JPS59165454A - Lateral type semiconductor device - Google Patents

Lateral type semiconductor device

Info

Publication number
JPS59165454A
JPS59165454A JP3895083A JP3895083A JPS59165454A JP S59165454 A JPS59165454 A JP S59165454A JP 3895083 A JP3895083 A JP 3895083A JP 3895083 A JP3895083 A JP 3895083A JP S59165454 A JPS59165454 A JP S59165454A
Authority
JP
Japan
Prior art keywords
collector
emitter
region
island
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3895083A
Other languages
Japanese (ja)
Inventor
Hidetoshi Arakawa
秀俊 荒川
Toshikatsu Shirasawa
白沢 敏克
Yoshitaka Sugawara
良孝 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Ltd
Hitachi Haramachi Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Haramachi Electronics Ltd filed Critical Hitachi Ltd
Priority to JP3895083A priority Critical patent/JPS59165454A/en
Publication of JPS59165454A publication Critical patent/JPS59165454A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To obtain a high current amplification factor and to improve the integration of a semiconductor device by forming a high impurity buried layer formed inside a dielectric isolating insulating film near the periphery of an emitter region except a side opposed to a collector region, thereby improving a carrier transfer efficiency. CONSTITUTION:An N<+> type buried layer 12 and a dielectric isolating oxidized film 11 are projected to the side of an island 6 as compared with a conventional example so that an interval between the outer periphery of a P type emiter 2 and the inner edge of the layer 12 is substantially uniform at the three sides except the side opposed to the collector 1 of the emitter 2. Accordingly, the distance between the adjacent two sides of the side opposed to the P type collector 1 of the emitter 2 and the layer 12 is largely reduced as compared with the conventional example. As the results, the current amplification factor can be increased without losing the withstand voltage.

Description

【発明の詳細な説明】 (利用分野) 本発明はラテラル型半導体装置に関するものであり、特
に高い電流増幅率を実現し、かつ必要な島面積を低減し
て集積度を高めることのできるラテラル型半導体装置に
関するものである。
[Detailed Description of the Invention] (Field of Application) The present invention relates to a lateral type semiconductor device, and in particular, a lateral type semiconductor device that can realize a high current amplification factor and increase the degree of integration by reducing the required island area. The present invention relates to semiconductor devices.

(従来技術) 第1図は、従来の高圧用pnp)ランジスタの平面図で
あり、第2図は、その断面図を示す。
(Prior Art) FIG. 1 is a plan view of a conventional high voltage PNP transistor, and FIG. 2 is a sectional view thereof.

pコレクタ1は、図からも明らかなよう罠、所定のコレ
クタ耐圧(コレクタ・ペース間耐圧B VCBOおよび
コレクタ・エミッタ間耐圧BVCEO)を満足するため
K、誘電体分離用酸化膜(Sin、) 11 の内壁内
圧形成されたn十埋込層I2とpエミッタ2から、十分
な距離を確保して形成されている。
As is clear from the figure, the p collector 1 is made of K, dielectric isolation oxide film (Sin, ) 11 in order to satisfy the predetermined collector breakdown voltages (collector-paste breakdown voltage BVCBO and collector-emitter breakdown voltage BVCEO). It is formed with a sufficient distance from the n-type buried layer I2 and the p emitter 2, which are formed under the inner wall pressure.

また、pエミッタ2は、ニ般に、エミッタ耐圧を必要と
しないため、n十埋込層に近ずけて形成されている。n
+ペース6は、単結晶領6つまりペース領域の電極取り
出し用の高不純物濃度拡散領域である。
Furthermore, since the p emitter 2 generally does not require emitter breakdown voltage, it is formed close to the n0 buried layer. n
+Pace 6 is a high impurity concentration diffusion region for taking out an electrode from the single crystal region 6, that is, the pace region.

なお、第1図において、2はpエミッタ、4はコレクタ
電極(フィールドプレート型)、7はエミッタ電極(フ
ィールドプレート型)、8はパッジページ冒ンflu(
5i(h)、9はベースX極V−ド、13は多結晶SI
#である。
In Fig. 1, 2 is a p emitter, 4 is a collector electrode (field plate type), 7 is an emitter electrode (field plate type), and 8 is a pudge page blank (
5i(h), 9 is base X pole V-do, 13 is polycrystalline SI
It is #.

従来、トランジスタの電流増幅率を増大させる手段とし
ては、 (1)コレクタ長(第1目のLc  )を大きくする、
(2)pコJクタ1およびpエミッタ2間の距離を小さ
くする、 (3)島の深さを浅くする。
Conventionally, methods for increasing the current amplification factor of a transistor include (1) increasing the collector length (first Lc);
(2) Reduce the distance between the p collector 1 and the p emitter 2. (3) Reduce the depth of the island.

などの方法が知られている。Methods such as these are known.

コレクタ長Lcを大きくすると、エミッタとの対向長が
大きくなり、少数キャリアの輸送効率が向上するので、
電流増幅率が増大する。
Increasing the collector length Lc increases the length facing the emitter and improves the transport efficiency of minority carriers.
Current amplification factor increases.

しかし、コレクタ耐圧を所定値に保つ必要から、n十埋
込層12とpコレクタ1との距離(例えば、第1図のL
i  )は、ある限度以下には小さくできない。したが
って、この方法では、必要とされる単結晶島の表面積が
太き(なり、半導体集積度の向上のさまたげとなるとい
う欠点がある。
However, since it is necessary to maintain the collector breakdown voltage at a predetermined value, the distance between the n0 buried layer 12 and the p collector 1 (for example, L in FIG.
i) cannot be reduced below a certain limit. Therefore, this method has the disadvantage that the required surface area of the single crystal island is large (which becomes a hindrance to an improvement in the degree of semiconductor integration).

pコレクタ1およびpエミッタ2間の距離、つまりベー
ス幅がl」\さくなる。と、電荷輸送効率が向上するの
で、電流増幅率は増大する。しかし、一方、コレクタ・
エミッタ間耐圧(B VcBo )が低下し、所定の耐
圧を満足できないという問題を生ずる。
The distance between the p-collector 1 and the p-emitter 2, that is, the base width, decreases by l''\. Since the charge transport efficiency is improved, the current amplification factor is increased. However, on the other hand, the collector
This causes a problem in that the emitter-to-emitter breakdown voltage (B VcBo ) decreases, making it impossible to satisfy a predetermined breakdown voltage.

島の深さを浅くすると、エミッタ2から単結晶島底部方
向−すなわち、n十埋込層方向に注入された少数キャリ
アが、島の底部のn十埋込層12(高p度領域)から琴
結晶sI6のベース領域に向う拡散電界圧より反射され
、コレクタ方向圧到達するようになる。
When the depth of the island is made shallow, the minority carriers injected from the emitter 2 toward the bottom of the single-crystal island, that is, toward the n0 buried layer, are transferred from the n0 buried layer 12 (high p degree region) at the bottom of the island. It is reflected by the diffused electric field pressure toward the base region of the koto crystal sI6, and reaches the collector direction pressure.

したがって、前記のような経路をとる少数キャリアの進
む距離がl」・さくなる一つまり、この方向でのベース
幅が小さくなるので、電流増幅率が増加する。
Therefore, the distance traveled by the minority carriers taking the above-mentioned path becomes smaller by l'', that is, the base width in this direction becomes smaller, so that the current amplification factor increases.

しかし、この場合は、pコレクタ1と島底部のn十埋込
層12との距離が小さくなってその部分の電界強度が増
加し、耐圧が低下するという欠点がある。また、この対
策として、pエミッタの部分だけ島を浅くする方法も考
えられるが、製造プロ七スが多くなり、経済的ではない
However, in this case, there is a drawback that the distance between the p collector 1 and the n0 buried layer 12 at the bottom of the island becomes small, the electric field strength in that part increases, and the withstand voltage decreases. Also, as a countermeasure to this problem, it is possible to make the island shallower in the p emitter portion, but this requires a large number of manufacturing steps and is not economical.

(目  的) 本発明の目的は、エミッタから注入される少数キャリア
の輸送効率を効果的に向上させること釦より、従来と同
等の性能を保ちながら、より小型で、集積度を向上する
ことのできるpnp)ランジスタやサイリスタなどのラ
テラル半導体装置を提供することにある。
(Purpose) The purpose of the present invention is to effectively improve the transport efficiency of minority carriers injected from the emitter, thereby achieving a smaller size and an improved degree of integration while maintaining the same performance as the conventional one. The purpose of the present invention is to provide lateral semiconductor devices such as pnp (pnp) transistors and thyristors.

(概 要) 前記の目的を達成するために、本発明は、コレクタ領域
と対向する辺を除く、エミッタ領域の周辺に、銹電体分
離用絶縁膜の内側に設けた高不純物埋込層を近接して設
け、これによって前記埋込層からベース領域(島)K向
う拡散電界を生じさせ、エミッタからコレクタ方向以外
の方向へ注入される少数キャリアを反射させてコレクタ
に指向させ、キャリア輸送効率を向上してより高い電流
増幅率を得るように構成した点に特徴がある。
(Summary) In order to achieve the above object, the present invention includes a highly impurity buried layer provided inside the insulating film for rust electrical isolation around the emitter region except for the side facing the collector region. This creates a diffused electric field from the buried layer toward the base region (island) K, which reflects minority carriers injected from the emitter in a direction other than the collector direction and directs them toward the collector, thereby improving carrier transport efficiency. The feature is that it is configured to improve the current amplification factor and obtain a higher current amplification factor.

(実施例) 以下に、本発明の実施例を、図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第6図は、本発明の1実施例であり、高耐圧のラテラル
pnp )ランジスタの平面図である。な:1′6、そ
の断面図は第2図と同じである。
FIG. 6 is a plan view of a high voltage lateral PNP transistor, which is an embodiment of the present invention. N: 1'6, its cross-sectional view is the same as in Fig. 2.

第1図と同様に8102 膜11によって、多結晶31
13から絶縁分離された単結晶島6の中央付近に、スト
ライプ状のpコレクタ1が形成され、またpコレクタ1
と平行にpエミッタ2が形成されている。
Similarly to FIG. 1, the polycrystalline 31 is
A striped p-collector 1 is formed near the center of the single-crystal island 6 that is insulated from the p-collector 1.
A p emitter 2 is formed in parallel with.

pエミッタ2のコレクタフと対向する選取外の5辺の部
分では、pエミッタ2の外周辺とn十埋込層I2の内縁
との間隔が、はぼ一様になるよ5に、n十埋込層12お
よび誘電体分離用酸化膜11を、第1図の従来例に比べ
て、島6の側へ突出させている。
In the five unselected sides facing the collector of the p emitter 2, the distance between the outer periphery of the p emitter 2 and the inner edge of the n0 buried layer I2 is approximately uniform. The embedding layer 12 and the dielectric isolation oxide film 11 are made to protrude toward the island 6 compared to the conventional example shown in FIG.

換言すれば、本実施1例では、単結晶Si島6の平面形
状(パターン)を長方形(正方形も含む、以下同じ)で
はなく、従来の長方形単結晶Si島6の隣接する2頂点
の部分を、はぼ長方形状に内側へ突出させ、全体が8角
形状になるようにしている。
In other words, in this first example, the planar shape (pattern) of the single crystal Si island 6 is not a rectangle (including a square, the same applies hereinafter), but the two adjacent vertices of the conventional rectangular single crystal Si island 6. , are made to protrude inward in a rectangular shape so that the whole has an octagonal shape.

したがって、pエミッタ2の、pコレクタ1と対向する
辺に隣接する2辺と、h十埋込N+2との距離は、#I
3図と第1図の対比からも明らかなように、従来例に比
べ大幅に減少されている。
Therefore, the distance between the two sides of the p emitter 2 adjacent to the side facing the p collector 1 and the h+embedding N+2 is #I
As is clear from the comparison between FIG. 3 and FIG. 1, the amount has been significantly reduced compared to the conventional example.

なお、改めて述べるまでもなく、明らかであるが、pコ
レクタ1とn十埋込層12及びpエミッタ2間の距離は
、それぞれ、所定耐圧を実親する上で必要な程度にとら
れている。
It is obvious that there is no need to state this again, but the distances between the p collector 1, the n buried layer 12, and the p emitter 2 are set to the extent necessary to achieve a predetermined withstand voltage. .

また、第2図からもわかるように、n十埋込層11は、
単結晶sI島6の底部にも形成されており、この方向忙
もpコレクタ1との距離を必要程度とっている。
Furthermore, as can be seen from FIG. 2, the n0 buried layer 11 is
It is also formed at the bottom of the single-crystal sI island 6, and the distance from the p collector 1 is kept as necessary in this direction.

これらの結果、耐圧を損ねることなく電流増幅率を増大
することができる。
As a result, the current amplification factor can be increased without impairing the withstand voltage.

本実施例における一つの具体例では、単結晶Si島n領
域6の比抵抗は20〜25Ω・儒であり、pNl、2の
拡散深さは、いずれも5μmである。
In one specific example of this embodiment, the resistivity of the single-crystal Si island n-region 6 is 20 to 25 Ω·F, and the diffusion depth of pNl, 2 is 5 μm.

また、第6図中に明示したよ5に、pコレクタ1とpエ
ミッタ20間隔は、55μm、pコレクタ1とn十埋込
層間距離は65μm、pエミッタ2と力+埋込層12間
の距離は、約5μmである。
In addition, as shown in FIG. 6, the distance between the p collector 1 and the p emitter 20 is 55 μm, the distance between the p collector 1 and the n buried layer is 65 μm, and the distance between the p emitter 2 and the force + buried layer 12 is 55 μm. The distance is approximately 5 μm.

なお、pコレクタ長は155μm、pエミッタ長は60
μmである。
Note that the p collector length is 155 μm, and the p emitter length is 60 μm.
It is μm.

pコレクタ1の電極4は、第2図からも分るように、パ
ッジベージ四ン用 sio、膜8を介して、各々接合を
超えて溶在させている。これは周知のごとく、いわゆる
フィードプレートといわれるものであり、電界効果によ
ってコレクタ接合の81表面付近における電界集中を緩
和し、耐圧向上を計る手段である。
As can be seen from FIG. 2, the electrodes 4 of the p-type collector 1 are fused across the respective junctions via the padgebage four sio and membrane 8. As is well known, this is what is called a feed plate, and is a means of reducing electric field concentration near the surface of the collector junction 81 by electric field effect and improving withstand voltage.

pエミッタ2の電極7も、同様に、フィールドプレート
構造であるが、これは、コレクタ・エミッタ間の単結晶
81表面に発生するチャンネルを、電界効果によって阻
止するものである。このように、エミッタ電極下に、チ
ャンネルが発生しないようKすることにより、さらに耐
圧向上がはかれる。
The electrode 7 of the p-emitter 2 similarly has a field plate structure, but this prevents a channel generated on the surface of the single crystal 81 between the collector and the emitter by an electric field effect. In this way, by applying a temperature limit under the emitter electrode to prevent the formation of a channel, the withstand voltage can be further improved.

マタ、n十埋込層12はチャンネルストッパーである。The buried layer 12 is a channel stopper.

n十埋込層12の濃度は、チャンネルの端部の電界強度
を小さくして耐圧を上げるため忙は低い方がよい。一方
、nベース(すなわち、単結晶81島)6との界面の拡
散電界を太き(し、エミッタから注入された正孔を効率
よく反射させるためには、n十埋込層I2の濃度は大き
い方が良い。
The concentration of the n0 buried layer 12 is preferably low in order to reduce the electric field strength at the end of the channel and increase the withstand voltage. On the other hand, in order to increase the diffusion electric field at the interface with the n base (i.e., single crystal 81 islands) 6 and to efficiently reflect the holes injected from the emitter, the concentration of the n buried layer I2 must be Bigger is better.

以上のことを考慮し、前記具体例におけるn+埋込層1
2の不純物濃度は、約5X10  cm  に選定した
Considering the above, the n+ buried layer 1 in the specific example
The impurity concentration of 2 was selected to be approximately 5×10 cm.

本実m例のpnpラテラルトランジスタの電流増幅率は
、第4図に示す口の領域に分布していた。
The current amplification factor of the pnp lateral transistor of this practical example was distributed in the mouth region shown in FIG.

すなわち、本実施例によれば、第1図のような従来のp
npラテラルトランジスタのそれ(第4図のイの範囲)
に比べて高い電流増幅率を実現できた。
That is, according to this embodiment, the conventional p
That of the np lateral transistor (range A in Figure 4)
We were able to achieve a higher current amplification factor compared to the previous model.

また、従来のものに比べて、前述のようにn+埋込層1
2および銹電体分離用酸化膜11を単結晶Si島6の内
側に向って突出させた分だけ占有面積を低減することが
できた。これは20〜50%の面積低減に当る。
Also, compared to the conventional one, as mentioned above, the n+ buried layer 1
2 and the electrical isolation oxide film 11 were made to protrude toward the inside of the single-crystal Si island 6, thereby making it possible to reduce the occupied area. This corresponds to an area reduction of 20-50%.

一方、従来と同程度の電流増幅率を実現するには、コレ
クタ長をさらに小さくでき、それだけ高面積を減少する
ことができる。この場合は、65〜50%の面積低減と
なる。
On the other hand, in order to achieve a current amplification factor comparable to that of the conventional one, the collector length can be further reduced, and the large area can be reduced accordingly. In this case, the area will be reduced by 65-50%.

第5図は、本発明の第2の実施例である、高耐圧ラテラ
ルpnp)ランジスタの平面パターンを示す図、第6図
はそのv−v線断面図である。
FIG. 5 is a diagram showing a planar pattern of a high-voltage lateral PNP transistor according to a second embodiment of the present invention, and FIG. 6 is a cross-sectional view taken along the line v--v.

pコレクタ1は、単結晶St島6の中心の対角線上に形
成される。また、pエミッタ2は、pコレクタ1に面す
る側が、前記コレクタ10対向辺と平行になり、かつそ
れ以外の面がn十埋込層に、予定の間隔を保持して近接
するような位置および形状に形成されている。
The p collector 1 is formed on a diagonal line of the center of the single crystal St island 6. Furthermore, the p emitter 2 is located at such a position that the side facing the p collector 1 is parallel to the opposite side of the collector 10, and the other surface is close to the n buried layer while maintaining a predetermined distance. and formed into a shape.

すなわち、この実施例では、−pコレクタ1を長方形島
の対角線方向に配置したので、ある島の大きさに対して
は、コレクタを最も長くすることができ、コレクタ効率
を向上できる。一方、pエミッタ2は、僅かな距離をお
いて、n十埋込層12によって取り囲まれているので、
前述したメカニズムにより、キャリアの輸送効率を向上
できる。
That is, in this embodiment, since the -p collector 1 is arranged in the diagonal direction of the rectangular island, the collector can be made the longest for a certain size of the island, and the collector efficiency can be improved. On the other hand, since the p emitter 2 is surrounded by the n buried layer 12 at a short distance,
The above-described mechanism can improve carrier transport efficiency.

これらの結果高い電流増幅率が得られる。As a result, a high current amplification factor can be obtained.

第5図の第2実施例における代表的数値例は、pコレク
タ長が85μm、pエミッタ長が50μmであり、その
他の部分の寸法は、第1の実施例と同じである。
In the typical numerical example of the second embodiment shown in FIG. 5, the p collector length is 85 μm, the p emitter length is 50 μm, and the other dimensions are the same as in the first embodiment.

前記各実施例のpnp)ランジスタは、耐圧が380〜
420■であり、電流増幅率hFEが20〜50であっ
た。また、一方、第1図のような従来構造の同性能のp
npラテラルトランジスタに比べ、27〜40%の単結
晶面粕の低減が実現できた。
The pnp) transistor of each of the above embodiments has a breakdown voltage of 380~
420 ■, and the current amplification factor hFE was 20-50. On the other hand, the same performance p of the conventional structure as shown in Fig.
Compared to np lateral transistors, we were able to achieve a 27-40% reduction in single-crystal surface sludge.

本発明は上記の実施例に限定されるものでなく、各種の
応用変形ができることは当業者には容易に考えられるこ
とであろう。また、コレクタの中にn層を形成したラテ
ラル型サイリスタにも、本発明を適用でき、この結果電
流増幅率の増大に起因する点弧電流の低減やFVDの低
減をもたらし得る。
The present invention is not limited to the above-described embodiments, and those skilled in the art will readily recognize that various modifications can be made. The present invention can also be applied to a lateral type thyristor in which an n-layer is formed in the collector, and as a result, the ignition current and FVD can be reduced due to an increase in the current amplification factor.

(効 果) 本発明によれば、エミッタから注入される少数キャリア
の輸送効率を向上できるので、従来のラテラル型半導体
装置に比べ、同程度の性能ならば、より小さいラテラル
型半導体装置圧して集積度を上げることができ、一方、
同程度の寸法にすればより大きな電流増幅率を実現する
ことができる。
(Effects) According to the present invention, the transport efficiency of minority carriers injected from the emitter can be improved, so compared to conventional lateral semiconductor devices, it is possible to integrate smaller lateral semiconductor devices with the same performance. You can increase the degree, while
If the dimensions are about the same, a larger current amplification factor can be achieved.

また、本発明によれば、従来の製造プロセスを変えるこ
とな(高い集積度のラテラル型半導体装置を得ることが
できる。
Further, according to the present invention, a lateral type semiconductor device with a high degree of integration can be obtained without changing the conventional manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のpnpラテラルトランジスタの平面図、
第2図はその断面図、第6図は本発明の第1の実施例の
pnpラテラルトランジスタの平面図、第4図は従来構
造と第1の実施例との電流増幅率の比較図、第5図は本
発明の第2の実施例のpnpラテラルトランジスタの平
面図、第6図は第5図のv−■線にそう断面図である。 1・・・pコレクタ、  2・・・pエミッタ、  6
・・・n+ベース、 6・・・単結晶Si 島、  8
・・・酸化膜、  12・・・n十埋込府、  13・
・・多結晶Si代理人弁理士 平 木 道 人 第1図 第2図 第3図 才4図
Figure 1 is a plan view of a conventional pnp lateral transistor.
FIG. 2 is a cross-sectional view thereof, FIG. 6 is a plan view of the pnp lateral transistor of the first embodiment of the present invention, FIG. 4 is a comparison diagram of the current amplification factor between the conventional structure and the first embodiment, and FIG. FIG. 5 is a plan view of a pnp lateral transistor according to a second embodiment of the present invention, and FIG. 6 is a sectional view taken along line v--■ in FIG. 1...p collector, 2...p emitter, 6
...n+ base, 6...single crystal Si island, 8
・・・Oxide film, 12...n 10 buried area, 13・
...Patent attorney representing polycrystalline Si Michihito Hiraki Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 (])−導電型単結晶島が誘電体膜を介して多結晶中に
埋設され、且つ一対の主表面を有し、一方の主表面には
多結晶領域のみが、又他方の主表面には少な(とも単結
晶島と前記誘電体膜が露出し、単結晶島内には反対導電
型の、少なくともエミッタ詑よびコレクタ領域が他方の
主表面に露出するように設けられ、−導電型の高濃度半
導体領域が、その少(とも一部分が他方主表面に露出す
るように、前記誘電体膜に接して、単結晶島内圧設けら
れた半導体装置において、高濃度半導体領域が前記複数
の反対導電型半導体領域の下に延在し、前記エミッタ領
替の一部はコレクタ領域と対向し、前記他方の主表面に
おいては、前記エミッタ領域から高濃度半導体領域まで
の距離が、前記コレクタ領域から高濃度半導体領域まで
の距離よりも小さく設定されたことを、特徴とするラテ
ラル型半導体装置。 (2)前記他方の主表面における単結晶島の形状が長方
形であり、その−隅にエミッタ領域が設けられたことを
特徴とする特許 載のラテラル型半導体装置。
[Claims] (]) - A conductive type single crystal island is embedded in a polycrystal through a dielectric film, and has a pair of main surfaces, one of which has only a polycrystalline region, Further, on the other main surface, a small amount (both the single crystal island and the dielectric film are exposed, and within the single crystal island, at least an emitter region and a collector region of opposite conductivity types are provided so as to be exposed on the other main surface. , - In a semiconductor device in which a single crystal island internal pressure is provided in contact with the dielectric film so that a small portion (at least a portion) of the conductivity type high concentration semiconductor region is exposed on the other main surface, the high concentration semiconductor region is Extending below the plurality of opposite conductivity type semiconductor regions, a part of the emitter replacement faces the collector region, and on the other main surface, the distance from the emitter region to the high concentration semiconductor region is A lateral type semiconductor device characterized in that the distance from the collector region to the high concentration semiconductor region is set to be smaller than the distance from the collector region to the high concentration semiconductor region.(2) The shape of the single crystal island on the other main surface is rectangular, and A patented lateral type semiconductor device characterized in that an emitter region is provided at the top.
JP3895083A 1983-03-11 1983-03-11 Lateral type semiconductor device Pending JPS59165454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3895083A JPS59165454A (en) 1983-03-11 1983-03-11 Lateral type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3895083A JPS59165454A (en) 1983-03-11 1983-03-11 Lateral type semiconductor device

Publications (1)

Publication Number Publication Date
JPS59165454A true JPS59165454A (en) 1984-09-18

Family

ID=12539479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3895083A Pending JPS59165454A (en) 1983-03-11 1983-03-11 Lateral type semiconductor device

Country Status (1)

Country Link
JP (1) JPS59165454A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112306A (en) * 1992-09-25 1994-04-22 Matsushita Electric Works Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112306A (en) * 1992-09-25 1994-04-22 Matsushita Electric Works Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JPH0347593B2 (en)
JP3014012B2 (en) Method for manufacturing semiconductor device
JPH06349849A (en) High-breakdown-strength thin- film semiconductor device
EP0462270B1 (en) Method of using a semiconductor device comprising a substrate having a dielectrically isolated semiconductor island
JPH1154748A (en) Semiconductor device and manufacture thereof
JP2635044B2 (en) Semiconductor device
JP2004207733A (en) Bipolar transistor having majority carrier accumulation layers as sub-collector
US5557125A (en) Dielectrically isolated semiconductor devices having improved characteristics
JP2628988B2 (en) Semiconductor device and manufacturing method thereof
JPS59165454A (en) Lateral type semiconductor device
JPH0551184B2 (en)
JP3150420B2 (en) Bipolar integrated circuit and manufacturing method thereof
JP2001203358A (en) Dielectric isolation type semiconductor device
KR100275755B1 (en) High power bipolar transistor and method for fabricating thereof
KR20000010184A (en) Bi-polar transistor with trench structure and its manufacturing method
JPH0436578B2 (en)
JP2604793B2 (en) Semiconductor device
JPS6112069A (en) Semiconductor device
JP3389092B2 (en) Dielectric separated type semiconductor device
JPS60245248A (en) Semiconductor ic
JPS6145391B2 (en)
JPH02266530A (en) Semiconductor device
JPS58210659A (en) Semiconductor device and manufacture thereof
JPS6364058B2 (en)
JPH0235470B2 (en)