JPS5847967A - Refrigerating cycle of air conditioner - Google Patents

Refrigerating cycle of air conditioner

Info

Publication number
JPS5847967A
JPS5847967A JP14680681A JP14680681A JPS5847967A JP S5847967 A JPS5847967 A JP S5847967A JP 14680681 A JP14680681 A JP 14680681A JP 14680681 A JP14680681 A JP 14680681A JP S5847967 A JPS5847967 A JP S5847967A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
suction pipe
amount
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14680681A
Other languages
Japanese (ja)
Other versions
JPS6222393B2 (en
Inventor
海原 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14680681A priority Critical patent/JPS5847967A/en
Publication of JPS5847967A publication Critical patent/JPS5847967A/en
Publication of JPS6222393B2 publication Critical patent/JPS6222393B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、空気調和機の冷凍サイクル、特に分離型空気
調和機の冷凍サイクルに関するもので、冷凍サイクヘΩ
高効率化および、負荷変動に対する追随性の向上を目的
としたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration cycle for an air conditioner, particularly a refrigeration cycle for a separate air conditioner.
The purpose is to increase efficiency and improve followability to load fluctuations.

従来、空気調和機に用いられている主な冷凍サイクルは
、第1図に示すように、圧縮機1a、室外側熱交換器(
凝縮器)2a、キャピラリテ・、−プ等の減圧装置3a
、室内側熱交換器(蒸発器)4aの順に環状に配管にて
連結した構成と汐っている。また、一般的に空気調和機
の電源は、5゜Hzとe o Hzを共用するように設
計しておシ:しかも、JIS(日本工業規格)によって
決められた空調条件下において層高の効率となるように
冷凍サイクルを設計している。
Conventionally, the main refrigeration cycle used in air conditioners consists of a compressor 1a, an outdoor heat exchanger (
condenser) 2a, pressure reducing device 3a such as capillary pipe etc.
, an indoor heat exchanger (evaporator) 4a are connected in an annular manner through piping. In addition, the power supply for air conditioners is generally designed to share 5°Hz and e o Hz; The refrigeration cycle is designed so that

しかるに、60 Hz運転時は、圧縮機1aの吐出流量
が60Hz運転時に比べて小さくなり、減圧装置3aの
減圧効果が小さくなり、室内側熱交換器4aに多量の冷
媒を流入するため、圧縮機1aに吸入される冷媒の過熱
度はeoHz運転の場合よシ小さくなる。冷凍サイクル
の効率は過熱度によって影響され、おおむね過熱度が6
deg〜10deg程度にて最高値を示す。ところが、
−F記のように50Hg運転時と6oHz運転時では過
熱度が異なるため、各々の周波数の妥協点において使用
することとなり、各々の周波数での運転の最高効率点で
は運転できないことが多かった。
However, when operating at 60 Hz, the discharge flow rate of the compressor 1a becomes smaller than when operating at 60 Hz, the pressure reducing effect of the pressure reducing device 3a becomes smaller, and a large amount of refrigerant flows into the indoor heat exchanger 4a, so that the compressor The degree of superheating of the refrigerant sucked into 1a is smaller than in the case of eoHz operation. The efficiency of the refrigeration cycle is affected by the degree of superheating, and the degree of superheating is approximately 6.
It shows the highest value at about 10 deg to 10 deg. However,
Since the degree of superheating is different between 50Hg operation and 6oHz operation as shown in -F, each frequency has to be used at a compromise, and it is often not possible to operate at the highest efficiency point of operation at each frequency.

また、室内側の負荷がL昇した場合、室内側熱交換器4
aの能力が上昇するが、それに見合って、減圧装置3a
の冷媒供給量は増大しないため、圧縮機1aに吸入され
る冷媒の過熱度は大巾に増大し、最高効率点よりずれる
こととなっていた。
In addition, when the indoor load increases by L, the indoor heat exchanger 4
Although the capacity of the pressure reducing device 3a increases, commensurately,
Since the amount of refrigerant supplied to the compressor 1a does not increase, the degree of superheating of the refrigerant sucked into the compressor 1a increases significantly, and deviates from the maximum efficiency point.

さらに、上記のように冷媒過熱度が大きく増大した場合
、室内側熱交換器4aの一部は過熱蒸気のため温度が上
昇し、高温高湿の空気がその室内側熱交換器4aを通過
した場合、ファンや風胴に結露するという欠点を有して
いた。
Furthermore, when the degree of superheating of the refrigerant increases significantly as described above, the temperature of a part of the indoor heat exchanger 4a increases due to superheated steam, and high temperature and high humidity air passes through the indoor heat exchanger 4a. In this case, the disadvantage was that dew condensation formed on the fan and wind cylinder.

こういった欠点を補うものとして従来においては第2図
のように1圧縮機1aの吸入管6aの温度を感知して減
圧量を調整する温度式自動膨張弁6aを組み込んだ冷凍
サイクルが用いられていたが、室外ユニットと室内ユニ
ットに分離した分離型空気調和機においては、室外ユニ
ットと室内ユニットを連結する内外接続配管7とがある
ことによって室内側熱交換器(蒸発器)4aと圧縮機1
aの間の圧力損失が大きい場合は、感熱部8aの近傍の
圧力を検知する機構9aを付加して圧力と温度の両方で
動作する外圧均等型温度自動膨張弁6aを用いなければ
ならず、これは高価であるばかりでなく、感熱部8aの
感熱状態によっては冷凍サイクルが不安定になってハン
゛チング現象を起こし、また、機構が複雑で可動部分が
あるため故障が多い等の種々の欠点を有していた。
To compensate for these shortcomings, conventionally, as shown in Fig. 2, a refrigeration cycle has been used which incorporates a temperature-type automatic expansion valve 6a that senses the temperature of the suction pipe 6a of one compressor 1a and adjusts the amount of pressure reduction. However, in a separate air conditioner that has an outdoor unit and an indoor unit, the indoor heat exchanger (evaporator) 4a and compressor 1
If the pressure loss between a and a is large, it is necessary to add a mechanism 9a that detects the pressure near the heat sensitive part 8a and use an external pressure equalization temperature automatic expansion valve 6a that operates based on both pressure and temperature. This is not only expensive, but also causes various problems, such as the refrigeration cycle becoming unstable and a hunting phenomenon depending on the thermal state of the heat-sensitive part 8a, and the mechanism being complex and having moving parts, which often result in failures. It had drawbacks.

また、第3図に示す如く、冷媒を貯蔵する受液器10 
aを減圧装置3aと室内側熱交換器4aとの間に連結し
、さらに圧縮機1aの吸入管6aを受液器10a°に貫
通させ、負荷に応じて受液器内に貯蔵される冷媒の液相
の割合を変化させて冷媒回路中の冷媒循環量を最適なも
のに調節する冷凍サイクル(例えば、吸入管6aの温度
が上昇すると、受液器内の冷媒が蒸発して液相の割合が
少なくなり、その結果、冷媒回路中の冷媒循環量が多く
なって過熱度が調節される冷凍サイクル)が知られてい
るが1分離型空気調和機では内外接続配管7aがあり、
この接続配管7aが減圧装置の一部として働くため、減
圧装置3aの出口の圧力に対する飽和温度は、空調負荷
が増大して吸入管6aの温度が高くなった場合より高く
、したがって、負荷増大時においても受液器内には過冷
却液が充満したままで冷媒量の調節が行なわれないとい
う欠点があった。
In addition, as shown in FIG. 3, a liquid receiver 10 for storing refrigerant
A is connected between the pressure reducing device 3a and the indoor heat exchanger 4a, and the suction pipe 6a of the compressor 1a is passed through the liquid receiver 10a, and the refrigerant is stored in the liquid receiver according to the load. A refrigeration cycle that adjusts the amount of refrigerant circulating in the refrigerant circuit to the optimum level by changing the proportion of the liquid phase (for example, when the temperature of the suction pipe 6a rises, the refrigerant in the liquid receiver evaporates and the liquid phase A refrigeration cycle is known in which the degree of superheat is adjusted by increasing the amount of refrigerant circulated in the refrigerant circuit, but the one-separation type air conditioner has an internal and external connection pipe 7a,
Since this connecting pipe 7a works as a part of the pressure reducing device, the saturation temperature for the pressure at the outlet of the pressure reducing device 3a is higher than when the air conditioning load increases and the temperature of the suction pipe 6a becomes high. However, there was a drawback that the receiver remained filled with supercooled liquid and the amount of refrigerant could not be adjusted.

本発明は、上記従来の冷凍サイクルに見られる鍾々の欠
点を解消するもので、以下;本発明の一実施例を第4図
、第6図を参照して説明する。
The present invention solves the drawbacks of the conventional refrigeration cycle described above, and one embodiment of the present invention will be described below with reference to FIGS. 4 and 6.

第4図は本発明の一実施例を示す分離型空気調和機の冷
凍サイクル図で、Aは室外ユニット、Bは室内ユニット
である。この2つの工ニットは、接続配管9,1oによ
り連結されている。1は圧縮機、2は室外側熱交換器(
凝縮器)、3はキャピラリチューブよシなる減圧装置、
4は室内側熱交換器(蒸発器)、6は圧縮機1の吸入管
で、これらは図示する順に環状に連結されている。6は
冷媒を貯蔵する受液器で、第6図に示す如く吸入管6が
その内部を貫通し、連結管7によって減圧装置3の出口
点Xと連結されている。8は電気ヒータで、受液器6の
外周に巻付けられている。
FIG. 4 is a refrigeration cycle diagram of a separate air conditioner showing an embodiment of the present invention, where A is an outdoor unit and B is an indoor unit. These two knits are connected by connecting pipes 9 and 1o. 1 is a compressor, 2 is an outdoor heat exchanger (
3 is a pressure reducing device such as a capillary tube,
4 is an indoor heat exchanger (evaporator), 6 is a suction pipe of the compressor 1, and these are connected in an annular manner in the order shown. Reference numeral 6 denotes a liquid receiver for storing refrigerant, through which a suction pipe 6 passes, as shown in FIG. Reference numeral 8 denotes an electric heater, which is wound around the outer periphery of the liquid receiver 6.

次に冷媒量の調節について説明すると、今、空気調和機
の冷媒回路中には、最高負荷時に必*1−量の冷媒が充
填されているも・のとする。
Next, to explain the adjustment of the amount of refrigerant, it is assumed that the refrigerant circuit of the air conditioner is currently filled with the required amount of refrigerant at the time of maximum load.

一般に、冷凍装置の冷媒回路に負荷に対して適応する量
の冷媒が充填されているときには、吸入管の温度はある
温度に保たれる。
Generally, when the refrigerant circuit of a refrigeration system is filled with refrigerant in an amount appropriate for the load, the temperature of the suction pipe is maintained at a certain temperature.

したがって、上記装置が最適の春菊条件で運転されでい
る間は、吸入管6の温閾はある温度に保たれている。こ
の場合、冷媒回路中のXの点では、分離型空気調和機で
あるため内外接続配管e逅あり、この接続配管9も減圧
機能を持つため、比較的高い圧力となっておシ、その飽
和温度は吸入管6よシ高くなっている。したがって、受
液器6の内部で紘冷媒の凝縮が行なわれ、ある高さの液
がたまりている。受液器6は前記のごとく電気ヒータ8
が巻きつけられているため、電気ヒニタ8にある一定の
電流が流されると、そや発熱によシ受液温6内側面では
冷媒の蒸発が行なわれる。すな、わち、受′液温6内で
吸入管6による凝縮と電気ヒータ80発熱による蒸発と
がバランスして′液面社媒の過熱度は小さくなり、吸入
管6の温度はする。
Therefore, the temperature threshold of the suction pipe 6 is maintained at a certain temperature while the above-mentioned device is operated under the optimum chrysanthemum conditions. In this case, at point The temperature is higher than that of the suction pipe 6. Therefore, the liquid refrigerant is condensed inside the liquid receiver 6, and the liquid accumulates at a certain height. The liquid receiver 6 is equipped with an electric heater 8 as described above.
Since the refrigerant is wound around the refrigerant, when a certain current is passed through the electric heater 8, heat is generated and the refrigerant evaporates on the inner surface of the receiving liquid temperature 6. That is, within the receiving liquid temperature 6, condensation by the suction pipe 6 and evaporation due to heat generated by the electric heater 80 are balanced, so that the degree of superheating of the medium at the liquid level decreases, and the temperature of the suction pipe 6 increases.

したがって、吸入管6が貫通している受液器6内での凝
縮量が多くなり、より高い液位で7(ランスする。この
結果、受液器6の内部に含まれる冷媒の質量は負荷減少
前と比較して増加する。この増加した冷媒は、冷媒が回
路中よシ受液温6内に流入した冷媒であるため、冷媒回
路中の過剰な冷−が取除かれたこととなり、吸入管6の
温度は元の最適値に近づく。
Therefore, the amount of condensation in the liquid receiver 6 through which the suction pipe 6 passes increases, and the liquid level is higher than 7 (lance).As a result, the mass of the refrigerant contained inside the liquid receiver 6 is This increases compared to before the decrease.This increased refrigerant is the refrigerant that has flowed into the receiving liquid temperature 6 through the circuit, so excess cooling in the refrigerant circuit has been removed. The temperature of the suction pipe 6 approaches the original optimum value.

これとは逆に、負荷がある負荷条件よりも増加したとき
には、上記吸入管6の温度が上がり、受液器内の凝縮量
は減少するためより低い液位で)くランスする。このこ
とは、冷媒回路中の有効冷媒量が増大したこととなり、
吸入管6の温度は元の最適値に近づく。
On the contrary, when the load increases above a certain load condition, the temperature of the suction pipe 6 rises and the amount of condensation in the liquid receiver decreases, causing the liquid to drain at a lower level. This means that the effective amount of refrigerant in the refrigerant circuit has increased,
The temperature of the suction pipe 6 approaches the original optimum value.

こわから明らかなように負荷の変動に応じて、吸入管6
の温度が変化し、受液器6内の冷媒Q凝縮と蒸発のバラ
ンスによって受液器6内の液量を制御し、冷凍サイクル
内の冷媒量を常に最適な値に1呆てるので゛ある。
As is clear from the fear, the suction pipe 6
As the temperature changes, the amount of liquid in the receiver 6 is controlled by the balance between condensation and evaporation of the refrigerant Q in the receiver 6, and the amount of refrigerant in the refrigeration cycle is always kept at the optimum value. .

第6図は上記受液器6の具体的構造の一例を示している
が、受液器6は同図のように直径大なる管に吸入管6を
貫通して両端を偏平にすれば比較的簡単に製作できる。
FIG. 6 shows an example of the specific structure of the liquid receiver 6. The liquid receiver 6 can be constructed by penetrating the suction pipe 6 into a pipe with a large diameter and making both ends flat for comparison. It can be easily produced.

また受液器e内の凝縮量と蒸発量の調整は吸入管6の管
径および電気ヒータ発熱量を適切に選ぶことによって簡
単に行なえる。
Further, the amount of condensation and evaporation in the receiver e can be easily adjusted by appropriately selecting the diameter of the suction pipe 6 and the amount of heat generated by the electric heater.

以上の説明から明らかなように本発明は、圧縮機、室外
側熱交換器、減圧装置、室内側熱交換器を環状に連結し
、減圧装置と室内側熱交換器との間に受液器を連結し、
との受液器に圧縮機の吸入管を貫通させるなどして熱交
換的に配設すると共に、発熱体を−付けるなどして熱交
換的に配設したので、負荷条件に対して循環冷媒が適量
であるときは、受液器内の冷媒量は、減圧装置の出口に
おける圧力に対する飽和温度より低い温度となる吸入管
による凝縮と高い温度となる発熱体による蒸発とがある
液位でバランスし、負荷が減少すれば吸入管の温度が下
がシ凝縮量が増加し受液器内の冷媒量が増大して冷媒回
路内の冷媒を減少させ、負荷が増大すると凝縮量が減り
受液器内の冷媒量が減少して冷媒回路内の冷媒を増大さ
せることとなり、冷媒回路中の冷媒を負荷に応じて適量
に保持することができ、従来のものに比して負荷条件に
かかわらず効率のよい冷凍装置を提供することができる
。また、低負荷時に液冷媒が圧縮機に帰還するのを防ぐ
ことができるので、液圧縮による圧縮機の故障を防止で
きるとともに高負荷時に熱交換器の過熱度が大きくなり
、高温高湿度の空気が通過した場合、未凝縮の水包がフ
ァンや風胴に結露するという問題は解消される。さらに
従来のような温度式自動膨張弁による過熱度調節装置に
比して構造が簡単で可動部分がないため、故障が少なく
また極めて安価につくることができ、さらに受液器内の
凝縮と蒸発のバランスをとるため蒸発を促す制御が発熱
体の容量を変えることで容易に行えるという種々の利点
を有するものである。
As is clear from the above description, the present invention connects a compressor, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger in an annular manner, and a liquid receiver is provided between the pressure reducing device and the indoor heat exchanger. concatenate,
The suction pipe of the compressor is passed through the liquid receiver of the compressor for heat exchange, and a heating element is attached to the receiver for heat exchange. When the amount of refrigerant is appropriate, the amount of refrigerant in the liquid receiver is balanced at a liquid level where condensation occurs in the suction pipe at a temperature lower than the saturation temperature for the pressure at the outlet of the pressure reducing device, and evaporation occurs at a high temperature due to the heating element. However, if the load decreases, the temperature of the suction pipe will decrease, and the amount of condensation will increase, and the amount of refrigerant in the receiver will increase, reducing the amount of refrigerant in the refrigerant circuit. The amount of refrigerant in the refrigerant circuit decreases and the amount of refrigerant in the refrigerant circuit increases, making it possible to maintain an appropriate amount of refrigerant in the refrigerant circuit depending on the load, regardless of the load conditions compared to conventional systems. An efficient refrigeration system can be provided. In addition, since it is possible to prevent liquid refrigerant from returning to the compressor during low loads, it is possible to prevent compressor failure due to liquid compression. If this happens, the problem of uncondensed water packets condensing on the fan or wind barrel will be eliminated. Furthermore, compared to conventional superheat control devices using thermostatic automatic expansion valves, the structure is simpler and there are no moving parts, so there are fewer failures and it can be manufactured at an extremely low cost. It has various advantages in that control to promote evaporation can be easily carried out by changing the capacity of the heating element in order to balance the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図はそれぞれ異なった従来例を示
す冷凍サイクル図、第4図は本発明の一実施例を示す空
気調和機の冷凍サイクノト図、第5ある。 1・・・・・・圧縮機、2・・・・・・室外側熱交換器
、3・・・・・・減圧装置、4・・・・・・室内側熱交
換器、6・・・・・・・・吸入管、6・・・・・・受液
器、7・・・・・・連結管。 8・・・・・・発熱体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ai2図 第 3 図゛
1, 2, and 3 are refrigeration cycle diagrams showing different conventional examples, FIG. 4 is a refrigeration cycle diagram of an air conditioner showing an embodiment of the present invention, and FIG. 1... Compressor, 2... Outdoor heat exchanger, 3... Pressure reducing device, 4... Indoor heat exchanger, 6... ... Suction pipe, 6 ... Liquid receiver, 7 ... Connection pipe. 8... Heating element. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure ai Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室外側熱交換器、減圧装置、及び室内側熱交換
器をぞJlぞれ環状に連結11、前記減+1゜置と室内
側熱交換器との間に受液器を連結し、この受液器に前記
圧縮機の吸入管を熱交換的に配設し、かつ、前記受液器
に熱交換的に発熱体を配設してなる空気調和機の冷凍サ
イクル。
A compressor, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger are each connected in a ring 11, a liquid receiver is connected between the +1° position and the indoor heat exchanger, A refrigeration cycle for an air conditioner, wherein a suction pipe of the compressor is disposed in the liquid receiver for heat exchange, and a heating element is disposed in the liquid receiver for heat exchange.
JP14680681A 1981-09-16 1981-09-16 Refrigerating cycle of air conditioner Granted JPS5847967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14680681A JPS5847967A (en) 1981-09-16 1981-09-16 Refrigerating cycle of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14680681A JPS5847967A (en) 1981-09-16 1981-09-16 Refrigerating cycle of air conditioner

Publications (2)

Publication Number Publication Date
JPS5847967A true JPS5847967A (en) 1983-03-19
JPS6222393B2 JPS6222393B2 (en) 1987-05-18

Family

ID=15415945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14680681A Granted JPS5847967A (en) 1981-09-16 1981-09-16 Refrigerating cycle of air conditioner

Country Status (1)

Country Link
JP (1) JPS5847967A (en)

Also Published As

Publication number Publication date
JPS6222393B2 (en) 1987-05-18

Similar Documents

Publication Publication Date Title
US4173865A (en) Auxiliary coil arrangement
US4441901A (en) Heat pump type airconditioner
US4569207A (en) Heat pump heating and cooling system
WO2003095906A1 (en) Thermo siphon chiller refrigerator for use in cold district
JP2005156030A (en) Heat pump apparatus
US2746266A (en) Air conditioning apparatus
JPS5847967A (en) Refrigerating cycle of air conditioner
JPS6222391B2 (en)
KR100441008B1 (en) Cooling and heating air conditioning system
JPS621517B2 (en)
JPS5847964A (en) Refrigerating cycle of air conditioner
JPS621516B2 (en)
JPH0471142B2 (en)
JP3159038B2 (en) Absorption heat pump
JPS5969663A (en) Refrigeration cycle
JPS621515B2 (en)
JPS62225865A (en) Heat pump type air conditioner
JPS595810Y2 (en) Heat pump air conditioner
JPS5835971Y2 (en) Refrigeration equipment
JPS6343660B2 (en)
JPH0730977B2 (en) Heat pump device
JPS6058381B2 (en) flow control device
JPH09236354A (en) Absorption type heat pump
JPH0341744B2 (en)
JPS58115269A (en) Heat pump type air conditioner