JPS59164855A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS59164855A
JPS59164855A JP3993383A JP3993383A JPS59164855A JP S59164855 A JPS59164855 A JP S59164855A JP 3993383 A JP3993383 A JP 3993383A JP 3993383 A JP3993383 A JP 3993383A JP S59164855 A JPS59164855 A JP S59164855A
Authority
JP
Japan
Prior art keywords
amount
pressure reduction
capillary tube
capillary
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3993383A
Other languages
Japanese (ja)
Inventor
均 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP3993383A priority Critical patent/JPS59164855A/en
Publication of JPS59164855A publication Critical patent/JPS59164855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は擬庭用冷蔵庫等の小型冷凍装置に関するもので
あり、特に減圧装置としてキャピラリチューブを使用し
たものの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to small-sized refrigeration devices such as artificial garden refrigerators, and particularly relates to improvements in devices using capillary tubes as pressure reducing devices.

従来例の構成とその問題点 この種の冷凍装置に於いては第1図に示す、ように運転
条件によシ最適な減圧量が異なるため、例えば外気温1
5°C(A線)で適正な減圧量aのキャピラリチー−ブ
を使用した冷凍装置では外気温30°C(B線)では適
正減圧量が少ないため、効率の減少を来すことになる。
Conventional configuration and its problems In this type of refrigeration system, the optimal amount of pressure reduction varies depending on the operating conditions, as shown in Figure 1.
In a refrigeration system using a capillary tube with an appropriate amount of decompression a at 5°C (line A), the appropriate amount of decompression is small at an outside temperature of 30°C (line B), resulting in a decrease in efficiency. .

また、外気温30°C(B線)で適正減圧量すとなるよ
うキャピラリチーユープを選定すると外気温15°C(
A線)では適正減圧量aより過大減圧量となるため、こ
れも効率の減少を来す結果となる。
In addition, if the capillary chain is selected to achieve an appropriate amount of depressurization at an outside temperature of 30°C (line B), the outside temperature will be 15°C (line B).
In line A), the amount of pressure reduction becomes excessive than the appropriate pressure reduction amount a, and this also results in a decrease in efficiency.

この改良として第2図に示す冷凍装置がある。これはコ
ンプレッサ1、コンデンサ2、キャピラリチューブ3、
エバポレータ4、サクションパイプ5を環状に接続して
構成している。キャピラリチ一−プ3の上流部はヒータ
6と交熱的に接合し、下・流部はサクションパイプ5と
交熱的に接合せしめている。前記ヒータ6はサーモスタ
ット等により所定外気温(従来例で、は外気温20°C
)以上で通電し、それ以下の温度では無通電とするもの
である。
As an improvement on this, there is a refrigeration system shown in FIG. This is compressor 1, condenser 2, capillary tube 3,
An evaporator 4 and a suction pipe 5 are connected in a ring. The upstream portion of the capillary tip 3 is thermally connected to the heater 6, and the downstream portion is thermally connected to the suction pipe 5. The heater 6 is controlled at a predetermined outside temperature by a thermostat or the like (in the conventional example, the outside temperature is 20°C).
), it is energized when the temperature is higher than that, and it is not energized when the temperature is lower than that.

この動作は、外気温2Q″C以上ではヒータ6に通電し
、キャビラリチー−ブ3内を流れる冷媒にフラッシュガ
スを発生せしめることにより流路抵抗を増加させて減圧
量を増加させ、外気温20°C以下ではヒータ6の通電
を停止することによりキャピラリチー−ブ3本来の減圧
量とするものである。
This operation is performed by energizing the heater 6 when the outside temperature is 2Q''C or higher, and generating flash gas in the refrigerant flowing inside the cavity refrigerant 3, thereby increasing the flow path resistance and increasing the amount of depressurization. C or less, the heater 6 is de-energized to maintain the original pressure reduction amount in the capillary chieve 3.

つまり、外気温と適正減圧量との関係は第3図に示す特
性Cであるのに対し、キャピラリチューブ3の減圧量を
外気温16°Cでの適正減圧量aに選定し、ヒータ6の
通電時に減圧量を外気温30°Cの適正減圧量すとなる
ようにしだものであるため、この冷凍装置ではステップ
的な特性りとなる。従って、減圧量としては適正な特性
Cに近づくが、ヒータ6の入力を要するだめ、その効果
は半減するという欠点を有していた。
In other words, the relationship between the outside temperature and the appropriate amount of pressure reduction is characteristic C shown in FIG. This refrigeration system has a step-like characteristic because the amount of pressure reduction is set to be an appropriate amount of pressure reduction for an outside temperature of 30° C. when electricity is applied. Therefore, although the amount of pressure reduction approaches the appropriate characteristic C, it has the disadvantage that input from the heater 6 is required and the effect is halved.

発明の目的 以上の欠点に鑑み、本発明は電気制御を何ら必要とせず
に外気温度変化に追従して適正な減圧量に自己制御する
冷凍装置を提供せんとするものである。
In view of the drawbacks that exceed the objectives of the invention, the present invention aims to provide a refrigeration system that self-controls the amount of pressure reduction by following changes in outside air temperature without requiring any electrical control.

発明の構成 上記目的を達成するだめ、本発明はコンデンサ内の冷媒
が凝縮を開始する部分のコンデンサの配管パイプとキャ
ピラリテー−ブの一部を熱交換せしめることにより構成
し、放熱量に応じてキャピラリチー−プの抵抗を変化さ
せるものである。
Structure of the Invention In order to achieve the above-mentioned object, the present invention is constructed by exchanging heat between a part of the capillary tube and the piping of the condenser where the refrigerant in the condenser starts to condense. This changes the resistance of the capillary peak.

実施例の説明 以下に本発明の一実施例について添付図面に従い説明す
る。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings.

第4図におい・て101は冷凍装置であり、コンプレッ
サ1o2、第1のコンデンサ103、接続パイプ1o4
、第2のコンデンサ1o5、キャピラリチューブ1o6
、エバポレータ107、サクンヨンパイプ108、コン
プレソザ10*トI[*環状に接続して構成されている
In Fig. 4, 101 is a refrigeration system, including a compressor 1o2, a first condenser 103, and a connecting pipe 1o4.
, second capacitor 1o5, capillary tube 1o6
, an evaporator 107, a pipe 108, and a compressor 10 are connected in a ring.

キャピラリチー−ブ106は入口部106aより略10
0mmの位置1Q6bから300rrvn(D位置10
6cの間を接続パイプ104と熱交換せしめており、そ
の下流側のキャピラリチューブ106,106dをサタ
ンヨンバイプ108と熱交換せしめている。
The capillary chive 106 is approximately 10 mm from the inlet portion 106a.
0mm position 1Q6b to 300rrvn (D position 10
6c and the connecting pipe 104, and the downstream capillary tubes 106 and 106d are heat exchanged with the satan tube pipe 108.

第1.第2のコンデンサ103 、105の放熱能力の
関係は外気温15°Cのときに第1のコンデンサ103
の出口部103aの冷媒が凝縮を開始するよう放熱能力
を決定している。
1st. The relationship between the heat dissipation capabilities of the second capacitors 103 and 105 is that when the outside temperature is 15°C, the first capacitor 103
The heat dissipation capacity is determined so that the refrigerant at the outlet section 103a starts condensing.

周知のように、外気温が高くなる程冷却負荷は増大する
だめ、コンデンサでの放熱量は不足気味となり、従って
外気温3.、 O’Cのときには第1のコンデンサ10
3は出口部103aの冷媒が凝縮を開始する状態にまで
放熱することができない。つまり、この場合は前記出口
部103aの冷媒は過熱ガスであり、凝m温度よシ高い
温度となるものである。
As is well known, as the outside temperature increases, the cooling load increases, and the amount of heat dissipated by the condenser becomes insufficient. , when O'C, the first capacitor 10
No. 3 cannot radiate heat to a state where the refrigerant at the outlet portion 103a starts to condense. That is, in this case, the refrigerant at the outlet portion 103a is superheated gas, and has a temperature higher than the condensation temperature m.

また、キャピラリチー−プ106に於いては入口部10
6aの冷媒は凝縮温度より若干過冷却されだ液冷媒であ
り入口部106aより減圧されるに従かい飽和液に近っ
き略300脳106c付近から気泡の発生を開始する。
In addition, in the capillary cheap 106, the inlet portion 10
The refrigerant 6a is a liquid refrigerant that is slightly supercooled from the condensation temperature, and as it is depressurized from the inlet 106a, it becomes a saturated liquid and begins to generate bubbles from around 300 brains 106c.

。 上記の温度関係について第6図のモリエル線図上で説明
すると、外気温15°Cではコンプレッサ102から吐
出された高温高圧ガスは過熱ガス域の(イ)点よシ第1
のコンデンサ103で放熱された出口部103aにて(
ロ)点に達する。(ロ)点は飽和ガス線Gより若干飽和
域内に入った点である。キャピラリチューブ106の冷
媒は凝縮温度T15  より若干過冷却され入口部10
6aが(ハ)点、入口よ)10’ Omm 106 b
がに)点、入口より3001nM106cが(ホ)点に
相当している。
. To explain the above temperature relationship on the Mollier diagram in Fig. 6, at an outside temperature of 15°C, the high temperature and high pressure gas discharged from the compressor 102 moves from point (A) in the superheated gas region to point 1.
(
b) reach a point. Point (b) is a point slightly within the saturated region from the saturated gas line G. The refrigerant in the capillary tube 106 is slightly supercooled from the condensation temperature T15 and reaches the inlet portion 10.
6a is (c) point, entrance) 10' Omm 106 b
3001 nM106c from the entrance corresponds to point (e).

このとき(ロ)点とに)点の温度差は5 deg程度で
あるため接続パイプ104とキャピラリチューブ106
の熱交換部ではほとんど熱交換が行なわれず、(ホ)点
は飽和液線り上に有るため、従来例の変化(図中一点鎖
線)と同一の変化である。
At this time, since the temperature difference between points (b) and (b) is about 5 deg, the connection pipe 104 and capillary tube 106
Almost no heat exchange takes place in the heat exchange section, and point (e) is on the saturated liquid line, so the change is the same as the change in the conventional example (dotted chain line in the figure).

次に外気温3o″Cについて第6図で説明する。Next, the outside temperature of 3o''C will be explained with reference to FIG.

第1のコンデンサ103にて(へ)点から(ト)点まで
冷媒は冷却されるが、この条件では放熱能力が不足気味
となるため、(ト)点は過熱ガス域であり、温度で凝縮
温度T3゜よシ略10deg程度高い温度である。キャ
ピラリチューブ106の冷媒は、この条件ではほとんど
過冷却されず入口部106aがほぼ飽和液線り上の(ト
)点、入口よシ100mm106bの点が(1力点、3
00mm 106cの点が(ヌ)点となっている。
The refrigerant is cooled from point (F) to point (G) in the first condenser 103, but under these conditions the heat dissipation capacity is insufficient, so point (G) is in the superheated gas region and condenses at the temperature. The temperature is about 10 degrees higher than the temperature T3 degrees. Under these conditions, the refrigerant in the capillary tube 106 is hardly supercooled, and the inlet part 106a is almost above the saturated liquid line (g), and the point 106b 100 mm from the inlet is (point 1, point 3).
00mm The point 106c is the (nu) point.

このとき(力点と(ト)点との温度差は15deg程度
あるため、接続バイブ104とキャピラリチューブ10
6とは熱交換され、(ヌ)点は加熱されるため従来より
乾き度の大きな冷媒となシ、キャピラリチューブ106
の流路抵抗は若干増加され、従来改良例でのヒータ6に
通電した状態と同一となり、従来例(図中一点釧線)よ
り減圧量が増加する。
At this time (because the temperature difference between the force point and the point (G) is about 15 degrees, the connecting vibrator 104 and the capillary tube 10
The capillary tube 106 exchanges heat with the capillary tube 106, and the (nu) point is heated, making it a dryer refrigerant than before.
The flow path resistance is slightly increased, which is the same as the state in which the heater 6 is energized in the conventional improved example, and the amount of pressure reduction is increased compared to the conventional example (dotted dotted line in the figure).

つまり本実施例では外気温15°Cで適正となるようキ
ャピラリチー−−ブ106を選定しても外気温が高くな
るとそれに追従して減圧量が増加し、常・′に適正な減
圧量を維持できるものであり、最も効率の良い運転が可
能になるものである。
In other words, in this embodiment, even if the capillary valve 106 is selected to be appropriate at an outside temperature of 15°C, as the outside temperature rises, the amount of pressure reduction will increase accordingly, and the amount of pressure reduction will always be appropriate. It is something that can be maintained and allows for the most efficient operation.

発明の効果 以上の説明からも明らかなように本発明による冷凍装置
はコンデンサの上流部の一部とキャピラリチューブの一
部とを熱交換させたもので、コンデンサのキャピラリチ
ューブとの熱交換部は外気温が16°C程度より低い時
には凝縮を開始し、外気温が15℃より高くなるに従い
、過熱状態が大きくなるポイントである。従って、キャ
ピラリチューブの減圧量を外気温15℃で適正となるよ
う選定することにより、この条件では通常と略同等の減
圧量を発揮し、外気温が高くなる程キャピラリチーーブ
とコンデンサとの熱交換部での熱交換量が増加してキャ
ピラリチー−ブ内での乾き度が増加して流路抵抗が増加
する。これによりキャピラリチー−プでの減圧量が通常
以上となり、外気温に追従してキャビラリチー−ブの減
圧量が変化するため、常に適正な減圧量を維持し、最も
効率の良い運転を可能とするものである。
Effects of the Invention As is clear from the above explanation, the refrigeration system according to the present invention exchanges heat between a part of the upstream part of the condenser and a part of the capillary tube, and the heat exchange part with the capillary tube of the condenser When the outside temperature is lower than about 16°C, condensation starts, and as the outside temperature rises above 15°C, the overheating state becomes greater. Therefore, by selecting the amount of pressure reduction in the capillary tube that is appropriate at an outside temperature of 15°C, the amount of pressure reduction in the capillary tube and condenser will be approximately the same as normal under this condition, and as the outside temperature increases, the amount of pressure reduction between the capillary tube and condenser will decrease. The amount of heat exchanged in the heat exchange section increases, the degree of dryness within the capillary tube increases, and the flow path resistance increases. As a result, the amount of pressure reduction in the capillary chest becomes higher than normal, and the amount of pressure reduction in the capillary chest changes according to the outside temperature, so the appropriate amount of pressure reduction is always maintained and the most efficient operation is possible. It is something.

また、この減圧量制御は電気入力等は一切必要とせず、
冷凍装置の自己制御で行なうため、減圧量の適正化によ
る効率向上が100%発揮できるものである。
In addition, this pressure reduction amount control does not require any electrical input, etc.
Since this is carried out by the self-control of the refrigeration equipment, 100% efficiency improvement can be achieved by optimizing the amount of pressure reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷凍装置の減圧量と効率との関係を示す図であ
る。第2図は従来改良型のシステム概略図、第3図は従
来改良型冷凍装置での減圧量変化、図、第4図は本発明
の一実施例による冷凍装置の概略図、第5図は第4図に
よる冷凍装置の外気温16℃でのモリエル線図変化図、
第6図は外気温30℃でのモリエル線図変化図をそれぞ
れ示すものである。 1.102−’:j7プレツサ、2.103,105゛
・・・・・コンデンサ、3,106・・・・・・キャピ
ラリチューブ、4 、107・・・・・エバポレータ、
5,108・・・・・・ザクジョンパイプ、104・・
・・・接続管(キャピラリチー−−プとコンデンサとの
熱交換部)。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 滌圧量− 第2図 2 第3図 タト妾を温 − 第4図 IO’/
FIG. 1 is a diagram showing the relationship between the amount of pressure reduction and the efficiency of the refrigeration system. Fig. 2 is a schematic diagram of a conventional improved system, Fig. 3 is a diagram showing changes in the amount of reduced pressure in a conventional improved refrigeration system, Fig. 4 is a schematic diagram of a refrigeration system according to an embodiment of the present invention, and Fig. 5 is a schematic diagram of a refrigeration system according to an embodiment of the present invention. Mollier diagram change diagram of the refrigeration equipment at an outside temperature of 16°C according to Fig. 4,
Figure 6 shows Mollier diagram changes at an outside temperature of 30°C. 1.102-': j7 pretusa, 2.103, 105゛... capacitor, 3,106... capillary tube, 4, 107... evaporator,
5,108...Zakujon pipe, 104...
... Connecting tube (heat exchange section between capillary top and condenser). Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 2 Figure 3 Warm up the concubine - Figure 4 IO'/

Claims (3)

【特許請求の範囲】[Claims] (1)  コンプレッサ、コンデンサ、キャピラリチュ
ーブ、エバポレータ、サクションラインを備え、前記コ
ンデンサの上流部の一部と前記キャビラリチー−ブの一
部を交熱的に接合せしめた冷凍装置。
(1) A refrigeration system comprising a compressor, a condenser, a capillary tube, an evaporator, and a suction line, and in which a part of the upstream part of the condenser and a part of the cavity recess are thermally connected.
(2)前記コンデンサは複数で構成され、上流側コンデ
ンサと下流側コンデンサとの接続部と前記キャピラリチ
ー−プの一部とを交熱的に接合せしめた特許請求の範囲
第1項記載の冷凍装置。
(2) The refrigeration system according to claim 1, wherein the capacitor is composed of a plurality of capacitors, and a connecting portion between an upstream capacitor and a downstream capacitor is thermally connected to a part of the capillary chest. Device.
(3)前記キャピラリチー−ブと前記コンデンサとの接
合部はキャピラリチューブの上流部である特許請求の範
囲第1項まだは第2項記載の冷凍装置。
(3) The refrigeration apparatus according to claim 1 or 2, wherein the joint between the capillary tube and the condenser is an upstream portion of the capillary tube.
JP3993383A 1983-03-09 1983-03-09 Refrigerator Pending JPS59164855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3993383A JPS59164855A (en) 1983-03-09 1983-03-09 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3993383A JPS59164855A (en) 1983-03-09 1983-03-09 Refrigerator

Publications (1)

Publication Number Publication Date
JPS59164855A true JPS59164855A (en) 1984-09-18

Family

ID=12566741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3993383A Pending JPS59164855A (en) 1983-03-09 1983-03-09 Refrigerator

Country Status (1)

Country Link
JP (1) JPS59164855A (en)

Similar Documents

Publication Publication Date Title
US4173865A (en) Auxiliary coil arrangement
US4646538A (en) Triple integrated heat pump system
JPS59164855A (en) Refrigerator
US2959937A (en) Refrigeration system for air conditioning units
JPS5824764A (en) Heat pump device
JP2921213B2 (en) refrigerator
JPH03294750A (en) Freezing apparatus
SE8701534D0 (en) DEVICE FOR TEMPERATURE-BASED COOL MEDIA CONTROL BY A HEAT PUMP
JP2001174078A (en) Controlling device of outlet-side refrigerant of evaporator
JPS6155557A (en) Air conditioner
JPH0157269B2 (en)
JP2000081251A (en) Heat pump apparatus
JPS5829826Y2 (en) Refrigerant noise prevention device
JPS5846063U (en) Hot gas defrost device
JPS6058381B2 (en) flow control device
SU848917A1 (en) System for temperature controlling of object
JPS6139256Y2 (en)
JPS595810Y2 (en) Heat pump air conditioner
JPS61243257A (en) Solar-heat utilizing water heater
JPS602778U (en) Cooling device capacity control system
JPS602777U (en) Cooling device capacity control system
JPS6086355A (en) Engine driving heat pump device
JPS59195466U (en) Evaporator antifreeze device
JPS5847967A (en) Refrigerating cycle of air conditioner
JPS58102052A (en) Heat pump type water heating equipment