JPS59165448A - Complementary semiconductor integrated circuit device - Google Patents
Complementary semiconductor integrated circuit deviceInfo
- Publication number
- JPS59165448A JPS59165448A JP58039109A JP3910983A JPS59165448A JP S59165448 A JPS59165448 A JP S59165448A JP 58039109 A JP58039109 A JP 58039109A JP 3910983 A JP3910983 A JP 3910983A JP S59165448 A JPS59165448 A JP S59165448A
- Authority
- JP
- Japan
- Prior art keywords
- channel
- row
- integrated circuit
- elements
- channel elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 14
- 230000000295 complement effect Effects 0.000 title claims description 6
- 238000000034 method Methods 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 6
- 230000003071 parasitic effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/10—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
- H01L27/118—Masterslice integrated circuits
- H01L27/11803—Masterslice integrated circuits using field effect technology
- H01L27/11807—CMOS gate arrays
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術外野〕
本発明は相補型半導体集積回路装置に係り、特にマスタ
ースライス方式を採用した装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a complementary semiconductor integrated circuit device, and particularly to a device employing a master slice method.
「発明の背景技術とその問題点〕
マスタースライス方式の半導体集積回路装置は、予め複
数の素子からなる基本セルを半導体基板に多数作シこん
でおき、配線層並びに接続穴を変更することにより所望
の回路動作を得ようとするもので、新たな機能の回路の
要望に対し、比較的簡単に対処出来る特徴を有している
。すなわち金属配線を形成する以前の工程により作成さ
れる半導体チップは全ての機能回路に共通であるため、
上記方式を採用すると開発期間の短縮、製造コストの低
減が図れ多品種少量生産を可能とする。マスタースライ
ス方式による相補型半導体集積回路装置の一般的な例を
第1図に示す。“Background of the Invention and Problems Thereof” A master slice type semiconductor integrated circuit device is a semiconductor integrated circuit device in which a large number of basic cells each consisting of a plurality of elements are fabricated on a semiconductor substrate in advance, and the wiring layers and connection holes are changed to create the desired structure. It aims to obtain the circuit operation of the circuit, and has the feature that it can relatively easily meet the demands for circuits with new functions.In other words, the semiconductor chip created by the process before forming the metal wiring is Since it is common to all functional circuits,
Adopting the above method shortens the development period, reduces manufacturing costs, and enables high-mix, low-volume production. FIG. 1 shows a general example of a complementary semiconductor integrated circuit device using the master slice method.
すなわち、この半導体集積回路装置は半導体チップ上が
、Nチャネル領域IN、 Pチャネル領域1p1配線領
域2、入出力端子並びに入出力回路領域31c51)け
られている。第1図の■に沿う断面構造を第2図に示す
。すなわち母体基板4、母体と反対導電型をもつウェル
5、ウェルの電位設定を極6、Nチャネルトランジスタ
ーのンース7、同じくゲート8、ドレイン9、母体基板
の電位設定!極10゜Pチャネルトランジスターのソー
ス11、ゲート12、ドレイ713である。このよりな
0MO8構造の問題点として、ラッチアップ現象がある
。これはノイズ等によシ寄生バイポーラトランジスタ1
4,15カ導通し過大電流が流れる現象である。ラッチ
アップに至る耐圧を高めるには、Pチャネル領域とNチ
ャネル領域の距離(功を大きくすれは良いことが知られ
ているが、チップ面積の増大を招き、コスト高になる難
点があった。That is, in this semiconductor integrated circuit device, the top of the semiconductor chip includes an N channel region IN, a P channel region 1p1, a wiring region 2, an input/output terminal, and an input/output circuit region 31c51). FIG. 2 shows a cross-sectional structure taken along the line (■) in FIG. 1. In other words, the base substrate 4, the well 5 having the opposite conductivity type as the base, the well potential settings as the pole 6, the N channel transistor's source 7, the gate 8, the drain 9, and the base substrate potential settings! These are the source 11, gate 12, and drain 713 of a polar 10° P-channel transistor. A problem with this rigid 0MO8 structure is a latch-up phenomenon. This is a parasitic bipolar transistor 1 due to noise etc.
This is a phenomenon in which 4.15 conductors conduct and excessive current flows. It is known that increasing the distance between the P-channel region and the N-channel region is a good way to increase the breakdown voltage leading to latch-up, but this has the drawback of increasing the chip area and increasing costs.
本発明は上記事情を考慮してなされたもので、マスター
スライス方式に適した相補型半導体集積回路装置を提供
することを目的としている。The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a complementary semiconductor integrated circuit device suitable for the master slice method.
本発明によれば、Pチャネルトランジスタからなる素子
列とNチャネルトランジスタからなる素子列を配線領域
をはさんで配置し、論理機能を実現するにあたり、配線
領域をはさんだ両側の素イを接続して用いる。According to the present invention, an element array consisting of P-channel transistors and an element array consisting of N-channel transistors are arranged across a wiring area, and when realizing a logic function, the elements on both sides of the wiring area are connected. used.
本発明によれば、従来技術に比べ、下記の効果が得られ
る。即ち、Pチャネル領域とNチャネル領域との間の距
離を大きく出来るので、ラッチアップ耐圧の向上を図れ
、より安定した動作が得られる。According to the present invention, the following effects can be obtained compared to the conventional technology. That is, since the distance between the P channel region and the N channel region can be increased, the latch-up breakdown voltage can be improved and more stable operation can be obtained.
第3図に本発明を適用したゲートアレイ型大規模集積回
路の例を、第4図に第3図■で示した線に沿って断面構
造を示す。各素子列はNチャネル素子またはPチャネル
素子で構成されてお9、同一素子列内にNチャネル素子
とPチャネル素子の両方を含むことはない。Nチャネル
素子列はNチャ坏ルトランジスタ2列が、素子列の中心
線に対し線対称になるように配置されている。Pチャネ
ル素子列も同様でおる。論理機能の実現にめだっては、
素子列を次のように用いる。即ち、第1列のPチャネル
素子と第2列左側のNチャネル素子、第2列右側のNチ
ャネル素子と第3列左側のPチャネル素子を組合せて用
いる。第4列以降も同様である。この構造ではNチャネ
ル領域とPチャネル領域間の距離を従来が5〜20μm
程度であったのに比べたとえば100〜200μm程度
とはるかに大きく出来る。従ってラッチアップ耐圧を大
きく向上出来、安定動作に資する。FIG. 3 shows an example of a gate array type large-scale integrated circuit to which the present invention is applied, and FIG. 4 shows a cross-sectional structure along the line indicated by 3 in FIG. 3. Each device column is composed of N-channel devices or P-channel devices 9, and the same device column does not include both N-channel devices and P-channel devices. In the N-channel element row, two rows of N-channel transistors are arranged symmetrically with respect to the center line of the element row. The same applies to the P-channel element array. The key to realizing logical functions is
The element array is used as follows. That is, the P-channel device in the first row and the N-channel device on the left side of the second row, and the N-channel device on the right side of the second row and the P-channel device on the left side of the third row are used in combination. The same applies to the fourth and subsequent columns. In this structure, the distance between the N channel region and the P channel region is conventionally 5 to 20 μm.
It can be made much larger, for example, about 100 to 200 .mu.m. Therefore, the latch-up withstand voltage can be greatly improved, contributing to stable operation.
第1図は従来のマスタースライス方式によるゲートアレ
イ型集積回路装置の構成例を示す平面図、第2図は第1
図の素子列の断面図、第3図は本発明の一実施例(C係
る半導体集積回路装置の構成を示す平面図、g41図は
第3図の断面図である。
図に於いて
1N・・Nチャネル領域、
IP・・Pチャネル領域、
2・・配線領域、
3・・入出力端子並びに人出方回路領域、4・・母体基
板、
5・・母体と反対導電型をもつウェル、6・・・ウェル
の電位設定用・電極、
7・・Nチャネルトランジスタのソース電極、8°°
ゲート電極、9・・Nチャネル
トランジスタのドレイン電極、10・・母体基板の電位
設定電極、
lセーPチャネルトランジスタのソース電極、12・・
ゲート電極、13・・
ドレイ/電極、14・・寄生バイポ
ーラNPN トランジスタ、15・・・寄生バイポーラ
PNN)ランジスタ代理人 弁理士 則 近 憲 佑
(ほか1名)第 1 図
第 2 図
第 3 図
第4図FIG. 1 is a plan view showing an example of the configuration of a gate array integrated circuit device using the conventional master slice method, and FIG.
3 is a plan view showing the configuration of a semiconductor integrated circuit device according to an embodiment of the present invention (C), and FIG. g41 is a sectional view of FIG. 3.・N-channel region, IP...P-channel region, 2.. Wiring region, 3.. Input/output terminal and output circuit area, 4.. Base substrate, 5.. Well with conductivity type opposite to that of the base body, 6. ...Well potential setting electrode, 7...N-channel transistor source electrode, 8°°
Gate electrode, 9...Drain electrode of N-channel transistor, 10... Potential setting electrode of base substrate, Source electrode of P-channel transistor, 12...
Gate electrode, 13...
Dry/electrode, 14... Parasitic bipolar NPN transistor, 15... Parasitic bipolar PNN) transistor Representative Patent attorney Noriyuki Chika
(1 other person) Figure 1 Figure 2 Figure 3 Figure 4
Claims (1)
プに必要に応じた配線パターンを施して所望の回路動作
を実現するマスタースライス方式の相補型半導体集積回
路装置において、素子列中心線に対しPチャネル素子が
゛線対称に配置された素子列と、素子列中心線に対しN
チャネル素子が線対称に配置された素子列を配線領域を
はさんで交互に配置し、論理機能を実現するにあたシ配
線領域をはさんだ両側の素子列を使用することを特徴と
する相補型半導体集積回路装置。In a complementary semiconductor integrated circuit device using the master slicing method, in which a chip is made by arranging and integrating a plurality of basic cells on a semiconductor substrate and is provided with wiring patterns as necessary to achieve desired circuit operation, An element row in which P-channel elements are arranged symmetrically with respect to the center line of the element row, and
A complementary method characterized in that element rows in which channel elements are arranged line-symmetrically are arranged alternately across a wiring area, and the element rows on both sides of the wiring area are used to realize a logic function. type semiconductor integrated circuit device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58039109A JPS59165448A (en) | 1983-03-11 | 1983-03-11 | Complementary semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58039109A JPS59165448A (en) | 1983-03-11 | 1983-03-11 | Complementary semiconductor integrated circuit device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59165448A true JPS59165448A (en) | 1984-09-18 |
Family
ID=12543905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58039109A Pending JPS59165448A (en) | 1983-03-11 | 1983-03-11 | Complementary semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59165448A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60257151A (en) * | 1984-05-31 | 1985-12-18 | Mitsubishi Electric Corp | Semiconductor integrated circuit |
US5391904A (en) * | 1988-09-01 | 1995-02-21 | Fujitsu Limited | Semiconductor delay circuit device |
-
1983
- 1983-03-11 JP JP58039109A patent/JPS59165448A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60257151A (en) * | 1984-05-31 | 1985-12-18 | Mitsubishi Electric Corp | Semiconductor integrated circuit |
US5391904A (en) * | 1988-09-01 | 1995-02-21 | Fujitsu Limited | Semiconductor delay circuit device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4701777A (en) | Gate array type semiconductor integrated circuit device | |
JPS61182244A (en) | Semiconductor device | |
JP2822781B2 (en) | Master slice type semiconductor integrated circuit device | |
JPH1065146A (en) | Semiconductor integrated circuit device | |
JPS59165448A (en) | Complementary semiconductor integrated circuit device | |
JPH07114279B2 (en) | Semiconductor device | |
JPH0475664B2 (en) | ||
JPH0122733B2 (en) | ||
JPH0122736B2 (en) | ||
JPH0546104B2 (en) | ||
JPH0563944B2 (en) | ||
JPH01273332A (en) | Large-scale integrated circuit device | |
JPH0513759A (en) | Mis transistor | |
JPS60261153A (en) | Semiconductor integrated circuit device | |
JPS628538A (en) | Semiconductor integrated circuit device | |
JP2834186B2 (en) | Semiconductor device | |
JPS59181028A (en) | Semiconductor integrated circuit device | |
JPS6350851Y2 (en) | ||
JPH0527988B2 (en) | ||
JPS63200560A (en) | Cmos semiconductor device | |
JPS63150957A (en) | Semiconductor device | |
JPS6254450A (en) | Master slice substrate | |
JPH0575077A (en) | Master-slice type integrated circuit device | |
JPH04151867A (en) | Gate array | |
JPS61125047A (en) | Semiconductor integrated circuit device |