prolong the service life of a die for continuous casting by coating an alloy known to be excellent in heat resistance, corrosion resistance, and abrasion resistance, with little change in its composition, and with good adhesion to a surface of a copper or copper alloy substrate.SOLUTION: A nickel-base alloy layer of 0.1-3 mm in thickness is formed by laser irradiation to melt and solidify heat resistant nickel-base alloy powders on a surface of a copper or copper alloy substrate while supplying the powders. By multilayering the nickel-base alloy, a die for continuous casting with a build-up coating layer having a thickness of 0.2-10 mm is prepared. The coating layer includes a first layer in which a part of copper or the copper alloy is dissolved in a build-up layer so that the content of copper is 10 wt.% or less, and a laser build-up multilayer formed on the first layer. In the laser build-up multilayer, an amount of the copper solid solution in the build-up layer is gradually reduced from the inside to the surface.SELECTED DRAWING: Figure 2

Description

本発明は、表面に耐熱、耐摩耗性に優れる被覆層を付与した連続鋳造用金型およびその製造方法に関するものである。   The present invention relates to a continuous casting mold provided with a coating layer excellent in heat resistance and abrasion resistance on the surface, and a method of manufacturing the same.

一般的に製鋼工程で使用される連続鋳造用金型用材料には、溶鋼からの成形過程における冷却を効果的に行えるよう、熱伝導性の観点から銅や銅合金を使用することが多い。しかし、銅や銅合金はニッケル基合金などより耐熱性、耐蝕性に劣り、また硬度が低く耐摩耗性にも劣ることから、銅や銅合金基体表面に耐蝕、耐熱層あるいは耐摩耗層を形成し、金型の長寿命化を図ることが知られている。   In general, copper and copper alloys are often used as a material for a continuous casting mold generally used in a steel making process from the viewpoint of thermal conductivity so that cooling in a forming process from molten steel can be effectively performed. However, copper and copper alloys are inferior in heat resistance and corrosion resistance to nickel-based alloys etc. and have low hardness and low abrasion resistance, so they form corrosion and heat-resistant layers or wear-resistant layers on copper or copper alloy substrate surfaces. It is known to extend the life of the mold.

連続鋳造用金型の銅または銅合金基体表面に、耐蝕性、耐熱性あるいは耐摩耗性の被覆層を形成する方法として、Ni、Co、Crおよびその合金などの電気めっき法や、自溶性合金を使用する溶射法が知られており、実際に製鋼工程で使用されている。   As a method of forming a corrosion-resistant, heat-resistant or wear-resistant coating layer on the surface of a copper or copper alloy substrate of a continuous casting mold, an electroplating method of Ni, Co, Cr and alloys thereof or a self-fluxing alloy Thermal spraying methods using are known and are in fact used in the steelmaking process.

たとえば、特許文献1では、連続鋳造用金型の銅または銅合金基体表面にNiまたはNiにFe、Mn、Coを含む合金からなるめっき層を形成し、また特許文献2では、Ni、Feを含有するCo基合金めっき層を形成し、それぞれ耐摩耗性を向上させることが提案されている。   For example, in Patent Document 1, a plated layer made of an alloy containing Fe, Mn, or Co in Ni or Ni is formed on the surface of a copper or copper alloy substrate of a continuous casting mold, and in Patent Document 2, Ni, Fe is used. It has been proposed to form a Co-based alloy plating layer to be contained to improve the wear resistance.

また、特許文献3では、連続鋳造用金型の銅または銅合金基体表面にCr、B、Si、C、Fe、Co、Mo、Cuを含有し、さらに耐摩耗性硬質セラミックスの微粉末を5〜50wt%含有したニッケル基自溶性合金を溶射することにより、耐熱性、耐摩耗性を改善することが提案されている。   Further, in Patent Document 3, Cr, B, Si, C, Fe, Co, Mo, and Cu are contained on the surface of a copper or copper alloy substrate of a continuous casting mold, and furthermore, a fine powder of wear-resistant hard ceramics 5 It has been proposed to improve heat resistance and wear resistance by thermal spraying a nickel base self-fluxing alloy containing 50 wt%.

特開昭54−46131号公報JP-A-54-46131 特開平8−197197号公報JP-A-8-191973 特開2002−86248号公報JP 2002-86248 A

従来のめっき法による被覆層は、例えば耐熱合金として金属学的手法により開発されたハステロイのような多種類の金属を含む合金を、最適組成にて被覆することは困難である。一方、溶射法では、溶射粉末からプラズマ熱により緻密な合金層を作るために、粒子表面を活性化することが必要であり、BやSiなどの活性化剤を含む自溶性合金を使用せざるを得ない。また、溶射法では、銅または銅合金基体との密着性についても課題があった。   The coating layer by the conventional plating method, for example, it is difficult to coat an alloy containing many kinds of metals such as hastelloy developed by a metallurgical method as a heat resistant alloy with an optimum composition. On the other hand, in the thermal spraying method, it is necessary to activate the particle surface in order to form a dense alloy layer from the thermal spray powder by plasma heat, and a self-soluble alloy containing an activator such as B or Si must be used. Do not get. Further, in the thermal spraying method, there is also a problem in the adhesion with the copper or copper alloy substrate.

本発明は、連続鋳造用金型のさらなる長寿命化を達成するために、耐熱性、耐蝕性、耐摩耗性に優れていることが既知の合金を、その組成をほとんど変化させることなく、且つ密着性良く、銅あるいは銅合金基体表面に被覆することを課題とする。   The present invention is an alloy which is known to be excellent in heat resistance, corrosion resistance and wear resistance in order to achieve longer life of a continuous casting mold, with little change in the composition, and The object is to coat the surface of a copper or copper alloy substrate with good adhesion.

請求項1の発明は、銅または銅合金基体表面に、ニッケル基耐熱合金粉末を供給しながらレーザーを照射し、粉末を溶融・固化して形成した厚み0.1〜3mmのニッケル基合金層を、厚み0.2〜10mmに多層肉盛りした被覆層を持つ連続鋳造用金型である。   According to the first aspect of the present invention, the surface of the copper or copper alloy substrate is irradiated with a laser while supplying a nickel-based heat-resistant alloy powder, and the powder is melted and solidified to form a nickel-based alloy layer having a thickness of 0.1 to 3 mm. , A continuous casting mold having a multilayer buildup covering layer with a thickness of 0.2 to 10 mm.

請求項2の発明は、請求項1の連続鋳造用金型において、前記被覆層は、銅の含有量が10wt%以下となるように銅または銅合金の一部が肉盛り層中に固溶した第1層と、第1層上に形成された多層のレーザー肉盛り層を備え、肉盛り層中の銅固溶量が内部から表面に傾斜的に減少する多層レーザー肉盛り層であることを特徴とする。   According to the invention of claim 2, in the mold for continuous casting according to claim 1, a part of copper or copper alloy is dissolved in the buildup layer such that the content of copper is 10 wt% or less in the covering layer. A multi-layered laser build-up layer having a first layer and a multi-layered laser build-up layer formed on the first layer, wherein the solid solution amount of copper in the build-up layer decreases from the inside to the surface It is characterized by

請求項3の発明は、請求項1または2の連続鋳造用金型において、ニッケル基耐熱合金粉末が、ハステロイC(53Ni19Mo17Cr)、インコネル(80Ni13Cr)、モネル(65Ni31Cu4(Fe+Mn))、NiCoCrAlY(47.9Ni23Co20Cr8.5Al0.6Y)、NiCr(50Ni50Cr)、Waspaloy(58Ni19Cr14Co4.5Mo3Ti)の一種からなることを特徴とする。   According to a third aspect of the invention, in the mold for continuous casting of the first or second aspect, the nickel-based heat-resistant alloy powder comprises Hastelloy C (53Ni19Mo17Cr), Inconel (80Ni13Cr), Monel (65Ni31Cu4 (Fe + Mn)), NiCoCrAlY (47. 9Ni23Co20Cr8.5Al0.6Y), NiCr (50Ni50Cr), and Waspaloy (58Ni19Cr14Co4.5Mo3Ti).

請求項4の発明は、請求項1〜3のいずれかに記載の連続鋳造用金型の製造方法であって、基体表面にニッケル基耐熱合金粉末を供給しながらレーザーを照射する際に、銅または銅合金基体を100〜400℃に加熱しながらレーザー肉盛りすることを特徴とする。   The invention according to claim 4 is the method for manufacturing a continuous casting mold according to any one of claims 1 to 3, wherein copper is irradiated when the laser is irradiated while supplying the nickel base heat-resistant alloy powder to the substrate surface. Alternatively, laser cladding is performed while heating the copper alloy substrate to 100 to 400 ° C.

本発明の連続鋳造用金型は、銅または銅合金基体表面に、ニッケル基耐熱合金粉末を供給しながらレーザーを照射し、粉末を溶融・固化して形成した厚み0.1〜3mmのニッケル基合金層を、厚み0.2〜10mmに多層肉盛りした被覆層を有しているから、肉盛りしたニッケル基合金層が合金本来の特性を発揮することができる。また、溶射法により表面保護皮膜を形成する場合に比べると、密着性よく表面保護皮膜を形成することができる利点がある。   The continuous casting mold according to the present invention is a nickel-based nickel base having a thickness of 0.1 to 3 mm formed by melting and solidifying a powder by irradiating a laser while supplying a nickel-based heat-resistant alloy powder to the surface of a copper or copper alloy substrate. Since the alloy layer is provided with a coating layer in which the thickness is 0.2 to 10 mm, the nickel-based alloy layer can exhibit the original characteristics of the alloy. Moreover, compared with the case where a surface protection film is formed by the thermal spraying method, there is an advantage that the surface protection film can be formed with good adhesion.

請求項2の発明によれば、第1層のニッケル基合金層に基体の銅または銅合金の一部が固溶するほど強固に密着性よく第1層を基体表面に接合することができ、なおかつ、この第1層上に形成された多層のレーザー肉盛り層を備え、肉盛り層中の銅固溶量が内部から表面に傾斜的に減少する多層レーザー肉盛り層としたので、表面のニッケル基合金層は基体の銅または銅合金の影響を殆ど受けないという効果がある。   According to the second aspect of the present invention, the first layer can be joined to the surface of the base with good adhesion as strongly as a part of copper or copper alloy of the base becomes solid solution in the nickel base alloy layer of the first layer. In addition, a multilayer laser build-up layer is formed on the first layer, and a multilayer laser build-up layer is formed in which the solid solution amount of copper in the build-up layer is gradually decreased from the inside to the surface. The nickel base alloy layer has an effect that it is hardly influenced by the copper or copper alloy of the substrate.

請求項3の発明によれば、耐熱性、耐蝕性、耐摩耗性に優れていることが既知の合金を、その組成をほとんど変化させることなく、且つ密着性良く、銅あるいは銅合金基体表面に被覆することができるから、合金めっき法や溶射法により表面保護皮膜を形成した連続鋳造用金型に比べると、優れた耐熱性、耐蝕性、耐摩耗性を発揮することができる。   According to the invention of claim 3, an alloy which is known to be excellent in heat resistance, corrosion resistance and wear resistance can be attached on the surface of a copper or copper alloy substrate with almost no change in its composition and good adhesion. Since it can be coated, superior heat resistance, corrosion resistance and wear resistance can be exhibited as compared to a continuous casting mold in which a surface protective film is formed by an alloy plating method or a thermal spraying method.

請求項4の発明によれば、基体表面にニッケル基耐熱合金粉末を供給しながらレーザーを照射する際に、高熱伝導性の銅または銅合金基体を100〜400℃に加熱しながらレーザー肉盛りするので、レーザーエネルギーが合金粉末の溶融目的以外に散逸することを防ぐことができる。   According to the invention of claim 4, when irradiating the laser while supplying the nickel base heat-resistant alloy powder to the surface of the substrate, the laser cladding is performed while heating the high thermal conductivity copper or copper alloy substrate to 100 to 400 ° C. Therefore, it is possible to prevent the laser energy from being dissipated except for the purpose of melting the alloy powder.

本発明の実施例1の断面構造を比較例1及び2の断面構造と対比して示す説明図である。FIG. 6 is an explanatory view showing a cross-sectional structure of the first embodiment of the present invention in contrast to the cross-sectional structures of comparative examples 1 and 2; 本発明の実施例2の肉盛り層の厚さと、皮膜中のCu含有率及び皮膜硬さの関係を示す図である。It is a figure which shows the thickness of the buildup layer of Example 2 of this invention, and the relationship of Cu content in a film, and film hardness.

連続鋳造用金型では、型に溶鋼を流し込むと同時に、背面を冷却水で冷やした金型表面で、溶鋼を抜熱し凝固させることにより連続的に鋼を鋳込み成型していく。金型上部のメニスカス部付近は、高い耐熱性と耐蝕性が求められる。同時に、冷却水との温度差から最も強い熱応力を受け、熱クラックも発生しやすい。また、溶鋼が冷却され凝固した状態の金型下部では、モールドパウダーに含まれるガラス質のセラミックパウダーの擦り摩耗や、溶鋼が凝固し体積収縮した後の密度上昇した鋼自身の重量増により金型表面を強く擦ることによる金型摩耗から寿命に至ることもある。さらに、溶鋼中の硫黄成分による化学的腐食や金型通過後の鋼冷却用吹付け水の蒸気による金型下部の腐食摩耗にも対策が必要である。   In a continuous casting mold, while pouring molten steel into a mold, steel is continuously cast and formed by removing heat and solidifying molten steel on the surface of the mold whose back surface is cooled with cooling water. High heat resistance and corrosion resistance are required in the vicinity of the meniscus portion at the top of the mold. At the same time, it receives the strongest thermal stress due to the temperature difference with the cooling water, and a thermal crack is likely to occur. In the lower part of the mold where the molten steel is cooled and solidified, the mold is worn away by the wear of the vitreous ceramic powder contained in the mold powder and the weight increase of the steel itself after the molten steel solidifies and shrinks in volume. It can also lead to life from mold wear due to strong rubbing of the surface. Further, it is also necessary to take measures against chemical corrosion due to sulfur components in the molten steel and corrosion and wear of the lower part of the mold due to steam of the cooling water for cooling the steel after passing through the mold.

このように、連続鋳造用金型の寿命要因である熱負荷による熱衝撃、こすり摩耗と化学的腐食などに対して、優れた耐性を発揮する金型が必要である。金型基体には、熱伝導性に優れ冷却効果の高い銅または銅合金が使用されるが、耐熱、耐蝕、耐摩耗性と強度を併せ持つ基体保護層が不可欠であり、銅または銅合金基体表面に、金属学的手法により開発され高温での耐蝕性や耐摩耗性に優れるハステロイやインコネルなど既知のニッケル基合金層を形成することにより課題解決ができると考えられ、本研究のレーザー肉盛り法により実現した。   Thus, there is a need for a mold that exhibits excellent resistance to thermal shock, abrasion and chemical corrosion due to thermal load, which is a life factor of continuous casting molds. For mold substrates, copper or copper alloy with excellent thermal conductivity and high cooling effect is used, but a substrate protective layer having heat resistance, corrosion resistance, wear resistance and strength is indispensable, and copper or copper alloy substrate surface It is thought that the problem can be solved by forming a known nickel base alloy layer such as Hastelloy or Inconel, which is developed by metallurgical methods and is excellent in corrosion resistance and wear resistance at high temperature, and the laser deposition method of this research Realized by

肉盛りしたニッケル基合金層が合金本来の特性を発揮するためには、合金層内に空孔などの欠陥がなく、合金本来の密度に到達していることが必要である。合金層が空孔のない真密度を得るためには、肉盛りに寄与する合金部を一度完全に溶融することが求められる。合金部を完全溶融するためのエネルギーは外部から供給するが、熱伝導性の良い銅または銅合金基体などから熱伝導により逃げていくことから、良質な合金層を得るために、エネルギーの供給量、金属粉末の溶融熱量、熱拡散量のすべてを制御できることが重要である。   In order for the built-up nickel-based alloy layer to exhibit the original characteristics of the alloy, it is necessary that there is no defect such as a void in the alloy layer and the density of the alloy has reached its original density. In order to obtain a void-free true density of the alloy layer, it is required that the alloy portion contributing to the buildup be completely melted once. Energy is supplied from the outside for complete melting of the alloy part, but it escapes by heat conduction from a copper or copper alloy substrate with good thermal conductivity, so the amount of energy supplied to obtain a good alloy layer It is important to be able to control all of the heat of fusion and the amount of thermal diffusion of the metal powder.

本発明ではレーザーエネルギーを、供給する合金粉末の溶融のために効率的に使用するために、合金粉末が溶融し形成する溶融プールのサイズと温度を管理し、レーザーエネルギーを制御する。すなわち、銅または銅合金基体表面に、ニッケル基耐熱合金粉末を供給しながらレーザーを照射し、粉末の溶融プールを形成させ、それが固化して形成される厚み0.1〜3mmのニッケル基合金レーザー肉盛り層を被覆した後、同様なレーザー肉盛り法により厚み0.2〜10mmに多層肉盛りした被覆層を形成する。これにより、優れた耐熱性、耐蝕性、耐摩耗性の合金組成を有する被覆層を持つ連続鋳造用金型を作製可能とした。   In the present invention, in order to use laser energy efficiently for melting of the supplied alloy powder, the size and temperature of the molten pool which the alloy powder melts and forms are controlled, and the laser energy is controlled. That is, the surface of a copper or copper alloy substrate is irradiated with a laser while supplying a nickel-based heat-resistant alloy powder to form a molten pool of the powder, which is solidified to form a 0.1-3 mm thick nickel-based alloy. After coating the laser buildup layer, a multilayer buildup coating layer is formed to a thickness of 0.2 to 10 mm by the same laser buildup method. This makes it possible to produce a continuous casting mold having a coating layer having an alloy composition having excellent heat resistance, corrosion resistance, and wear resistance.

金属肉盛り法には、溶接棒を使う方法や合金板を溶解していく方法があるが、これらの方法は粉末を使う方法に比較し、溶接棒や未溶解合金板から熱伝導により逃げていく熱エネルギーが大きいため、熱量の制御が困難になるだけでなく、過大なエネルギーを外部より供給する必要がある。このため、銅または銅合金基体にまで大きな影響を与え、同時に大きな熱ひずみが発生する要因となっている。   The metal buildup method includes a method of using a welding rod and a method of melting an alloy sheet. However, these methods are compared to the method of using a powder, and escape from the welding rod or unmelted alloy sheet by heat conduction. Not only does it become difficult to control the amount of heat due to the large amount of thermal energy, it is also necessary to supply excessive energy from the outside. For this reason, it has a great influence on the copper or copper alloy substrate, and at the same time, causes a large thermal strain to occur.

これに対して、本発明では、レーザー照射ノズルからレーザー光と共に、使用する合金粉末を供給しながら、基体表面にノズルを走査させレーザー肉盛りするので、レーザーエネルギーを、供給する合金粉末の溶融目的のみに使用でき、最も効率的である。   On the other hand, in the present invention, while supplying the alloy powder to be used together with the laser beam from the laser irradiation nozzle, the nozzle is scanned on the substrate surface and the laser is piled up, so the laser energy is to be supplied. It can only be used and is the most efficient.

また、合金肉盛り層が銅または銅合金基体と完全に密着し、連続鋳造用金型が使用される過酷な熱衝撃環境下でも十分な密着強度を有していることがさらに重要である。本発明では、主にレーザーエネルギーを、供給する合金粉末の溶融に使用し、同時に粉末の溶融により形成される溶融プールのサイズと温度を管理しながら、レーザーエネルギーを制御することが可能である。   It is further important that the alloy build-up layer be in intimate contact with the copper or copper alloy substrate and have sufficient adhesion strength under severe thermal shock environments in which a continuous casting mold is used. In the present invention, it is possible to control the laser energy while mainly using the laser energy to melt the supplied alloy powder while at the same time managing the size and temperature of the molten pool formed by the melting of the powder.

本発明によれば、ニッケル基耐熱合金の供給量と照射レーザーエネルギーを制御することにより、銅または銅合金基体を過度に溶解することなく、表面の最表部を合金溶融プールに固溶させることにより、界面部に欠陥が無く、下地基体と密着性に優れる強固な肉盛り層を形成することが可能となった。また、下部基体からの固溶量も低く抑えることが可能となり、合金肉盛り層の基体固溶成分による組成変化も10wt%以下と低くできた。   According to the present invention, by controlling the supply amount of the nickel-based heat-resistant alloy and the irradiation laser energy, the outermost surface of the surface is dissolved in the molten pool without excessively dissolving the copper or copper alloy substrate. As a result, it has become possible to form a strong buildup layer which has no defects at the interface and is excellent in adhesion to the base substrate. In addition, the amount of solid solution from the lower substrate can be suppressed to a low level, and the composition change by the solid solution component of the base of the alloy buildup layer can be as low as 10 wt% or less.

レーザー肉盛り時の基体からの熱伝導によるエネルギーの散逸を少なくするために、銅または銅合金基体を100〜400℃に加熱しながらレーザー肉盛りを実施する方法は、エネルギー制御を容易にし、肉盛り層への基体固溶成分を少なくでき、密着性に優れ、耐熱合金本来の特性を発揮できることから有効である。基体加熱温度が400℃より高温になると、金型の銅または銅合金基体の強度低下が発生し、連鋳モールド金型としての機能が大きく低下し、利用できなくなる場合がある。一方、100℃以下でもエネルギーの散逸防止に効果は認められるが、エネルギー制御の容易さがそれほど向上しなかった。   The method of performing laser deposition while heating the copper or copper alloy substrate to 100 to 400 ° C. facilitates energy control and reduces energy dissipation due to heat conduction from the substrate during laser deposition. This is effective because the solid solution component to the base layer can be reduced, the adhesion is excellent, and the characteristics of the heat-resistant alloy can be exhibited. When the substrate heating temperature is higher than 400 ° C., the strength of the copper or copper alloy substrate of the mold is reduced, and the function as a continuous casting mold may be greatly reduced and it may become unusable. On the other hand, even at 100 ° C. or less, the effect of preventing energy dissipation is observed, but the ease of energy control did not improve so much.

現在、レーザー肉盛り法で使用できるレーザーの波長は900〜1200nmで、ニッケル基合金では、光を効率的に吸収し、レーザー肉盛りが比較的容易にできる。一方、銅または銅合金では、この波長の光を吸収しないことから、レーザー光を銅または銅基体の加熱に使用できない。銅または銅合金が吸収できる青色半導体レーザーや高調波レーザーが開発されているが、現状では量産に使用できるようなエネルギーを出すことができていない。将来、高出力が可能となるであろう近未来には、基体加熱の必要性は薄れ、また、エネルギー制御がより容易になると予想される。   At present, the wavelength of a laser that can be used in the laser deposition method is 900 to 1200 nm, and a nickel-based alloy can efficiently absorb light and can make laser deposition relatively easy. On the other hand, with copper or copper alloys, laser light can not be used to heat a copper or copper substrate because it does not absorb light of this wavelength. Blue semiconductor lasers and harmonic lasers that can absorb copper or copper alloys have been developed, but at present, they can not release energy that can be used for mass production. In the near future where high power will be possible in the future, the need for substrate heating will diminish and it is expected that energy control will be easier.

金型基体の主成分である銅の融点は、耐熱性ニッケル基合金の融点より300℃以上低く、ニッケル基合金より低温で溶融する。その結果、銅が固溶したニッケル基合金の耐熱性が損ねられる結果となった。肉盛り層を多層重ね合わせる際には、下層の表面部分を溶解し上層に固溶させ、上下層の密着強度を高度に維持する必要がある。この場合、下層に固溶している銅成分が、上層にも固溶するが、その銅組成は下層の1/10以下になる。本発明のレーザー肉盛りを3層以上繰り返した場合、銅の固溶量は段階的・傾斜的に減少し、3層目以上の表面では、銅の含有量を実質的にゼロに近づけることができ、使用したニッケル基合金粉末と同じ組成の肉盛り層を形成することができた。このことにより、金属学的手法により開発され高温での耐蝕性や耐摩耗性に優れるハステロイやインコネルなど既知のニッケル基合金肉盛り層を得ることができた。   The melting point of copper, which is the main component of the mold base, is 300 ° C. or more lower than the melting point of the heat-resistant nickel-based alloy, and melts at a lower temperature than the nickel-based alloy. As a result, the heat resistance of the nickel base alloy in which copper is solid-solved is lost. When laminating the build-up layer in multiple layers, it is necessary to dissolve the surface portion of the lower layer and dissolve it in the upper layer to maintain the adhesion strength of the upper and lower layers at a high level. In this case, although the copper component in solid solution in the lower layer is also in solid solution in the upper layer, the copper composition becomes 1/10 or less of that of the lower layer. When the laser cladding of the present invention is repeated three or more layers, the solid solution amount of copper decreases stepwise and gradually, and on the surface of the third or more layer, the copper content may be substantially brought close to zero. It was possible to form a buildup layer of the same composition as the used nickel base alloy powder. As a result, it has been possible to obtain known nickel base alloy buildup layers such as Hastelloy and Inconel, which are developed by metallurgical methods and are excellent in corrosion resistance and wear resistance at high temperatures.

本発明のニッケル基耐熱合金粉末を供給しながらレーザーを照射し、粉末の溶融プールを形成させ、それを固化して肉盛り層を形成する方法は、不活性ガス雰囲気中で行う。具体的には、Arガスと一緒に合金粉末を肉盛り点に供給する。なお、肉盛り層に欠陥が生じる場合は、Arガスによるアフター・シールを行い肉盛り層の酸化を抑制し、濡れ性を改善する。合金粉末粒度は、溶融プールを形成するレーザーエネルギーや肉盛り厚みに影響し、粒度は20〜150μmが好ましい。粒度が150μmより大きくなると粉末溶融のために大きなエネルギーが必要になり、溶融プールのサイズや温度の制御精度が悪くなり、肉盛り層の厚みも厚くなってしまう。粒度が小さいと肉盛り精度が向上することから精密肉盛りには適しているが、20μm以下になると、粉末が軽量過ぎて粉末の飛散が過大になり、肉盛り層への変換効率が低下するだけでなく、粉塵による作業環境の悪化が進む。このことから微細すぎる粉末の使用は好ましくない。   A laser is irradiated while supplying the nickel base heat-resistant alloy powder of the present invention to form a molten pool of the powder, and solidifying it to form a built-up layer is performed in an inert gas atmosphere. Specifically, the alloy powder is supplied to the buildup point together with Ar gas. In the case where a defect occurs in the buildup layer, after-seal with Ar gas is performed to suppress the oxidation of the buildup layer and improve the wettability. The alloy powder particle size affects the laser energy and the buildup thickness that form the molten pool, and the particle size is preferably 20 to 150 μm. When the particle size is larger than 150 μm, a large amount of energy is required to melt the powder, the control accuracy of the size and temperature of the melt pool is deteriorated, and the thickness of the overlaying layer is also increased. If the particle size is small, it is suitable for precision overlaying because the overlay accuracy is improved, but if it is 20 μm or less, the powder is too light and scattering of the powder becomes excessive, and the conversion efficiency to the overlaying layer decreases. Not only does the deterioration of the working environment by dust progress. From this point of view, it is not preferable to use too fine powder.

レーザー肉盛りの厚みは0.1〜3mmが好ましい。厚みを0.1mmより薄くする場合には、粉末粒度も小さくする必要があり、微粉末の使用は作業環境と収率の点から好ましくない。肉盛り層を3mmより厚くするためには、合金溶融プールのサイズも大きくなり、大きなレーザーエネルギーが必要になる。エネルギーが過大になると基体あるいは下地層の固溶量制御がより困難になり、基体や下地層の固溶量が大きくなり、肉盛り層組成が本来の耐熱合金組成から大きくずれる結果となる。一方、エネルギー制御の困難さから、エネルギーが不足する場合には、界面や膜中に欠陥が発生するなど付着強度が弱いあるいは脆い肉盛り層となってしまう。   The thickness of the laser overlay is preferably 0.1 to 3 mm. When the thickness is less than 0.1 mm, it is necessary to reduce the particle size of the powder, and the use of the fine powder is not preferable in terms of the working environment and the yield. In order to make the buildup layer thicker than 3 mm, the size of the alloy melt pool also increases, and a large laser energy is required. When the energy becomes excessive, it becomes more difficult to control the solid solution amount of the substrate or the base layer, the solid solution amount of the substrate or the base layer becomes large, and the buildup layer composition largely deviates from the original heat resistant alloy composition. On the other hand, due to the difficulty of energy control, when energy is insufficient, a defect may occur in the interface or film, resulting in a weak or brittle overlaying layer.

レーザー肉盛り法において、密着性が良く緻密な肉盛り層を形成するために、基体や下地層から10wt%以下の固溶が必要になり、供給粉末本来の合金組成からずれが生じる。しかしレーザー肉盛り層を多層積み重ねることにより、基体からの銅固溶量が減少し合金本来の組成を持つ肉盛り層を得ることができる。一層の厚みは0.1〜3mmが好適であり、3層以上の積層にするために合計の厚み0.3〜10mmが必要になる。合計厚みを10mm以上にすることも可能であるが、被覆層以外の原因で生じる金型全体の寿命を考慮すると10mm以上の厚みは必要でないと判断された。なお、積層された肉盛り層は、金型内面下部のほか金型内面上部のメニスカス部付近にも形成しても良い。   In the laser build-up method, in order to form a dense build-up layer with good adhesion, 10 wt% or less of solid solution is required from the base body or the base layer, and a deviation occurs from the original alloy composition of the supplied powder. However, by stacking the laser build-up layers in multiple layers, the amount of copper solid solution from the substrate is reduced, and a build-up layer having the composition inherent to the alloy can be obtained. The thickness of one layer is preferably 0.1 to 3 mm, and a total thickness of 0.3 to 10 mm is required to form three or more layers. Although the total thickness may be 10 mm or more, it was determined that the thickness of 10 mm or more is not necessary in consideration of the lifetime of the entire mold caused by causes other than the covering layer. In addition to the lower part of the inner surface of the mold, the piled-up layer may be formed in the vicinity of the meniscus portion at the upper part of the inner surface of the mold.

ニッケル基合金肉盛り層は、耐熱、耐蝕性に優れる合金組成のものを選択し、これらの合金粉末を供給しながらレーザー照射する方法で作製した。耐熱、耐蝕性に優れるニッケル基合金として、ハステロイC(53Ni19Mo17Cr)、インコネル(80Ni13Cr)、モネル(65Ni31Cu4(Fe+Mn))、NiCoCrAlY(47.9Ni23Co20Cr8.5Al0.6Y)、NiCr(50Ni50Cr)、Waspaloy(58Ni19Cr14Co4.5Mo3Ti)の一種を選択し、いずれも市販されている合金粉末を使用した。なお、使用できる合金粉末は、これらに限定されるものではなく、重量%で、Ni:30%以上93%以下、Co:1%以上、Cr:8%以上、Mo:1%以上、W:0.5%以上、Al:0.2%以上、Ti:0.4〜6%、Nb:0.4〜6%、Ta:0.1〜4%、Y:0.1%以上の一種以上、残部、不可避的不純物からなるもの、などが使用できる。   The nickel base alloy buildup layer was prepared by a method of selecting an alloy composition having excellent heat resistance and corrosion resistance, and supplying a laser beam of these alloys. Hastelloy C (53Ni19Mo17Cr), Inconel (80Ni13Cr), Monel (65Ni31Cu4 (Fe + Mn)), NiCoCrAlY (47.9Ni23Co20Cr8.5Al0.6Y), NiCr (50Ni50Cr), Waspaloy (58Ni19Cr14Co4. 4) as nickel base alloys excellent in heat resistance and corrosion resistance. One type of 5Mo3Ti) was selected, and all commercially available alloy powders were used. In addition, the alloy powder which can be used is not limited to these, Ni: 30% or more and 93% or less, Co: 1% or more, Cr: 8% or more, Mo: 1% or more, W: 0.5% or more, Al: 0.2% or more, Ti: 0.4 to 6%, Nb: 0.4 to 6%, Ta: 0.1 to 4%, Y: 0.1% or more As mentioned above, the remainder, the thing which consists of unavoidable impurities, etc. can be used.

肉盛り層が厚くなると、肉盛り層表面の粗さが悪くなる。このため、レーザー肉盛り層の形成後、その表面を研磨加工し、表面粗さをRy10μm以下に平坦化することにより、肉盛り層の異常摩耗発生を抑制することができる。
以下、本発明の試験結果に基づき、本発明を詳しく説明する。
The thicker the overlay, the worse the surface roughness of the overlay. For this reason, after the formation of the laser build-up layer, the surface is polished and the surface roughness is flattened to Ry 10 μm or less, whereby the occurrence of abnormal wear of the build-up layer can be suppressed.
Hereinafter, the present invention will be described in detail based on the test results of the present invention.

モールド短辺(サイズ230mm×900mm×50mm)の表面に、粒度45〜125μmのニッケル基合金粉末を、粉末供給速度8g/min、ノズルスキャン速度600mm/min、波長950〜1070nmの半導体レーザーを照射し、ニッケル基合金肉盛り層を0.5mm、形成した。肉盛り層に固溶するCu含有量をEPMAにより分析した結果を表1に示す。レーザーエネルギーの違いにより、表1に示すように肉盛り層へのCu固溶量が変化する。レーザーエネルギーが大きすぎると、比較例1のようにCuの固溶量が10wt%を超えて肉盛り層の耐熱性が低下する。一方、レーザーエネルギーが小さいと、比較例2のように界面や肉盛り層内に欠陥や異常組織が観察された。従って、Cuの固溶量が10wt%以下となる本発明例が優れている。なお、レーザー肉盛り条件は、基体金属の種類や金型サイズや形状によって、熱伝導による熱拡散速度が異なることから、最適肉盛り条件も異なるが、Cuの固溶量が10wt%以下となるように条件を選定すればよい。   On the surface of the mold short side (size 230 mm x 900 mm x 50 mm), a nickel-based alloy powder with a particle size of 45 to 125 μm is irradiated with a semiconductor laser with a powder feed rate of 8 g / min, a nozzle scan rate of 600 mm / min, and a wavelength of 950 to 1070 nm. , And a nickel base alloy buildup layer of 0.5 mm was formed. Table 1 shows the results of analysis of the Cu content dissolved in the buildup layer by EPMA. Due to the difference in laser energy, as shown in Table 1, the amount of dissolved Cu in the buildup layer changes. If the laser energy is too large, as in Comparative Example 1, the amount of solid solution of Cu exceeds 10 wt%, and the heat resistance of the overlaying layer is lowered. On the other hand, when the laser energy was small, as in Comparative Example 2, defects and abnormal tissue were observed in the interface and in the overlaying layer. Therefore, the inventive example in which the solid solution amount of Cu is 10 wt% or less is excellent. The laser deposition conditions differ depending on the type of substrate metal and the die size and shape, and the thermal diffusion rate due to thermal conduction differs, so the optimum deposition conditions also differ, but the amount of dissolved Cu becomes 10 wt% or less The conditions should be selected as follows.

図1は本発明例の断面構造を比較例1及び2の断面構造と対比して示す説明図である。図中、1は銅素地、2は肉盛り層、3はクラック、4はポアである。同図(a)は本発明例の断面構造であり、素地との界面は小さな波打ち状態が見られ、界面での溶融反応が見られる。皮膜内部での欠陥は見られない。同図(b)は比較例1の断面構造であり、素材との界面は大きく波打ち、素地界面での熱影響部が素地部にも大きく見られる。また界面近傍の皮膜内部にはクラックが発生している。同図(c)は比較例2の断面構造であり、素地との界面は直線的で、界面の溶融反応は見られない。界面近傍の皮膜内に多数のポア状の欠陥が発生している。   FIG. 1 is an explanatory view showing a cross-sectional structure of an example of the present invention in contrast to the cross-sectional structures of Comparative Examples 1 and 2. FIG. In the figure, 1 is a copper base, 2 is a buildup layer, 3 is a crack, and 4 is a pore. The figure (a) is a cross-section of the example of the present invention, and a small waved state is seen at the interface with the substrate, and a melting reaction at the interface is seen. There are no defects found inside the film. The figure (b) is a cross-sectional structure of the comparative example 1, and the interface with a raw material is greatly wavy, and the heat affected zone in a base interface is also seen large also in a base part. In addition, a crack is generated inside the film in the vicinity of the interface. The figure (c) is a cross-section of comparative example 2, an interface with a substrate is linear, and melt reaction of an interface is not seen. A large number of pore-like defects occur in the film near the interface.

1層目のレーザー肉盛り層は実施例1の条件で、2層目以降のレーザー肉盛り層は、粉末供給速度24g/min、ノズルスキャン速度1000mm/min、レーザーエネルギー2800Wにする以外は、実施例1の条件で、4層のレーザー肉盛り層を、各層1.25mm×4層の合計5mmで作製した。各層のCu固溶量をEPMAで測定し、その結果を表2及び図2に示す。肉盛り層を積み重ねるにつれ、含有Cu量は低下し、3層目ではCu含有量は、約0.5wt%であり、4層目ではCu含有量は、0.1wt%以下となり、本来の合金組成層を得ることができた。   The first laser build-up layer is performed under the conditions of Example 1, and the second and subsequent laser build-up layers are carried out except that the powder supply rate is 24 g / min, the nozzle scan rate is 1000 mm / min, and the laser energy is 2800 W Under the conditions of Example 1, four laser build-up layers were produced with a total of 5 mm of 1.25 mm × 4 layers. The amount of Cu solid solution in each layer was measured by EPMA, and the results are shown in Table 2 and FIG. As the buildup layers are stacked, the Cu content decreases, the Cu content is about 0.5 wt% in the third layer, and the Cu content is less than 0.1 wt% in the fourth layer, so the original alloy A composition layer could be obtained.

図2は本発明の実施例2の肉盛り層の厚さ(mm)と、皮膜中のCu含有率(wt%)及び皮膜硬さ(HV)の関係を示す図である。図中、◆は皮膜中のCu含有率(wt%)、■は皮膜硬さ(HV)である。図中のCu含有率の推移を見れば、肉盛り層中のCu固溶量が内部から表面に傾斜的に減少していることが分かる。また、皮膜硬さの推移を見れば、表面のニッケル基合金層は基体からのCuの影響を殆ど受けず、合金本来の特性(耐摩耗性等)を発揮することが分かる。   FIG. 2 is a view showing the relationship between the thickness (mm) of the build-up layer of Example 2 of the present invention, the Cu content (wt%) in the film, and the film hardness (HV). In the figure, ◆ indicates the Cu content (wt%) in the film, and ■ indicates the film hardness (HV). From the transition of the Cu content in the figure, it can be seen that the amount of dissolved Cu in the buildup layer decreases gradually from the inside to the surface. In addition, it can be seen from the transition of the coating hardness that the nickel-based alloy layer on the surface is hardly affected by Cu from the base, and exhibits the characteristics (abrasion resistance and the like) inherent to the alloy.

Cu金型基体(サイズ200mm×200mm×40mm)を高周波加熱法により、350℃に加熱した状態で、レーザーエネルギーを2000Wとする条件以外は実施例1の条件でレーザー肉盛りを実施した。基体を加熱することによりレーザーエネルギーを小さくしても欠陥が無く、Cuが2.2wt%と少量固溶した緻密なレーザー肉盛り層を形成することができた。   While the Cu mold substrate (size: 200 mm × 200 mm × 40 mm) was heated to 350 ° C. by a high frequency heating method, laser cladding was carried out under the conditions of Example 1 except that the laser energy was 2000 W. By heating the substrate, no defects were found even if the laser energy was reduced, and it was possible to form a dense laser build-up layer in which a small amount of Cu of 2.2 wt% was solid-solved.

本発明による連続鋳造用金型は、溶鋼からの製鋼用金型として、優れた耐熱性、耐蝕性、耐摩耗性を有しているが、その金型の高温における長寿命性や高い精度維持性は、高温や腐食性環境における高品質の成形品製造用途にも活用できる。   The mold for continuous casting according to the present invention has excellent heat resistance, corrosion resistance, and wear resistance as a mold for steel making from molten steel, but the long life and high accuracy maintenance at high temperature of the mold are maintained. Properties can also be used in high-quality molded article manufacturing applications in high temperature and corrosive environments.

Claims (4)

銅または銅合金基体表面に、ニッケル基耐熱合金粉末を供給しながらレーザーを照射し、粉末を溶融・固化して形成した厚み0.1〜3mmのニッケル基合金層を、厚み0.2〜10mmに多層肉盛りした被覆層を持つ連続鋳造用金型。 The surface of a copper or copper alloy substrate is irradiated with a laser while supplying a nickel base heat resistant alloy powder, and the powder is melted and solidified to form a nickel base alloy layer having a thickness of 0.1 to 3 mm, a thickness of 0.2 to 10 mm Continuous casting mold with multi-layered cladding layer. 前記被覆層は、銅の含有量が10wt%以下となるように銅または銅合金の一部が肉盛り層中に固溶した第1層と、第1層上に形成された多層のレーザー肉盛り層を備え、肉盛り層中の銅固溶量が内部から表面に傾斜的に減少する多層レーザー肉盛り層であることを特徴とする請求項1の連続鋳造用金型。 The coating layer is a multi-layered laser beam formed on the first layer in which the copper or copper alloy is partially dissolved in the buildup layer so that the copper content is 10 wt% or less The continuous casting mold according to claim 1, characterized in that it is a multi-layered laser build-up layer provided with a build-up layer, and the amount of solid solution of copper in the build-up layer gradually decreases from the inside to the surface. ニッケル基耐熱合金粉末が、ハステロイC(53Ni19Mo17Cr)、インコネル(80Ni13Cr)、モネル(65Ni31Cu4(Fe+Mn))、NiCoCrAlY(47.9Ni23Co20Cr8.5Al0.6Y)、NiCr(50Ni50Cr)、Waspaloy(58Ni19Cr14Co4.5Mo3Ti)の一種からなることを特徴とする請求項1または2の連続鋳造用金型。 Nickel-based heat-resistant alloy powder is selected from Hastelloy C (53Ni19Mo17Cr), Inconel (80Ni13Cr), Monel (65Ni31Cu4 (Fe + Mn)), NiCoCrAlY (47.9Ni23Co20Cr8.5Al0.6Y), NiCr (50Ni50Cr), Waspaloy (58Ni19Cr14Co4.5Mo3Ti) The continuous casting mold according to claim 1 or 2, characterized in that: 基体表面にニッケル基耐熱合金粉末を供給しながらレーザーを照射する際に、銅または銅合金基体を100〜400℃に加熱しながらレーザー肉盛りすることを特徴とする請求項1〜3のいずれかに記載の連続鋳造用金型の製造方法。 The laser cladding is performed while heating the copper or copper alloy substrate to 100 to 400 ° C. when irradiating the laser while supplying the nickel base heat-resistant alloy powder to the substrate surface. The manufacturing method of the continuous casting mold as described in 4.
JP2017232375A 2017-12-04 2017-12-04 Manufacturing method of mold for continuous casting Active JP7013823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017232375A JP7013823B2 (en) 2017-12-04 2017-12-04 Manufacturing method of mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017232375A JP7013823B2 (en) 2017-12-04 2017-12-04 Manufacturing method of mold for continuous casting

Publications (2)

Publication Number Publication Date
JP2019098371A true JP2019098371A (en) 2019-06-24
JP7013823B2 JP7013823B2 (en) 2022-02-01

Family

ID=66975152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017232375A Active JP7013823B2 (en) 2017-12-04 2017-12-04 Manufacturing method of mold for continuous casting

Country Status (1)

Country Link
JP (1) JP7013823B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021240696A1 (en) * 2020-05-27 2021-12-02 三島光産株式会社 Continuous casting mold and method for manufacturing continuous casting mold
CN114585461A (en) * 2019-10-24 2022-06-03 杰富意钢铁株式会社 Method for manufacturing continuous casting mold
JP7373540B2 (en) 2020-11-24 2023-11-02 コリア アトミック エナジー リサーチ インスティチュート Metal coating method, metal member including coating layer formed thereby, and fuel cell separator plate
WO2024068214A1 (en) * 2022-09-30 2024-04-04 Dmg Mori Ultrasonic Lasertec Gmbh Method for additively manufacturing a component having a core made from pure copper or a copper alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285844A (en) * 1996-04-23 1997-11-04 Nippon Steel Corp Mold for continuous casting and thermal spray method onto the same
JP2005254317A (en) * 2004-03-15 2005-09-22 Nippon Steel Corp Coating method and apparatus for self-fluxing alloy, and continuous casting mold using the same, and manufacturing method for mold
JP2011052289A (en) * 2009-09-03 2011-03-17 Nakashima Medical Co Ltd Method for producing implant made of titanium alloy
JP2016516580A (en) * 2013-01-31 2016-06-09 シーメンス エナジー インコーポレイテッド Method of remelting and repairing superalloy by laser using flux

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285844A (en) * 1996-04-23 1997-11-04 Nippon Steel Corp Mold for continuous casting and thermal spray method onto the same
JP2005254317A (en) * 2004-03-15 2005-09-22 Nippon Steel Corp Coating method and apparatus for self-fluxing alloy, and continuous casting mold using the same, and manufacturing method for mold
JP2011052289A (en) * 2009-09-03 2011-03-17 Nakashima Medical Co Ltd Method for producing implant made of titanium alloy
JP2016516580A (en) * 2013-01-31 2016-06-09 シーメンス エナジー インコーポレイテッド Method of remelting and repairing superalloy by laser using flux

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114585461A (en) * 2019-10-24 2022-06-03 杰富意钢铁株式会社 Method for manufacturing continuous casting mold
WO2021240696A1 (en) * 2020-05-27 2021-12-02 三島光産株式会社 Continuous casting mold and method for manufacturing continuous casting mold
JP7373540B2 (en) 2020-11-24 2023-11-02 コリア アトミック エナジー リサーチ インスティチュート Metal coating method, metal member including coating layer formed thereby, and fuel cell separator plate
WO2024068214A1 (en) * 2022-09-30 2024-04-04 Dmg Mori Ultrasonic Lasertec Gmbh Method for additively manufacturing a component having a core made from pure copper or a copper alloy

Also Published As

Publication number Publication date
JP7013823B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
CA2830543C (en) Fine grained ni-based alloys for resistance to stress corrosion cracking and methods for their design
JP7013823B2 (en) Manufacturing method of mold for continuous casting
JP6180427B2 (en) Metal powder for HVOF spraying and method for coating the surface thereby
JP2008546909A (en) Laser coating on substrates with low heat resistance
JP7022266B2 (en) Cobalt-nickel alloy material, method of manufacturing mold for continuous casting using it
JP7425944B2 (en) Manufacturing method of continuous casting mold
Xie et al. Epitaxial MCrAlY coating on a Ni-base superalloy produced by electrospark deposition
CN111575705A (en) Preparation method of tungsten carbide reinforced nickel-based composite coating
Škamat et al. Pulsed laser processed NiCrFeCSiB/WC coating versus coatings obtained upon applying the conventional re-melting techniques: Evaluation of the microstructure, hardness and wear properties
JP7010008B2 (en) Manufacturing method of mold for continuous casting
JP5531179B2 (en) Cu sheet processing method
JP7020147B2 (en) Manufacturing method of mold for continuous casting
CN114450426A (en) Alloy, alloy powder, alloy member, and composite member
CN105431250B (en) Superalloy component repair by addition of powdered alloy and flux materials
KR20150046395A (en) Cooling element and method for manufacturing a cooling element
JP2006016671A (en) Ni-BASED ALLOY MEMBER, MANUFACTURING METHOD THEREFOR, TURBINE ENGINE PARTS, WELDING MATERIAL AND MANUFACTURING METHOD THEREFOR
WO2020225846A1 (en) Continuous casting die and method for manufacturing continuous casting die
JP7422302B2 (en) Manufacturing method of continuous casting mold
JP3651819B2 (en) Method for modifying copper or copper alloy surface
US10828865B1 (en) Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
JP2009142839A (en) Mold for continuous casting
KR20200036533A (en) Mold for continuous casting and coating method of mold for continuous casting
RU2788426C1 (en) Method for manufacturing a mold for continuous casting
Qian et al. Microstructure and Mechanical Properties of Nickel-Based Coatings Fabricated through Laser Additive Manufacturing. Metals 2021, 11, 53
TW202144180A (en) Wear-resistant plate and manufacturing method thereof adding the ceramic particles into the wear-resistant composite layer to increase the overall joint strength and service life

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220103