JPS6086355A - Engine driving heat pump device - Google Patents
Engine driving heat pump deviceInfo
- Publication number
- JPS6086355A JPS6086355A JP58195621A JP19562183A JPS6086355A JP S6086355 A JPS6086355 A JP S6086355A JP 58195621 A JP58195621 A JP 58195621A JP 19562183 A JP19562183 A JP 19562183A JP S6086355 A JPS6086355 A JP S6086355A
- Authority
- JP
- Japan
- Prior art keywords
- engine
- compressor
- heat
- refrigerant
- heat pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
- Y02A30/274—Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/52—Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、エンジンによって圧縮機を駆動し、ヒートポ
ンプ運転を行い得られた熱を冷房、暖房あるいは給湯に
利用するとともに、エンジンの排熱の有効利用をも図る
エンジン駆動ヒートポンプ装置に関する・
従来布旧人魂成と乙びd1甜す志、 2ページ一般に蒸
気圧縮式ヒートポンプは、圧縮機、凝縮器、蒸発器と膨
張弁等で構成される。この種のヒートポンプ装置の従来
例を添付図面の第1図に示す。第1図は暖房時のヒート
ポンプ運転状態を示し、原動機11.圧縮機12.四方
弁13.水熱交換器(凝縮器)14.逆止弁16.膨張
弁16、および空気熱交換器(蒸発器)17.ファン1
9より構成されている。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses an engine to drive a compressor, performs heat pump operation, and uses the obtained heat for cooling, heating, or hot water supply, as well as effectively utilizing engine exhaust heat. Regarding engine-driven heat pump devices that also aim to achieve A conventional example of this type of heat pump device is shown in FIG. 1 of the accompanying drawings. FIG. 1 shows the operating state of the heat pump during heating, and shows the prime mover 11. Compressor 12. Four-way valve 13. Water heat exchanger (condenser) 14. Check valve 16. expansion valve 16, and air heat exchanger (evaporator) 17. fan 1
It is composed of 9.
また、第2図には冷媒のモリエル線図上に描いたヒート
ポンプサイクルabcdefgを示す。Further, FIG. 2 shows a heat pump cycle abcdefg drawn on a Mollier diagram of a refrigerant.
縦軸は冷媒の圧力で横軸は冷媒のエンタルピーである。The vertical axis is the pressure of the refrigerant, and the horizontal axis is the enthalpy of the refrigerant.
第1図と第2図を対照してヒートポンプサイクルを説明
すると、圧縮機12による圧力P。To explain the heat pump cycle by comparing FIG. 1 and FIG. 2, the pressure P caused by the compressor 12.
からP2への圧縮過程はq→aで示され、水熱交換器1
4における凝縮過程はa→dであって、ここで暖房用温
水がつくられる。さらに、膨張弁16による絞り膨張過
程がd −+ 6で示され、空気熱交換器17による蒸
発過程が8−+ qで示され、ここで大気熱源から熱が
汲み上げられる。The compression process from P2 to P2 is shown as q→a,
The condensation process in step 4 is from a to d, and hot water for heating is produced here. Furthermore, the throttling expansion process by the expansion valve 16 is indicated by d −+ 6, and the evaporation process by the air heat exchanger 17 is indicated by 8−+ q, where heat is pumped up from the atmospheric heat source.
さて、ここで空気熱交換器17における蒸発過3ページ
程をさらに詳しく説明すると、e −+ fの過程は冷
媒が等温2等圧のもとで蒸発する過程であり、f→qの
過程は蒸発した冷媒が等圧のもとで過熱されて温度上昇
する過程である。ここで、f点と9点との温度差が過熱
度であり、一般には6Kから10に程度の過熱度のもと
てヒートポンプサイクルが運転される。これは、圧縮機
12に液冷媒が流れ込むと圧縮機12が液圧縮をして破
損してしまうので、液圧縮を防止する為である。第2図
の9点は第1図における空気熱交換器17の出口18の
点で示されるが、出口18の点で適当な過熱度が取れる
ように、一点鎖線16′で示されるフィードバックによ
って膨張弁16の開度が調節されるのである。一般にこ
の様な膨張弁16は温度膨張弁と呼ばれ、例えば大気の
温度が低下して過熱度が小さくなった時は、膨張弁開度
を小さくして膨張弁による圧力降下中d −+ 6を大
きくし、蒸発圧力P1 を低下させて、適当な過熱度を
確保する役割を果たす。Now, to explain in more detail the evaporation process in the air heat exchanger 17 for about 3 pages, the e − + f process is a process in which the refrigerant evaporates under an isothermal and 2-equal pressure, and the f → q process is This is a process in which evaporated refrigerant is superheated under equal pressure and its temperature rises. Here, the temperature difference between point f and point 9 is the degree of superheating, and the heat pump cycle is generally operated at a degree of superheating of about 6K to 10K. This is to prevent liquid compression, since if the liquid refrigerant flows into the compressor 12, the compressor 12 will compress the liquid and be damaged. Point 9 in FIG. 2 is indicated by the outlet 18 of the air heat exchanger 17 in FIG. The opening degree of the valve 16 is adjusted. Generally, such an expansion valve 16 is called a temperature expansion valve. For example, when the atmospheric temperature decreases and the degree of superheating becomes small, the expansion valve opening degree is decreased to reduce the pressure drop due to the expansion valve. It plays the role of increasing the evaporation pressure P1 and lowering the evaporation pressure P1 to ensure an appropriate degree of superheating.
ところで、蒸発過程e→fと過熱過程f−+gとを比較
すると、蒸発過程111−J) fにおいては冷媒の相
変化を伴う熱伝達であるのに対し、過熱過程f→qにお
いては冷媒が単−相(気体)の熱伝達であるので、局所
的な熱伝達率は、後者が前者に対して著しく低い。過熱
過程f−+gの熱伝達量は蒸発過程6−+ fの熱伝達
量の福程度しかないのに、伝熱面積は、過熱過程f−+
’gに蒸発器全体のμ程度も使用されている場合がある
。By the way, when comparing the evaporation process e→f and the superheating process f-+g, in the evaporation process 111-J) f, heat transfer is accompanied by a phase change of the refrigerant, whereas in the superheating process f→q, the refrigerant changes. Since it is a single-phase (gas) heat transfer, the local heat transfer coefficient is significantly lower in the latter than in the former. Although the heat transfer amount in the superheating process f-+g is only about the same as the heat transfer amount in the evaporation process 6-+f, the heat transfer area is
In some cases, the μ of the entire evaporator is also used for 'g.
以上述べた様に、従来の蒸発器においては、すべての伝
熱面が冷媒の相変化を伴う熱伝達に有効に使われること
は々く、冷媒の気体状態での過熱のために相当量の伝熱
面が使われてしまうので、蒸発器全体としての伝熱面積
当たりの熱伝達効率が低いという問題があった。As mentioned above, in conventional evaporators, all the heat transfer surfaces are not often used effectively for heat transfer accompanied by a phase change of the refrigerant, and a considerable amount of heat transfer is required due to the overheating of the refrigerant in its gaseous state. Since the heat transfer surface is used, there is a problem in that the heat transfer efficiency per heat transfer area of the evaporator as a whole is low.
また、圧縮機の駆動源としてエンジンを使用する場合、
エンジンおよび圧縮機をひとつの筐体に納めて密閉し騒
音を低減させる対策が講じられているが、エンジンと圧
縮機を同一の筐体に納めて密閉すると、エンジンおよび
圧縮機からの放熱によって筐体内の空気温度が100″
C程度まで上昇6ページ
してしまう。すると、エンジンへの吸入空気温度が上昇
して吸入空気量が減少し、エンジン出力が低下したり、
圧縮機の温度が上昇して圧縮効率、ひいては成績係数が
低下するという問題があった。Also, when using an engine as the drive source for the compressor,
Countermeasures have been taken to reduce noise by housing the engine and compressor in the same housing and sealing them, but if the engine and compressor are housed in the same housing and hermetically sealing them, the heat radiated from the engine and compressor will reduce the noise. The air temperature inside the body is 100″
It goes up to about C and ends up being 6 pages long. As a result, the temperature of the intake air to the engine increases, the amount of intake air decreases, and the engine output decreases.
There has been a problem in that the temperature of the compressor increases, resulting in a decrease in compression efficiency and, ultimately, a decrease in the coefficient of performance.
発明の目的
本発明は上記従来の欠点を解消するもので、蒸発器のす
べての伝熱面で蒸発を行なわせしめ、成績係数の高い、
あるいは熱交換器の小さいエンジン駆動ヒートポンプ装
置を提供することを目的とする。OBJECT OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventional technology.
Another object is to provide an engine-driven heat pump device with a small heat exchanger.
発明の構成
本発明によるエンジン駆動ヒートポンプ装置は、上記の
目的を達成するために、蒸発器の出口における冷媒が気
液混合状態になるように、エンジンおよび圧縮機を納め
た筐体内に、圧縮機に吸入される冷媒を筐体内空気によ
って加熱する手段とを具備している・
実施例の説明
本発明によるエンジン駆動ヒートポンプ装置の一実施例
を第3図に示す。21はエンジンであシ、6ページ
22はエンジン21によって駆動される圧縮機である。Composition of the Invention In order to achieve the above object, the engine-driven heat pump device according to the present invention has a compressor installed in a housing housing the engine and the compressor so that the refrigerant at the outlet of the evaporator is in a gas-liquid mixed state. and a means for heating the refrigerant sucked into the housing by the air within the housing.Description of an Embodiment An embodiment of an engine-driven heat pump device according to the present invention is shown in FIG. Reference numeral 21 is an engine, and reference numeral 22 is a compressor driven by the engine 21.
圧縮機22によって高圧に圧縮されたガス状の冷媒は、
四方弁23へと送り込まれる。この四方弁23は冷房運
転時と暖房運転時とで冷媒の流れ方向を逆にするもので
、第3図は暖房運転時における四方弁の位置を示してい
る。また、第3図の実線の矢印は暖房運転時の熱媒体(
ヒートポンプサイクルの冷媒、エンジン冷却水等)の流
れ方向を示し、点線の矢印は冷房運転時の熱媒体の流れ
方向を示している。The gaseous refrigerant compressed to high pressure by the compressor 22 is
It is fed into the four-way valve 23. This four-way valve 23 reverses the flow direction of the refrigerant during cooling operation and during heating operation, and FIG. 3 shows the position of the four-way valve during heating operation. In addition, the solid arrow in Figure 3 indicates the heat medium (
The dotted line arrow indicates the flow direction of the heat medium during cooling operation.
以下では、実線の矢印に沿った暖房運転を例にとり、本
発明を説明する。In the following, the present invention will be explained by taking a heating operation along the solid arrow as an example.
四方弁23を出たガス状の冷媒は、水熱交換器(暖房運
転時は凝縮器、冷房運転時は蒸発器)24内で凝縮し、
この時冷媒の凝縮潜熱で暖房用温水がつくられる。水熱
交換器24を出だ液冷媒は、逆止弁26を通った後、膨
張弁26を経て減圧される。この後、低圧の液冷媒はフ
ァン29を備えた空気熱交換器(暖房運転時は蒸発器、
冷房運転時は凝縮器)27内で大気熱源から熱を奪って
蒸7バージ
発する。この時、空気熱交換器27の出口28における
温度信号が一点鎖線26′に沿って膨張弁26にフィー
ドパ・ンクされ、膨張弁26は、空気熱交換器27の出
口28における冷媒が気液混合の二相の状態になるよう
に、その開度を調節する。The gaseous refrigerant that exits the four-way valve 23 is condensed in a water heat exchanger 24 (condenser during heating operation, evaporator during cooling operation),
At this time, hot water for heating is created using the latent heat of condensation of the refrigerant. The liquid refrigerant leaving the water heat exchanger 24 passes through the check valve 26 and then through the expansion valve 26 and is depressurized. After this, the low-pressure liquid refrigerant is transferred to an air heat exchanger equipped with a fan 29 (an evaporator during heating operation,
During cooling operation, heat is taken from the atmospheric heat source in the condenser (27) and steam is generated. At this time, the temperature signal at the outlet 28 of the air heat exchanger 27 is fed to the expansion valve 26 along the dashed line 26', and the expansion valve 26 detects that the refrigerant at the outlet 28 of the air heat exchanger 27 is mixed with gas and liquid. Adjust the opening degree so that the two-phase state is achieved.
すなわち、空気熱交換器27内では冷媒の蒸発が起こる
のみで、ガス状冷媒の過熱は行なわれない。That is, only evaporation of the refrigerant occurs in the air heat exchanger 27, and the gaseous refrigerant is not superheated.
そして、気液混合状態の冷媒は、再び四方弁23を経た
後、エンジン21および圧縮機22を納めた筐体3o内
に設けられた熱交換器31に入る。Then, the refrigerant in the gas-liquid mixed state passes through the four-way valve 23 again, and then enters the heat exchanger 31 provided in the casing 3o that houses the engine 21 and compressor 22.
ここで、残りの液冷媒は筐体3o内の高温の空気によっ
て加熱され、完全に蒸発しさらには過熱されて圧縮機2
2に戻り、ヒートポンプサイクルは完結する。Here, the remaining liquid refrigerant is heated by the high temperature air inside the housing 3o, completely evaporates, and is further superheated to the compressor 2.
Returning to step 2, the heat pump cycle is completed.
また、32はエンジンの排気ガスからの排熱回収熱交換
器であって、マフラーをも兼ねている。Further, 32 is a heat exchanger for recovering exhaust heat from engine exhaust gas, and also serves as a muffler.
33は温水−次回路であって、水熱交換器(凝縮器)2
4で温められた後、エンジン21の周囲に配設されたウ
ォータージャケット内及び排熱回収熱交換器32を通っ
てさらに温められた水が流れている。34は温水熱交換
器であって、36は温水二次回路である。温水熱交換器
34は温水−次回路33の熱を二次回路36に伝える役
割を果たし、これによシ貯湯タンク36内の水が温めら
れることになる。また、37は給水流路で、38は温水
取出流路である。33 is a hot water next circuit, which includes a water heat exchanger (condenser) 2
4, the further heated water flows through the water jacket disposed around the engine 21 and through the exhaust heat recovery heat exchanger 32. 34 is a hot water heat exchanger, and 36 is a hot water secondary circuit. The hot water heat exchanger 34 plays the role of transmitting the heat of the hot water secondary circuit 33 to the secondary circuit 36, thereby warming the water in the hot water storage tank 36. Further, 37 is a water supply flow path, and 38 is a hot water extraction flow path.
さて、本発明によれば、空気熱交換器(蒸発器)27内
では入口から出口に至るまで相変化を伴う冷媒の蒸発が
起っているので、出口付近においても局所的な熱伝達率
を従来に比較して高く維持することができる。すなわち
、従来と同じ蒸発圧力で蒸発させる場合には従来の過熱
過程に用いられた分だけ空気熱交換器27を小さくする
ことができる。一方、従来と同じ空気熱交換器27を用
いた場合には、出口付近の局所的熱伝達率が向上した分
だけ、大気熱源との温度差を小さくすることができるの
で蒸発圧力が上昇し、ヒートポンプサイクルの蒸発圧力
と凝縮圧力との差が小さくなってヒートポンプサイクル
の成績係数が向上する。Now, according to the present invention, since the refrigerant evaporates with a phase change in the air heat exchanger (evaporator) 27 from the inlet to the outlet, the local heat transfer coefficient also changes near the outlet. It can be maintained higher than before. That is, when evaporating at the same evaporation pressure as in the past, the air heat exchanger 27 can be made smaller by the amount used in the conventional superheating process. On the other hand, when the same air heat exchanger 27 as the conventional one is used, the temperature difference with the atmospheric heat source can be reduced by the improvement in the local heat transfer coefficient near the outlet, so the evaporation pressure increases. The difference between the evaporation pressure and the condensation pressure of the heat pump cycle is reduced, and the coefficient of performance of the heat pump cycle is improved.
すなわち、本発明によれば蒸発器のすべての伝熱9ペー
ジ
面積を有効利用することができることになる。That is, according to the present invention, the entire heat transfer area of the evaporator can be effectively utilized.
ただし、以上の利点を実現するためには、エンジン21
および圧縮機22を納めた筐体3o内に、筐体30内の
空気によって冷媒を加熱する熱交換器31を新たに設け
なければならない。ここで、筐体30はエンジン21お
よび圧縮機22から出る騒音を遮へいするために密閉構
造にしているので、筐体3o内部はエンジン21および
圧縮機22からの放熱によって大気熱源より数10度高
くなる。従って、筐体30内に冷媒加熱用熱交換器31
を新たに設けることになってもなお本発明は効果が大き
いのである。However, in order to realize the above advantages, the engine 21
In addition, a heat exchanger 31 that heats the refrigerant using the air in the housing 30 must be newly installed in the housing 3o that houses the compressor 22. Here, since the casing 30 has a sealed structure to shield noise from the engine 21 and compressor 22, the inside of the casing 3o is several tens of degrees warmer than the atmospheric heat source due to the heat radiated from the engine 21 and compressor 22. Become. Therefore, a heat exchanger 31 for heating the refrigerant is installed inside the housing 30.
The present invention is still highly effective even if it is newly provided.
また、従来までは筐体3o内は高温となって100’C
程度まで温度が上がるので、エンジン21に吸入される
空気の温度も上昇して、吸入空気量(質量)が減少し、
エンジン出力が低下するという問題や圧縮機22自体が
高温となって圧縮効率(ひいてはヒートポンプの成績係
数)が低下するという問題があったが、本発明によれば
、エンジン21および圧縮機22からの放熱は圧縮機1
0ページ
22に吸入される冷媒の加熱に使われるので、筐体3o
内の温度上昇は小さくなり、上記従来の問題も解決され
る。In addition, conventionally, the inside of the housing 3o reached a high temperature of 100'C.
As the temperature rises to a certain degree, the temperature of the air taken into the engine 21 also rises, and the intake air amount (mass) decreases.
There has been a problem that the engine output decreases and that the compressor 22 itself becomes high temperature and the compression efficiency (and thus the coefficient of performance of the heat pump) decreases, but according to the present invention, the engine 21 and the compressor 22 Heat radiation is done by compressor 1
Since it is used to heat the refrigerant sucked into page 22, the case 3o
The internal temperature rise is reduced, and the above-mentioned conventional problems are also solved.
発明の効果 本発明によれば以下の効果がもたらされる。Effect of the invention According to the present invention, the following effects are brought about.
(1) 蒸発器内の伝熱面を有効に利用することができ
るので、小さな蒸発器の、あるいは成績係数の高いヒー
トポンプサイクルを有するエンジン駆動ヒートポンプ装
置を提供することができる。(1) Since the heat transfer surface within the evaporator can be effectively utilized, it is possible to provide an engine-driven heat pump device with a small evaporator or a heat pump cycle with a high coefficient of performance.
(2) エンジンおよび圧縮機を納めた筐体内部の温度
上昇を低くおさえて、エンジンの出力低下および圧縮機
の効率低下を小さくできるので、成績係数の高いエンジ
ン駆動ヒートポンプ装置を提供することができる。(2) It is possible to suppress the temperature rise inside the casing housing the engine and compressor, thereby minimizing the decrease in engine output and compressor efficiency, making it possible to provide an engine-driven heat pump device with a high coefficient of performance. .
第1図は従来のヒートポンプ装置を示す概略構成図、第
2図は冷媒のモリエル線図上のヒートポンプサイクルを
示す図、第3図は本発明によるエンジン駆動ヒートポン
プ装置の一実施例を示す概11 ページ
略構成図である。
11.21・・・・・・エンジン、12.22・・・・
・・圧縮機、13.23・・・・・・四方弁、14.2
4・・・・・・水熱交換器(凝縮器)、15.25・・
・・・・逆止弁、16゜26・・・・・・膨張弁、17
.27・・・・・・空気熱交換器(蒸発器)、18.2
8・・・・・・蒸発器出口、3o・・・・・・筐体、3
1・・・・・・冷媒加熱用熱交換器、32・・・・・・
排熱回収熱交換器、33・・・・・・温水−次回路。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図Fig. 1 is a schematic configuration diagram showing a conventional heat pump device, Fig. 2 is a diagram showing a heat pump cycle on a Mollier diagram of a refrigerant, and Fig. 3 is a schematic diagram showing an embodiment of an engine-driven heat pump device according to the present invention. It is a page schematic structure diagram. 11.21...Engine, 12.22...
...Compressor, 13.23...Four-way valve, 14.2
4... Water heat exchanger (condenser), 15.25...
...Check valve, 16゜26...Expansion valve, 17
.. 27... Air heat exchanger (evaporator), 18.2
8... Evaporator outlet, 3o... Housing, 3
1... Heat exchanger for heating refrigerant, 32...
Exhaust heat recovery heat exchanger, 33...Hot water - next circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2
Claims (1)
と、蒸発器(凝縮器)と、膨張弁等で構成される冷媒回
路を備え、前記膨張弁は、前記蒸発器(凝縮器)の出口
における冷媒を気液混合状態にする、絞り弁開度調節手
段を設け、前記エンジンおよび圧縮機を納めた筐体内に
、前記蒸発器を出て前記圧縮機に吸入される冷媒を筐体
内空気によって加熱する手段を具備することを特徴とす
るエンジン駆動ヒートポンプ装置。A compressor driven by the engine and a condenser (evaporator)
The refrigerant circuit includes an evaporator (condenser), an expansion valve, etc.; An engine-driven heat pump, characterized in that the engine-driven heat pump is provided with an adjustment means, and includes means for heating refrigerant exiting the evaporator and being sucked into the compressor by air inside the housing, in a housing housing the engine and the compressor. Device.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP58195621A JPS6086355A (en) | 1983-10-19 | 1983-10-19 | Engine driving heat pump device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP58195621A JPS6086355A (en) | 1983-10-19 | 1983-10-19 | Engine driving heat pump device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS6086355A true JPS6086355A (en) | 1985-05-15 |
Family
ID=16344211
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP58195621A Pending JPS6086355A (en) | 1983-10-19 | 1983-10-19 | Engine driving heat pump device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6086355A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62117478U (en) * | 1986-01-17 | 1987-07-25 | ||
| JP2016200368A (en) * | 2015-04-14 | 2016-12-01 | 日立アプライアンス株式会社 | Heat pump device and hot water supply device |
-
1983
- 1983-10-19 JP JP58195621A patent/JPS6086355A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62117478U (en) * | 1986-01-17 | 1987-07-25 | ||
| JP2016200368A (en) * | 2015-04-14 | 2016-12-01 | 日立アプライアンス株式会社 | Heat pump device and hot water supply device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3153442A (en) | Heating and air conditioning apparatus | |
| JPS62225860A (en) | Heat pump device | |
| JPS6086355A (en) | Engine driving heat pump device | |
| US3425238A (en) | Turbine driven compressor arrangement | |
| KR19990038277A (en) | Cold, radiator cycle | |
| JPH0332712B2 (en) | ||
| JPS60175980A (en) | Cooling method | |
| JPS6033455A (en) | Refrigerator | |
| JPH06272992A (en) | Air conditioner | |
| JPS61211667A (en) | Heat pump | |
| JPS604766A (en) | Engine driven heat pump device | |
| JPS6196373A (en) | Engine-heat pump device | |
| JPS5995344A (en) | Method of operating heat pump by driving of engine | |
| JPS63172866A (en) | Refrigerator using self-excited compressor and heat pump device | |
| JPS5895166A (en) | Heat pump air conditioning system | |
| JPS59189262A (en) | Absorption type heat pump device | |
| JPS6025708B2 (en) | absorption refrigeration equipment | |
| FR2457468A1 (en) | Three-source heat installation - using single fluid and combining exhausts of turbine and compressor in first and second loops improving efficiency and simplifying structure | |
| JPS58195753A (en) | Solar heat utilizing air conditioner | |
| JPS58219375A (en) | Absorption heating and cooling equipment | |
| JPS6071862A (en) | Heat pump device | |
| JPH01150763A (en) | Waste heat recovery chilling unit | |
| JPS5888570A (en) | Air conditioner | |
| JPH033874B2 (en) | ||
| JPH03279755A (en) | Air conditioner |